Safe Haskell | None |
---|---|
Language | Haskell98 |
- class (Storable a, RealFloat a) => FFTWReal a where
- lock :: MVar ()
- withLock :: IO a -> IO a
- newtype Flag = Flag {}
- nullFlag :: Flag
- destroyInput :: Flag
- preserveInput :: Flag
- unaligned :: Flag
- conserveMemory :: Flag
- estimate :: Flag
- measure :: Flag
- patient :: Flag
- exhaustive :: Flag
- data Sign
- unSign :: Sign -> FFTWSign
- data Kind
- unKind :: Kind -> FFTWKind
- type TSpec = ([IODim], [IODim])
- data DFT
- check :: Plan -> IO ()
- execute :: Plan -> IO ()
- unsafeNormalize :: (Ix i, Shapable i, Fractional e, Storable e) => [Int] -> CArray i e -> CArray i e
- dftG :: (FFTWReal r, Ix i, Shapable i) => Sign -> Flag -> [Int] -> CArray i (Complex r) -> CArray i (Complex r)
- dftCRG :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i (Complex r) -> CArray i r
- dftCROG :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i (Complex r) -> CArray i r
- dftN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i (Complex r) -> CArray i (Complex r)
- idftN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i (Complex r) -> CArray i (Complex r)
- dftRCN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i (Complex r)
- dftCRN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i (Complex r) -> CArray i r
- dftCRON :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i (Complex r) -> CArray i r
- fzr :: b -> [a] -> [(a, b)]
- drr :: (FFTWReal r, Ix i, Shapable i) => Kind -> [Int] -> CArray i r -> CArray i r
- dftRRN :: (FFTWReal r, Ix i, Shapable i) => [(Int, Kind)] -> CArray i r -> CArray i r
- dftRHN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dftHRN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dhtN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dct1N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dct2N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dct3N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dct4N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dst1N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dst2N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dst3N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dst4N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r
- dft :: (FFTWReal r, Ix i, Shapable i) => CArray i (Complex r) -> CArray i (Complex r)
- idft :: (FFTWReal r, Ix i, Shapable i) => CArray i (Complex r) -> CArray i (Complex r)
- dftRC :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i (Complex r)
- dftCR :: (FFTWReal r, Ix i, Shapable i) => CArray i (Complex r) -> CArray i r
- dftCRO :: (FFTWReal r, Ix i, Shapable i) => CArray i (Complex r) -> CArray i r
- dftRH :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dftHR :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dht :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dct1 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dct2 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dct3 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dct4 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dst1 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dst2 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dst3 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- dst4 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r
- has :: Flag -> Flag -> Bool
- transformCArray :: (Ix i, Storable a, Storable b) => Flag -> CArray i a -> (i, i) -> (FFTWFlag -> Ptr a -> Ptr b -> IO Plan) -> CArray i b
- transformCArray' :: (Ix i, Storable a, Storable b) => Flag -> CArray i a -> (i, i) -> (FFTWFlag -> Ptr a -> Ptr b -> IO Plan) -> CArray i b
- dftShape :: (Ix i, Shapable i, Storable e) => DFT -> [Int] -> CArray i e -> ((i, i), TSpec)
- withTSpec :: TSpec -> (CInt -> Ptr IODim -> CInt -> Ptr IODim -> IO a) -> IO a
- adjust :: (a -> a) -> Int -> [a] -> [a]
- dftGU :: (FFTWReal r, Ix i, Shapable i) => Sign -> Flag -> [Int] -> CArray i (Complex r) -> CArray i (Complex r)
- dftRCG :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i r -> CArray i (Complex r)
- dftCRG_ :: (FFTWReal r, Ix i, Shapable i) => Bool -> Flag -> [Int] -> CArray i (Complex r) -> CArray i r
- dftCRGU :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i (Complex r) -> CArray i r
- dftCROGU :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i (Complex r) -> CArray i r
- dftRRG :: (FFTWReal r, Ix i, Shapable i) => Flag -> [(Int, Kind)] -> CArray i r -> CArray i r
