{-# LANGUAGE CPP, BangPatterns #-}
module Math.FiniteField.Sign where
import Data.Monoid
#if MIN_VERSION_base(4,11,0)
import Data.Foldable
import Data.Semigroup
#endif
data Sign
= Plus
| Minus
deriving (Sign -> Sign -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Sign -> Sign -> Bool
$c/= :: Sign -> Sign -> Bool
== :: Sign -> Sign -> Bool
$c== :: Sign -> Sign -> Bool
Eq,Int -> Sign -> ShowS
[Sign] -> ShowS
Sign -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Sign] -> ShowS
$cshowList :: [Sign] -> ShowS
show :: Sign -> String
$cshow :: Sign -> String
showsPrec :: Int -> Sign -> ShowS
$cshowsPrec :: Int -> Sign -> ShowS
Show,ReadPrec [Sign]
ReadPrec Sign
Int -> ReadS Sign
ReadS [Sign]
forall a.
(Int -> ReadS a)
-> ReadS [a] -> ReadPrec a -> ReadPrec [a] -> Read a
readListPrec :: ReadPrec [Sign]
$creadListPrec :: ReadPrec [Sign]
readPrec :: ReadPrec Sign
$creadPrec :: ReadPrec Sign
readList :: ReadS [Sign]
$creadList :: ReadS [Sign]
readsPrec :: Int -> ReadS Sign
$creadsPrec :: Int -> ReadS Sign
Read)
#if MIN_VERSION_base(4,11,0)
instance Semigroup Sign where
<> :: Sign -> Sign -> Sign
(<>) = Sign -> Sign -> Sign
mulSign
sconcat :: NonEmpty Sign -> Sign
sconcat = forall (t :: * -> *) a. Foldable t => (a -> a -> a) -> t a -> a
foldl1 Sign -> Sign -> Sign
mulSign
instance Monoid Sign where
mempty :: Sign
mempty = Sign
Plus
mconcat :: [Sign] -> Sign
mconcat = [Sign] -> Sign
productOfSigns
#else
instance Monoid Sign where
mempty = Plus
mappend = mulSign
mconcat = productOfSigns
#endif
isPlus, isMinus :: Sign -> Bool
isPlus :: Sign -> Bool
isPlus Sign
s = case Sign
s of { Sign
Plus -> Bool
True ; Sign
_ -> Bool
False }
isMinus :: Sign -> Bool
isMinus Sign
s = case Sign
s of { Sign
Minus -> Bool
True ; Sign
_ -> Bool
False }
{-# SPECIALIZE signValue :: Sign -> Int #-}
{-# SPECIALIZE signValue :: Sign -> Integer #-}
signValue :: Num a => Sign -> a
signValue :: forall a. Num a => Sign -> a
signValue Sign
s = case Sign
s of
Sign
Plus -> a
1
Sign
Minus -> -a
1
{-# SPECIALIZE signed :: Sign -> Int -> Int #-}
{-# SPECIALIZE signed :: Sign -> Integer -> Integer #-}
signed :: Num a => Sign -> a -> a
signed :: forall a. Num a => Sign -> a -> a
signed Sign
s a
y = case Sign
s of
Sign
Plus -> a
y
Sign
Minus -> forall a. Num a => a -> a
negate a
y
{-# SPECIALIZE paritySign :: Int -> Sign #-}
{-# SPECIALIZE paritySign :: Integer -> Sign #-}
paritySign :: Integral a => a -> Sign
paritySign :: forall a. Integral a => a -> Sign
paritySign a
x = if forall a. Integral a => a -> Bool
even a
x then Sign
Plus else Sign
Minus
{-# SPECIALIZE paritySignValue :: Int -> Integer #-}
{-# SPECIALIZE paritySignValue :: Integer -> Integer #-}
paritySignValue :: Integral a => a -> Integer
paritySignValue :: forall a. Integral a => a -> Integer
paritySignValue a
k = if forall a. Integral a => a -> Bool
odd a
k then (-Integer
1) else Integer
1
{-# SPECIALIZE negateIfOdd :: Int -> Int -> Int #-}
{-# SPECIALIZE negateIfOdd :: Int -> Integer -> Integer #-}
negateIfOdd :: (Integral a, Num b) => a -> b -> b
negateIfOdd :: forall a b. (Integral a, Num b) => a -> b -> b
negateIfOdd a
k b
y = if forall a. Integral a => a -> Bool
even a
k then b
y else forall a. Num a => a -> a
negate b
y
oppositeSign :: Sign -> Sign
oppositeSign :: Sign -> Sign
oppositeSign Sign
s = case Sign
s of
Sign
Plus -> Sign
Minus
Sign
Minus -> Sign
Plus
mulSign :: Sign -> Sign -> Sign
mulSign :: Sign -> Sign -> Sign
mulSign Sign
s1 Sign
s2 = case Sign
s1 of
Sign
Plus -> Sign
s2
Sign
Minus -> Sign -> Sign
oppositeSign Sign
s2
productOfSigns :: [Sign] -> Sign
productOfSigns :: [Sign] -> Sign
productOfSigns = Sign -> [Sign] -> Sign
go Sign
Plus where
go :: Sign -> [Sign] -> Sign
go !Sign
acc [] = Sign
acc
go !Sign
acc (Sign
x:[Sign]
xs) = case Sign
x of
Sign
Plus -> Sign -> [Sign] -> Sign
go Sign
acc [Sign]
xs
Sign
Minus -> Sign -> [Sign] -> Sign
go (Sign -> Sign
oppositeSign Sign
acc) [Sign]
xs