{-# LANGUAGE CPP, MultiParamTypeClasses #-}
module Data.Graph.Inductive.Query.Monad(
mapFst, mapSnd, (><), orP,
GT(..), apply, apply', applyWith, applyWith', runGT, condMGT', recMGT',
condMGT, recMGT,
getNode, getContext, getNodes', getNodes, sucGT, sucM,
graphRec, graphRec', graphUFold,
graphNodesM0, graphNodesM, graphNodes, graphFilterM, graphFilter,
dfsGT, dfsM, dfsM', dffM, graphDff, graphDff',
) where
import Control.Monad (ap, liftM, liftM2)
import Data.Tree
#if __GLASGOW_HASKELL__ < 710
import Control.Applicative (Applicative (..))
#endif
import Data.Graph.Inductive.Graph
import Data.Graph.Inductive.Monad
mapFst :: (a -> b) -> (a, c) -> (b, c)
mapFst f (x,y) = (f x,y)
mapSnd :: (a -> b) -> (c, a) -> (c, b)
mapSnd f (x,y) = (x,f y)
infixr 8 ><
(><) :: (a -> b) -> (c -> d) -> (a, c) -> (b, d)
(f >< g) (x,y) = (f x,g y)
orP :: (a -> Bool) -> (b -> Bool) -> (a,b) -> Bool
orP p q (x,y) = p x || q y
newtype GT m g a = MGT (m g -> m (a,g))
apply :: GT m g a -> m g -> m (a,g)
apply (MGT f) = f
apply' :: (Monad m) => GT m g a -> g -> m (a,g)
apply' gt = apply gt . return
applyWith :: (Monad m) => (a -> b) -> GT m g a -> m g -> m (b,g)
applyWith h (MGT f) gm = do {(x,g) <- f gm; return (h x,g)}
applyWith' :: (Monad m) => (a -> b) -> GT m g a -> g -> m (b,g)
applyWith' h gt = applyWith h gt . return
runGT :: (Monad m) => GT m g a -> m g -> m a
runGT gt mg = do {(x,_) <- apply gt mg; return x}
instance (Monad m) => Functor (GT m g) where
fmap = liftM
instance (Monad m) => Applicative (GT m g) where
pure = return
(<*>) = ap
instance (Monad m) => Monad (GT m g) where
return x = MGT (\mg->do {g<-mg; return (x,g)})
f >>= h = MGT (\mg->do {(x,g)<-apply f mg; apply' (h x) g})
condMGT' :: (Monad m) => (s -> Bool) -> GT m s a -> GT m s a -> GT m s a
condMGT' p f g = MGT (\mg->do {h<-mg; if p h then apply f mg else apply g mg})
recMGT' :: (Monad m) => (s -> Bool) -> GT m s a -> (a -> b -> b) -> b -> GT m s b
recMGT' p mg f u = condMGT' p (return u)
(do {x<-mg;y<-recMGT' p mg f u;return (f x y)})
condMGT :: (Monad m) => (m s -> m Bool) -> GT m s a -> GT m s a -> GT m s a
condMGT p f g = MGT (\mg->do {b<-p mg; if b then apply f mg else apply g mg})
recMGT :: (Monad m) => (m s -> m Bool) -> GT m s a -> (a -> b -> b) -> b -> GT m s b
recMGT p mg f u = condMGT p (return u)
(do {x<-mg;y<-recMGT p mg f u;return (f x y)})
getNode :: (GraphM m gr) => GT m (gr a b) Node
getNode = MGT (\mg->do {((_,v,_,_),g) <- matchAnyM mg; return (v,g)})
getContext :: (GraphM m gr) => GT m (gr a b) (Context a b)
getContext = MGT matchAnyM
getNodes' :: (Graph gr,GraphM m gr) => GT m (gr a b) [Node]
getNodes' = condMGT' isEmpty (return []) nodeGetter
getNodes :: (GraphM m gr) => GT m (gr a b) [Node]
getNodes = condMGT isEmptyM (return []) nodeGetter
nodeGetter :: (GraphM m gr) => GT m (gr a b) [Node]
nodeGetter = liftM2 (:) getNode getNodes
sucGT :: (GraphM m gr) => Node -> GT m (gr a b) (Maybe [Node])
sucGT v = MGT (\mg->do (c,g) <- matchM v mg
case c of
Just (_,_,_,s) -> return (Just (map snd s),g)
Nothing -> return (Nothing,g)
)
sucM :: (GraphM m gr) => Node -> m (gr a b) -> m (Maybe [Node])
sucM v = runGT (sucGT v)
graphRec :: (GraphM m gr) => GT m (gr a b) c ->
(c -> d -> d) -> d -> GT m (gr a b) d
graphRec = recMGT isEmptyM
graphRec' :: (Graph gr,GraphM m gr) => GT m (gr a b) c ->
(c -> d -> d) -> d -> GT m (gr a b) d
graphRec' = recMGT' isEmpty
graphUFold :: (GraphM m gr) => (Context a b -> c -> c) -> c -> GT m (gr a b) c
graphUFold = graphRec getContext
graphNodesM0 :: (GraphM m gr) => GT m (gr a b) [Node]
graphNodesM0 = graphRec getNode (:) []
graphNodesM :: (GraphM m gr) => GT m (gr a b) [Node]
graphNodesM = graphUFold (\(_,v,_,_)->(v:)) []
graphNodes :: (GraphM m gr) => m (gr a b) -> m [Node]
graphNodes = runGT graphNodesM
graphFilterM :: (GraphM m gr) => (Context a b -> Bool) ->
GT m (gr a b) [Context a b]
graphFilterM p = graphUFold (\c cs->if p c then c:cs else cs) []
graphFilter :: (GraphM m gr) => (Context a b -> Bool) -> m (gr a b) -> m [Context a b]
graphFilter p = runGT (graphFilterM p)
dfsGT :: (GraphM m gr) => [Node] -> GT m (gr a b) [Node]
dfsGT [] = return []
dfsGT (v:vs) = MGT (\mg->
do (mc,g') <- matchM v mg
case mc of
Just (_,_,_,s) -> applyWith' (v:) (dfsGT (map snd s++vs)) g'
Nothing -> apply' (dfsGT vs) g' )
dfsM :: (GraphM m gr) => [Node] -> m (gr a b) -> m [Node]
dfsM vs = runGT (dfsGT vs)
dfsM' :: (GraphM m gr) => m (gr a b) -> m [Node]
dfsM' mg = do {vs <- nodesM mg; runGT (dfsGT vs) mg}
dffM :: (GraphM m gr) => [Node] -> GT m (gr a b) [Tree Node]
dffM vs = MGT (\mg->
do g<-mg
b<-isEmptyM mg
if b||null vs then return ([],g) else
let (v:vs') = vs in
do (mc,g1) <- matchM v mg
case mc of
Nothing -> apply (dffM vs') (return g1)
Just c -> do (ts, g2) <- apply (dffM (suc' c)) (return g1)
(ts',g3) <- apply (dffM vs') (return g2)
return (Node (node' c) ts:ts',g3)
)
graphDff :: (GraphM m gr) => [Node] -> m (gr a b) -> m [Tree Node]
graphDff vs = runGT (dffM vs)
graphDff' :: (GraphM m gr) => m (gr a b) -> m [Tree Node]
graphDff' mg = do {vs <- nodesM mg; runGT (dffM vs) mg}