- exportWisdomString :: IO String
- importWisdomString :: String -> IO Bool
- importWisdomSystem :: IO Bool
- type FFTWFlag = CUInt
- c_measure :: FFTWFlag
- c_destroy_input :: FFTWFlag
- c_unaligned :: FFTWFlag
- c_conserve_memory :: FFTWFlag
- c_exhaustive :: FFTWFlag
- c_preserve_input :: FFTWFlag
- type FFTWSign = CInt
- c_patient :: FFTWFlag
- c_forward :: FFTWSign
- c_estimate :: FFTWFlag
- c_backward :: FFTWSign
- type FFTWKind = CInt
- c_r2hc :: FFTWKind
- c_hc2r :: FFTWKind
- c_dht :: FFTWKind
- c_redft00 :: FFTWKind
- c_redft10 :: FFTWKind
- c_redft01 :: FFTWKind
- c_redft11 :: FFTWKind
- c_rodft00 :: FFTWKind
- c_rodft10 :: FFTWKind
- data IODim = IODim {}
- c_rodft01 :: FFTWKind
- c_rodft11 :: FFTWKind
- type Plan = Ptr FFTWPlan
- type FFTWPlan = ()
- cf_plan_guru_dft :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex Float) -> Ptr (Complex Float) -> FFTWSign -> FFTWFlag -> IO Plan
- cf_plan_guru_dft_r2c :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr Float -> Ptr (Complex Float) -> FFTWFlag -> IO Plan
- cf_plan_guru_dft_c2r :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex Float) -> Ptr Float -> FFTWFlag -> IO Plan
- cf_plan_guru_r2r :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr Float -> Ptr Float -> Ptr FFTWKind -> FFTWFlag -> IO Plan
- c_plan_guru_dft :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex Double) -> Ptr (Complex Double) -> FFTWSign -> FFTWFlag -> IO Plan
- c_plan_guru_dft_r2c :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr Double -> Ptr (Complex Double) -> FFTWFlag -> IO Plan
- c_plan_guru_dft_c2r :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex Double) -> Ptr Double -> FFTWFlag -> IO Plan
- c_plan_guru_r2r :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr Double -> Ptr Double -> Ptr FFTWKind -> FFTWFlag -> IO Plan
- c_execute :: Plan -> IO ()
- c_execute_dft :: Plan -> Ptr (Complex Double) -> Ptr (Complex Double) -> IO ()
- c_execute_dft_r2c :: Plan -> Ptr Double -> Ptr (Complex Double) -> IO ()
- c_execute_dft_c2r :: Plan -> Ptr (Complex Double) -> Ptr Double -> IO ()
- c_execute_r2r :: Plan -> Ptr Double -> Ptr Double -> IO ()
- c_export_wisdom_string :: IO CString
- c_import_wisdom_string :: CString -> IO CInt
- c_import_wisdom_system :: IO CInt
- c_free :: Ptr a -> IO ()
Documentation
class (Storable a, RealFloat a) => FFTWReal a where Source #
Our API is polymorphic over the real data type. FFTW, at least in
principle, supports single precision Float
, double precision Double
and
long double CLDouble
(presumable?).
plan_guru_dft :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex a) -> Ptr (Complex a) -> FFTWSign -> FFTWFlag -> IO Plan Source #
plan_guru_dft_r2c :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr a -> Ptr (Complex a) -> FFTWFlag -> IO Plan Source #
plan_guru_dft_c2r :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex a) -> Ptr a -> FFTWFlag -> IO Plan Source #
plan_guru_r2r :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr a -> Ptr a -> Ptr FFTWKind -> FFTWFlag -> IO Plan Source #
This lock must be taken during planning of any transform. The FFTW library is not thread-safe in the planning phase. Thankfully, the lock is not needed during the execute phase.
Default flag. For most transforms, this is equivalent to setting measure
and preserveInput
. The exceptions are complex to real and half-complex to
real transforms.
destroyInput :: Flag Source #
Allows FFTW to overwrite the input array with arbitrary data; this can sometimes allow more efficient algorithms to be employed.
Setting this flag implies that two memory allocations will be done, one for
work space, and one for the result. When estimate
is not set, we will be
doing two memory allocations anyway, so we set this flag as well (since we
don't retain the work array anyway).
preserveInput :: Flag Source #
preserveInput
specifies that an out-of-place transform must not change
its input array. This is ordinarily the default, except for complex to real
transforms for which destroyInput
is the default. In the latter cases,
passing preserveInput
will attempt to use algorithms that do not destroy
the input, at the expense of worse performance; for multi-dimensional complex
to real transforms, however, no input-preserving algorithms are implemented
so the Haskell bindings will set destroyInput
and do a transform with two
memory allocations.
