{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE EmptyCase #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE StandaloneDeriving #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
module Data.Fin (
Fin (..),
cata,
explicitShow,
explicitShowsPrec,
toNat,
fromNat,
toNatural,
toInteger,
mirror,
inverse,
universe,
inlineUniverse,
universe1,
inlineUniverse1,
absurd,
boring,
weakenLeft,
weakenLeft1,
weakenRight,
weakenRight1,
append,
split,
isMin,
isMax,
fin0, fin1, fin2, fin3, fin4, fin5, fin6, fin7, fin8, fin9,
) where
import Control.DeepSeq (NFData (..))
import Data.Bifunctor (bimap)
import Data.Hashable (Hashable (..))
import Data.List.NonEmpty (NonEmpty (..))
import Data.Proxy (Proxy (..))
import Data.Type.Nat (Nat (..))
import Data.Typeable (Typeable)
import GHC.Exception (ArithException (..), throw)
import Numeric.Natural (Natural)
import qualified Data.List.NonEmpty as NE
import qualified Data.Type.Nat as N
import qualified Test.QuickCheck as QC
data Fin (n :: Nat) where
FZ :: Fin ('S n)
FS :: Fin n -> Fin ('S n)
deriving (Typeable)
deriving instance Eq (Fin n)
deriving instance Ord (Fin n)
instance Show (Fin n) where
showsPrec d = showsPrec d . toNatural
instance N.SNatI n => Num (Fin n) where
abs = id
signum FZ = FZ
signum (FS FZ) = FS FZ
signum (FS (FS _)) = FS FZ
fromInteger = unsafeFromNum . (`mod` N.reflectToNum (Proxy :: Proxy n))
n + m = fromInteger (toInteger n + toInteger m)
n * m = fromInteger (toInteger n * toInteger m)
n - m = fromInteger (toInteger n - toInteger m)
negate = fromInteger . negate . toInteger
instance N.SNatI n => Real (Fin n) where
toRational = cata 0 succ
instance N.SNatI n => Integral (Fin n) where
toInteger = cata 0 succ
quotRem a b = (quot a b, 0)
quot a b = a * inverse b
mirror :: forall n. N.InlineInduction n => Fin n -> Fin n
mirror = getMirror (N.inlineInduction start step) where
start :: Mirror 'Z
start = Mirror id
step :: forall m. N.InlineInduction m => Mirror m -> Mirror ('S m)
step (Mirror rec) = Mirror $ \n -> case n of
FZ -> getMaxBound (N.inlineInduction (MaxBound FZ) (MaxBound . FS . getMaxBound))
FS m -> weakenLeft1 (rec m)
newtype Mirror n = Mirror { getMirror :: Fin n -> Fin n }
inverse :: forall n. N.SNatI n => Fin n -> Fin n
inverse = fromInteger . iter 0 n 1 . toInteger where
n = N.reflectToNum (Proxy :: Proxy n)
iter t _ _ 0
| t < 0 = t + n
| otherwise = t
iter t r t' r' =
let q = r `div` r'
in iter t' r' (t - q * t') (r - q * r')
instance N.SNatI n => Enum (Fin n) where
fromEnum = go where
go :: Fin m -> Int
go FZ = 0
go (FS n) = succ (go n)
toEnum = unsafeFromNum
instance (n ~ 'S m, N.SNatI m) => Bounded (Fin n) where
minBound = FZ
maxBound = getMaxBound $ N.induction
(MaxBound FZ)
(MaxBound . FS . getMaxBound)
newtype MaxBound n = MaxBound { getMaxBound :: Fin ('S n) }
instance NFData (Fin n) where
rnf FZ = ()
rnf (FS n) = rnf n
instance Hashable (Fin n) where
hashWithSalt salt = hashWithSalt salt . cata (0 :: Integer) succ
