| Safe Haskell | None |
|---|---|
| Language | Haskell2010 |
Data.Fin
Description
Finite numbers.
This module is designed to be imported qualified.
Synopsis
- data Fin (n :: Nat) where
- cata :: forall a n. a -> (a -> a) -> Fin n -> a
- explicitShow :: Fin n -> String
- explicitShowsPrec :: Int -> Fin n -> ShowS
- toNat :: Fin n -> Nat
- fromNat :: SNatI n => Nat -> Maybe (Fin n)
- toNatural :: Fin n -> Natural
- toInteger :: Integral a => a -> Integer
- inverse :: forall n. SNatI n => Fin n -> Fin n
- universe :: SNatI n => [Fin n]
- inlineUniverse :: InlineInduction n => [Fin n]
- universe1 :: SNatI n => NonEmpty (Fin (S n))
- inlineUniverse1 :: InlineInduction n => NonEmpty (Fin (S n))
- absurd :: Fin Nat0 -> b
- boring :: Fin Nat1
- weakenLeft :: forall n m. InlineInduction n => Proxy m -> Fin n -> Fin (Plus n m)
- weakenRight :: forall n m. InlineInduction n => Proxy n -> Fin m -> Fin (Plus n m)
- append :: forall n m. InlineInduction n => Either (Fin n) (Fin m) -> Fin (Plus n m)
- split :: forall n m. InlineInduction n => Fin (Plus n m) -> Either (Fin n) (Fin m)
- fin0 :: Fin (Plus Nat0 (S n))
- fin1 :: Fin (Plus Nat1 (S n))
- fin2 :: Fin (Plus Nat2 (S n))
- fin3 :: Fin (Plus Nat3 (S n))
- fin4 :: Fin (Plus Nat4 (S n))
- fin5 :: Fin (Plus Nat5 (S n))
- fin6 :: Fin (Plus Nat6 (S n))
- fin7 :: Fin (Plus Nat7 (S n))
- fin8 :: Fin (Plus Nat8 (S n))
- fin9 :: Fin (Plus Nat9 (S n))
Documentation
data Fin (n :: Nat) where Source #
Finite numbers: [0..n-1].
Instances
| (n ~ S m, SNatI m) => Bounded (Fin n) Source # | |
| SNatI n => Enum (Fin n) Source # | |
| Eq (Fin n) Source # | |
| SNatI n => Integral (Fin n) Source # | |
| SNatI n => Num (Fin n) Source # | Operations module
|
| Ord (Fin n) Source # | |
| SNatI n => Real (Fin n) Source # | |
Defined in Data.Fin Methods toRational :: Fin n -> Rational # | |
| Show (Fin n) Source # | To see explicit structure, use |
| NFData (Fin n) Source # | |
| Hashable (Fin n) Source # | |
Showing
explicitShow :: Fin n -> String Source #
Conversions
fromNat :: SNatI n => Nat -> Maybe (Fin n) Source #
Convert from Nat.
>>>fromNat N.nat1 :: Maybe (Fin N.Nat2)Just 1
>>>fromNat N.nat1 :: Maybe (Fin N.Nat1)Nothing
Interesting
inverse :: forall n. SNatI n => Fin n -> Fin n Source #
Multiplicative inverse.
Works for where Fin nn is coprime with an argument, i.e. in general when n is prime.
>>>map inverse universe :: [Fin N.Nat5][0,1,3,2,4]
>>>zipWith (*) universe (map inverse universe) :: [Fin N.Nat5][0,1,1,1,1]
Adaptation of pseudo-code in Wikipedia
inlineUniverse :: InlineInduction n => [Fin n] Source #
universe which will be fully inlined, if n is known at compile time.
>>>inlineUniverse :: [Fin N.Nat3][0,1,2]
inlineUniverse1 :: InlineInduction n => NonEmpty (Fin (S n)) Source #
>>>inlineUniverse1 :: NonEmpty (Fin N.Nat3)0 :| [1,2]
Plus
weakenLeft :: forall n m. InlineInduction n => Proxy m -> Fin n -> Fin (Plus n m) Source #
weakenRight :: forall n m. InlineInduction n => Proxy n -> Fin m -> Fin (Plus n m) Source #
append :: forall n m. InlineInduction n => Either (Fin n) (Fin m) -> Fin (Plus n m) Source #
Append two Fins together.
>>>append (Left fin2 :: Either (Fin N.Nat5) (Fin N.Nat4))2
>>>append (Right fin2 :: Either (Fin N.Nat5) (Fin N.Nat4))7
split :: forall n m. InlineInduction n => Fin (Plus n m) -> Either (Fin n) (Fin m) Source #
Inverse of append.
>>>split fin2 :: Either (Fin N.Nat2) (Fin N.Nat3)Right 0
>>>split fin1 :: Either (Fin N.Nat2) (Fin N.Nat3)Left 1
>>>map split universe :: [Either (Fin N.Nat2) (Fin N.Nat3)][Left 0,Left 1,Right 0,Right 1,Right 2]