Instruct FFTW not to generate a plan which uses SIMD instructions, even if
the memory you are planning with is aligned. This should only be needed if
you are using the guru interface and want to reuse a plan with memory that
may be unaligned (i.e. you constructed the CArray
with
unsafeForeignPtrToCArray
).
conserveMemory :: Flag Source #
The header claims that this flag is documented, but in reality, it is not. I don't know what it does and it is here only for completeness.
estimate
specifies that, instead of actual measurements of different
algorithms, a simple heuristic is used to pick a (probably sub-optimal) plan
quickly. With this flag, the input/output arrays are not overwritten during
planning.
This is the only planner flag for which a single memory allocation is possible.
exhaustive :: Flag Source #
exhaustive
is like patient
but considers an even wider range of
algorithms, including many that we think are unlikely to be fast, to
produce the most optimal plan but with a substantially increased planning
time.
Determine which direction of DFT to execute.
Real to Real transform kinds.
type TSpec = ([IODim], [IODim]) Source #
Tuple of transform dimensions and non-transform dimensions of the array.
Types of transforms. Used to control dftShape
.
unsafeNormalize :: (Ix i, Shapable i, Fractional e, Storable e) => [Int] -> CArray i e -> CArray i e Source #
In-place normalization outside of IO. You must be able to prove that no reference to the original can be retained.
dftG :: (FFTWReal r, Ix i, Shapable i) => Sign -> Flag -> [Int] -> CArray i (Complex r) -> CArray i (Complex r) Source #
Normalized general complex DFT
dftCRG :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i (Complex r) -> CArray i r Source #
Normalized general complex to real DFT where the last transformed dimension is logically even.
dftCROG :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i (Complex r) -> CArray i r Source #
Normalized general complex to real DFT where the last transformed dimension is logicall odd.
dftN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i (Complex r) -> CArray i (Complex r) Source #
Multi-dimensional forward DFT.
idftN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i (Complex r) -> CArray i (Complex r) Source #
Multi-dimensional inverse DFT.
dftRCN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i (Complex r) Source #
Multi-dimensional forward DFT of real data.
dftCRN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i (Complex r) -> CArray i r Source #
Multi-dimensional inverse DFT of Hermitian-symmetric data (where only the non-negative frequencies are given).
dftCRON :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i (Complex r) -> CArray i r Source #
Multi-dimensional inverse DFT of Hermitian-symmetric data (where only the non-negative frequencies are given) and the last transformed dimension is logically odd.
dftRRN :: (FFTWReal r, Ix i, Shapable i) => [(Int, Kind)] -> CArray i r -> CArray i r Source #
Multi-dimensional real to real transform. The result is not normalized.
dftRHN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional real to half-complex transform. The result is not normalized.
dftHRN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional half-complex to real transform. The result is not normalized.
dhtN :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional Discrete Hartley Transform. The result is not normalized.
dct1N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional Type 1 discrete cosine transform.
dct2N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional Type 2 discrete cosine transform. This is commonly known as the DCT.
dct3N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional Type 3 discrete cosine transform. This is commonly known as the inverse DCT. The result is not normalized.
dct4N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional Type 4 discrete cosine transform.
dst1N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional Type 1 discrete sine transform.
dst2N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional Type 2 discrete sine transform.
dst3N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional Type 3 discrete sine transform.
dst4N :: (FFTWReal r, Ix i, Shapable i) => [Int] -> CArray i r -> CArray i r Source #
Multi-dimensional Type 4 discrete sine transform.
dft :: (FFTWReal r, Ix i, Shapable i) => CArray i (Complex r) -> CArray i (Complex r) Source #
1-dimensional complex DFT.
idft :: (FFTWReal r, Ix i, Shapable i) => CArray i (Complex r) -> CArray i (Complex r) Source #
1-dimensional complex inverse DFT. Inverse of dft
.
dftRC :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i (Complex r) Source #
1-dimensional real to complex DFT.
dftCR :: (FFTWReal r, Ix i, Shapable i) => CArray i (Complex r) -> CArray i r Source #
1-dimensional complex to real DFT with logically even dimension. Inverse of dftRC
.