instance (n ~ 'S m, N.SNatI m) => QC.Arbitrary (Fin n) where
arbitrary = getArb $ N.induction (Arb (return FZ)) step where
step :: forall p. N.SNatI p => Arb p -> Arb ('S p)
step (Arb p) = Arb $ QC.frequency
[ (1, return FZ)
, (N.reflectToNum (Proxy :: Proxy p), fmap FS p)
]
shrink = shrink
shrink :: Fin n -> [Fin n]
shrink FZ = []
shrink (FS FZ) = [FZ]
shrink (FS n) = map FS (shrink n)
newtype Arb n = Arb { getArb :: QC.Gen (Fin ('S n)) }
instance QC.CoArbitrary (Fin n) where
coarbitrary FZ = QC.variant (0 :: Int)
coarbitrary (FS n) = QC.variant (1 :: Int) . QC.coarbitrary n
instance (n ~ 'S m, N.SNatI m) => QC.Function (Fin n) where
function = case N.snat :: N.SNat m of
N.SZ -> QC.functionMap (\FZ -> ()) (\() -> FZ)
N.SS -> QC.functionMap isMin (maybe FZ FS)
explicitShow :: Fin n -> String
explicitShow n = explicitShowsPrec 0 n ""
explicitShowsPrec :: Int -> Fin n -> ShowS
explicitShowsPrec _ FZ = showString "FZ"
explicitShowsPrec d (FS n) = showParen (d > 10)
$ showString "FS "
. explicitShowsPrec 11 n
cata :: forall a n. a -> (a -> a) -> Fin n -> a
cata z f = go where
go :: Fin m -> a
go FZ = z
go (FS n) = f (go n)
toNat :: Fin n -> N.Nat
toNat = cata Z S
fromNat :: N.SNatI n => N.Nat -> Maybe (Fin n)
fromNat = appNatToFin (N.induction start step) where
start :: NatToFin 'Z
start = NatToFin $ const Nothing
step :: NatToFin n -> NatToFin ('S n)
step (NatToFin f) = NatToFin $ \n -> case n of
Z -> Just FZ
S m -> fmap FS (f m)
newtype NatToFin n = NatToFin { appNatToFin :: N.Nat -> Maybe (Fin n) }
toNatural :: Fin n -> Natural
toNatural = cata 0 succ
unsafeFromNum :: forall n i. (Num i, Ord i, N.SNatI n) => i -> Fin n
unsafeFromNum = appUnsafeFromNum (N.induction start step) where
start :: UnsafeFromNum i 'Z
start = UnsafeFromNum $ \n -> case compare n 0 of
LT -> throw Underflow
EQ -> throw Overflow
GT -> throw Overflow
step :: UnsafeFromNum i m -> UnsafeFromNum i ('S m)
step (UnsafeFromNum f) = UnsafeFromNum $ \n -> case compare n 0 of
EQ -> FZ
GT -> FS (f (n - 1))
LT -> throw Underflow
newtype UnsafeFromNum i n = UnsafeFromNum { appUnsafeFromNum :: i -> Fin n }
universe :: N.SNatI n => [Fin n]
universe = getUniverse $ N.induction (Universe []) step where
step :: Universe n -> Universe ('S n)
step (Universe xs) = Universe (FZ : map FS xs)
universe1 :: N.SNatI n => NonEmpty (Fin ('S n))
universe1 = getUniverse1 $ N.induction (Universe1 (FZ :| [])) step where
step :: Universe1 n -> Universe1 ('S n)
step (Universe1 xs) = Universe1 (NE.cons FZ (fmap FS xs))
inlineUniverse :: N.InlineInduction n => [Fin n]
inlineUniverse = getUniverse $ N.inlineInduction (Universe []) step where
step :: Universe n -> Universe ('S n)
step (Universe xs) = Universe (FZ : map FS xs)
inlineUniverse1 :: N.InlineInduction n => NonEmpty (Fin ('S n))
inlineUniverse1 = getUniverse1 $ N.inlineInduction (Universe1 (FZ :| [])) step where
step :: Universe1 n -> Universe1 ('S n)
