first-class-families-0.8.0.0: First class type families

Fcf.Data.Function

Description

Simple combinators for functions.

Synopsis

# Documentation

data (&) :: a -> (a -> Exp b) -> Exp b infixl 1 Source #

Reverse function application, argument first.

### Example

Expand
>>> :kind! Eval ('( 'True, 'Nothing) & Fst)
Eval ('( 'True, 'Nothing) & Fst) :: Bool
= 'True

Instances
 type Eval (x & f :: a2 -> Type) Source # Instance detailsDefined in Fcf.Data.Function type Eval (x & f :: a2 -> Type) = Eval (f x)

data On :: (b -> b -> Exp c) -> (a -> Exp b) -> a -> a -> Exp c Source #

Lift a binary function to the domain of a projection.

### Example

Expand
>>> :kind! Eval (((&&) On Fst) '( 'True, 'Nothing) '( 'False, 'Just '()))
Eval (((&&) On Fst) '( 'True, 'Nothing) '( 'False, 'Just '())) :: Bool
= 'False

Instances
 type Eval (On r f x y :: a3 -> Type) Source # Instance detailsDefined in Fcf.Data.Function type Eval (On r f x y :: a3 -> Type) = Eval (r (Eval (f x)) (Eval (f y)))

data Bicomap :: (a -> Exp c) -> (b -> Exp d) -> (c -> d -> Exp e) -> a -> b -> Exp e Source #

Pre-compose a binary function with a function for each argument.

### Example

Expand
>>> :kind! Eval (Bicomap Fst Pure (||) '( 'False, 'Nothing) 'True)
Eval (Bicomap Fst Pure (||) '( 'False, 'Nothing) 'True) :: Bool
= 'True

Instances
 type Eval (Bicomap f g r x y :: a4 -> Type) Source # Instance detailsDefined in Fcf.Data.Function type Eval (Bicomap f g r x y :: a4 -> Type) = Eval (r (Eval (f x)) (Eval (g y)))