Portability | non-portable (rank-2 polymorphism, MTPCs) |
---|---|
Stability | provisional |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Safe Haskell | None |
Church-encoded free monad transformer.
- newtype FT f m a = FT {
- runFT :: forall r. (a -> m r) -> (f (m r) -> m r) -> m r
- type F f = FT f Identity
- free :: Functor f => (forall r. (a -> r) -> (f r -> r) -> r) -> F f a
- runF :: Functor f => F f a -> forall r. (a -> r) -> (f r -> r) -> r
- toFT :: (Monad m, Functor f) => FreeT f m a -> FT f m a
- fromFT :: (Monad m, Functor f) => FT f m a -> FreeT f m a
- iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FT f m a -> m a
- iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FT f m a -> t m a
- hoistFT :: (Monad m, Monad n, Functor f) => (forall a. m a -> n a) -> FT f m b -> FT f n b
- transFT :: (Monad m, Functor g) => (forall a. f a -> g a) -> FT f m b -> FT g m b
- cutoff :: (Functor f, Monad m) => Integer -> FT f m a -> FT f m (Maybe a)
- improve :: Functor f => (forall m. MonadFree f m => m a) -> Free f a
- fromF :: (Functor f, MonadFree f m) => F f a -> m a
- toF :: Functor f => Free f a -> F f a
- retract :: (Functor f, Monad f) => F f a -> f a
- iter :: Functor f => (f a -> a) -> F f a -> a
- iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> F f a -> m a
- class Monad m => MonadFree f m | m -> f where
- wrap :: f (m a) -> m a
The free monad transformer
The "free monad transformer" for a functor f
(Functor f, MonadError e m) => MonadError e (FT f m) | |
(Functor f, MonadReader r m) => MonadReader r (FT f m) | |
(Functor f, MonadState s m) => MonadState s (FT f m) | |
(Functor f, MonadWriter w m) => MonadWriter w (FT f m) | |
Functor f => MonadFree f (FT f m) | |
MonadTrans (FT f) | |
Monad (FT f m) | |
Functor (FT f m) | |
MonadPlus m => MonadPlus (FT f m) | |
Applicative (FT f m) | |
(Foldable f, Foldable m, Monad m) => Foldable (FT f m) | |
(Monad m, Traversable m, Traversable f) => Traversable (FT f m) | |
Alternative m => Alternative (FT f m) | |
MonadIO m => MonadIO (FT f m) | |
MonadCont m => MonadCont (FT f m) | |
Apply (FT f m) | |
Bind (FT f m) | |
(Functor f, Monad m, Eq (FreeT f m a)) => Eq (FT f m a) | |
(Functor f, Monad m, Ord (FreeT f m a)) => Ord (FT f m a) |
The free monad
free :: Functor f => (forall r. (a -> r) -> (f r -> r) -> r) -> F f aSource
Wrap a Church-encoding of a "free monad" as the free monad for a functor.
runF :: Functor f => F f a -> forall r. (a -> r) -> (f r -> r) -> rSource
Unwrap the Free
monad to obtain it's Church-encoded representation.
Operations
toFT :: (Monad m, Functor f) => FreeT f m a -> FT f m aSource
Generate a Church-encoded free monad transformer from a FreeT
monad
transformer.
fromFT :: (Monad m, Functor f) => FT f m a -> FreeT f m aSource
Convert to a FreeT
free monad representation.
iterT :: (Functor f, Monad m) => (f (m a) -> m a) -> FT f m a -> m aSource
Tear down a free monad transformer using iteration.
iterTM :: (Functor f, Monad m, MonadTrans t, Monad (t m)) => (f (t m a) -> t m a) -> FT f m a -> t m aSource
Tear down a free monad transformer using iteration over a transformer.
cutoff :: (Functor f, Monad m) => Integer -> FT f m a -> FT f m (Maybe a)Source
Cuts off a tree of computations at a given depth. If the depth is 0 or less, no computation nor monadic effects will take place.
Some examples (n ≥ 0):
cutoff 0 _ == return Nothing
cutoff (n+1) . return == return . Just
cutoff (n+1) . lift == lift . liftM Just
cutoff (n+1) . wrap == wrap . fmap (cutoff n)
Calling 'retract . cutoff n' is always terminating, provided each of the steps in the iteration is terminating.
Operations of free monad
improve :: Functor f => (forall m. MonadFree f m => m a) -> Free f aSource
Improve the asymptotic performance of code that builds a free monad with only binds and returns by using F
behind the scenes.
This is based on the "Free Monads for Less" series of articles by Edward Kmett:
http://comonad.com/reader/2011/free-monads-for-less/ http://comonad.com/reader/2011/free-monads-for-less-2/
and "Asymptotic Improvement of Computations over Free Monads" by Janis Voightländer:
fromF :: (Functor f, MonadFree f m) => F f a -> m aSource
Convert to another free monad representation.
iterM :: (Functor f, Monad m) => (f (m a) -> m a) -> F f a -> m aSource
Like iter
for monadic values.
Free Monads With Class
class Monad m => MonadFree f m | m -> f whereSource
Monads provide substitution (fmap
) and renormalization (join
):
m>>=
f =join
(fmap
f m)
A free Monad
is one that does no work during the normalization step beyond simply grafting the two monadic values together.
[]
is not a free Monad
(in this sense) because
smashes the lists flat.
join
[[a]]
On the other hand, consider:
data Tree a = Bin (Tree a) (Tree a) | Tip a
instanceMonad
Tree wherereturn
= Tip Tip a>>=
f = f a Bin l r>>=
f = Bin (l>>=
f) (r>>=
f)
This Monad
is the free Monad
of Pair:
data Pair a = Pair a a
And we could make an instance of MonadFree
for it directly:
instanceMonadFree
Pair Tree wherewrap
(Pair l r) = Bin l r
Or we could choose to program with
instead of Free
PairTree
and thereby avoid having to define our own Monad
instance.
Moreover, Control.Monad.Free.Church provides a MonadFree
instance that can improve the asymptotic complexity of code that
constructs free monads by effectively reassociating the use of
(>>=
). You may also want to take a look at the kan-extensions
package (http://hackage.haskell.org/package/kan-extensions).
See Free
for a more formal definition of the free Monad
for a Functor
.
(Functor f, MonadFree f m) => MonadFree f (ListT m) | |
(Functor f, MonadFree f m) => MonadFree f (IdentityT m) | |
(Functor f, MonadFree f m) => MonadFree f (MaybeT m) | |
Functor f => MonadFree f (Free f) | |
Functor f => MonadFree f (F f) | |
Monad m => MonadFree Identity (IterT m) | |
(Functor f, MonadFree f m, Error e) => MonadFree f (ErrorT e m) | |
(Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) | |
(Functor f, MonadFree f m, Monoid w) => MonadFree f (WriterT w m) | |
(Functor f, MonadFree f m) => MonadFree f (ContT r m) | |
(Functor f, MonadFree f m) => MonadFree f (StateT s m) | |
(Functor f, MonadFree f m) => MonadFree f (StateT s m) | |
(Functor f, MonadFree f m) => MonadFree f (ReaderT e m) | |
(Functor f, Monad m) => MonadFree f (FreeT f m) | |
Functor f => MonadFree f (FT f m) | |
(Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) | |
(Functor f, MonadFree f m, Monoid w) => MonadFree f (RWST r w s m) |