step (Universe1 xs) = Universe1 (NE.cons FZ (fmap FS xs))
newtype Universe n = Universe { getUniverse :: [Fin n] }
newtype Universe1 n = Universe1 { getUniverse1 :: NonEmpty (Fin ('S n)) }
absurd :: Fin N.Nat0 -> b
absurd n = case n of {}
boring :: Fin N.Nat1
boring = FZ
isMin :: Fin ('S n) -> Maybe (Fin n)
isMin FZ = Nothing
isMin (FS n) = Just n
isMax :: forall n. N.InlineInduction n => Fin ('S n) -> Maybe (Fin n)
isMax = getIsMax (N.inlineInduction start step) where
start :: IsMax 'Z
start = IsMax $ \_ -> Nothing
step :: IsMax m -> IsMax ('S m)
step (IsMax rec) = IsMax $ \n -> case n of
FZ -> Just FZ
FS m -> fmap FS (rec m)
newtype IsMax n = IsMax { getIsMax :: Fin ('S n) -> Maybe (Fin n) }
weakenRight1 :: Fin n -> Fin ('S n)
weakenRight1 = FS
weakenLeft1 :: N.InlineInduction n => Fin n -> Fin ('S n)
weakenLeft1 = getWeaken1 (N.inlineInduction start step) where
start :: Weaken1 'Z
start = Weaken1 absurd
step :: Weaken1 n -> Weaken1 ('S n)
step (Weaken1 go) = Weaken1 $ \n -> case n of
FZ -> FZ
FS n' -> FS (go n')
newtype Weaken1 n = Weaken1 { getWeaken1 :: Fin n -> Fin ('S n) }
weakenLeft :: forall n m. N.InlineInduction n => Proxy m -> Fin n -> Fin (N.Plus n m)
weakenLeft _ = getWeakenLeft (N.inlineInduction start step :: WeakenLeft m n) where
start :: WeakenLeft m 'Z
start = WeakenLeft absurd
step :: WeakenLeft m p -> WeakenLeft m ('S p)
step (WeakenLeft go) = WeakenLeft $ \n -> case n of
FZ -> FZ
FS n' -> FS (go n')
newtype WeakenLeft m n = WeakenLeft { getWeakenLeft :: Fin n -> Fin (N.Plus n m) }
weakenRight :: forall n m. N.InlineInduction n => Proxy n -> Fin m -> Fin (N.Plus n m)
weakenRight _ = getWeakenRight (N.inlineInduction start step :: WeakenRight m n) where
start = WeakenRight id
step (WeakenRight go) = WeakenRight $ \x -> FS $ go x
newtype WeakenRight m n = WeakenRight { getWeakenRight :: Fin m -> Fin (N.Plus n m) }
append :: forall n m. N.InlineInduction n => Either (Fin n) (Fin m) -> Fin (N.Plus n m)
append (Left n) = weakenLeft (Proxy :: Proxy m) n
append (Right m) = weakenRight (Proxy :: Proxy n) m
split :: forall n m. N.InlineInduction n => Fin (N.Plus n m) -> Either (Fin n) (Fin m)
split = getSplit (N.inlineInduction start step) where
start :: Split m 'Z
start = Split Right
step :: Split m p -> Split m ('S p)
step (Split go) = Split $ \x -> case x of
FZ -> Left FZ
FS x' -> bimap FS id $ go x'
newtype Split m n = Split { getSplit :: Fin (N.Plus n m) -> Either (Fin n) (Fin m) }
fin0 :: Fin (N.Plus N.Nat0 ('S n))
fin1 :: Fin (N.Plus N.Nat1 ('S n))
fin2 :: Fin (N.Plus N.Nat2 ('S n))
fin3 :: Fin (N.Plus N.Nat3 ('S n))
fin4 :: Fin (N.Plus N.Nat4 ('S n))
fin5 :: Fin (N.Plus N.Nat5 ('S n))
fin6 :: Fin (N.Plus N.Nat6 ('S n))
fin7 :: Fin (N.Plus N.Nat7 ('S n))
fin8 :: Fin (N.Plus N.Nat8 ('S n))
fin9 :: Fin (N.Plus N.Nat9 ('S n))
fin0 = FZ
fin1 = FS fin0
fin2 = FS fin1
fin3 = FS fin2
fin4 = FS fin3
fin5 = FS fin4
fin6 = FS fin5
fin7 = FS fin6
fin8 = FS fin7
fin9 = FS fin8