dftCRO :: (FFTWReal r, Ix i, Shapable i) => CArray i (Complex r) -> CArray i r Source #
1-dimensional complex to real DFT with logically odd dimension. Inverse of dftRC
.
dftRH :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional real to half-complex DFT.
dftHR :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional half-complex to real DFT. Inverse of dftRH
after normalization.
dht :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional Discrete Hartley Transform. Self-inverse after normalization.
dct1 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional Type 1 discrete cosine transform.
dct2 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional Type 2 discrete cosine transform. This is commonly known as the DCT.
dct3 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional Type 3 discrete cosine transform. This is commonly known as the inverse DCT.
dct4 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional Type 4 discrete cosine transform.
dst1 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional Type 1 discrete sine transform.
dst2 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional Type 2 discrete sine transform.
dst3 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional Type 3 discrete sine transform.
dst4 :: (FFTWReal r, Ix i, Shapable i) => CArray i r -> CArray i r Source #
1-dimensional Type 4 discrete sine transform.
transformCArray :: (Ix i, Storable a, Storable b) => Flag -> CArray i a -> (i, i) -> (FFTWFlag -> Ptr a -> Ptr b -> IO Plan) -> CArray i b Source #
Try to transform a CArray with only one memory allocation (for the result).
If we can find a way to prove that FFTW already has a sufficiently good plan
for this transform size and the input will not be overwritten, then we could
call have a version of this that does not require estimate
. Since this is
not currently the case, we require estimate
to be set. Note that we do not
check for the preserveInput
flag here. This is because the default is to
preserve input for all but the C->R and HC->R transforms. Therefore, this
function must not be called for those transforms, unless preserveInput
is
set.
transformCArray' :: (Ix i, Storable a, Storable b) => Flag -> CArray i a -> (i, i) -> (FFTWFlag -> Ptr a -> Ptr b -> IO Plan) -> CArray i b Source #
Transform a CArray with two memory allocations. This is entirely safe with all transforms, but it must allocate a temporary array to do the planning in.
dftShape :: (Ix i, Shapable i, Storable e) => DFT -> [Int] -> CArray i e -> ((i, i), TSpec) Source #
All the logic for determining shape of resulting array, and how to do the transform.
withTSpec :: TSpec -> (CInt -> Ptr IODim -> CInt -> Ptr IODim -> IO a) -> IO a Source #
A simple helper.
dftGU :: (FFTWReal r, Ix i, Shapable i) => Sign -> Flag -> [Int] -> CArray i (Complex r) -> CArray i (Complex r) Source #
Complex to Complex DFT, un-normalized.
dftRCG :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i r -> CArray i (Complex r) Source #
Real to Complex DFT.
dftCRG_ :: (FFTWReal r, Ix i, Shapable i) => Bool -> Flag -> [Int] -> CArray i (Complex r) -> CArray i r Source #
Complex to Real DFT. The first argument determines whether the last
transformed dimension is logically odd or even. True
implies the dimension
is odd.
dftCRGU :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i (Complex r) -> CArray i r Source #
Complex to Real DFT where last transformed dimension is logically even.
dftCROGU :: (FFTWReal r, Ix i, Shapable i) => Flag -> [Int] -> CArray i (Complex r) -> CArray i r Source #
Complex to Real DFT where last transformed dimension is logically odd.
dftRRG :: (FFTWReal r, Ix i, Shapable i) => Flag -> [(Int, Kind)] -> CArray i r -> CArray i r Source #
Real to Real transforms.
exportWisdomString :: IO String Source #
Queries the FFTW cache. The String
can be written to a file so the
wisdom can be reused on a subsequent run.
importWisdomString :: String -> IO Bool Source #
Add wisdom to the FFTW cache. Returns True
if it is successful.
importWisdomSystem :: IO Bool Source #
Tries to import wisdom from a global source, typically etcfftw/wisdom
.
Returns True
if it was successful.
c_rodft10 :: FFTWKind Source #
Corresponds to the fftw_iodim
structure. It completely describes the
layout of each dimension, before and after the transform.
cf_plan_guru_dft :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex Float) -> Ptr (Complex Float) -> FFTWSign -> FFTWFlag -> IO Plan Source #
Plan a complex to complex transform using the guru interface.
cf_plan_guru_dft_r2c :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr Float -> Ptr (Complex Float) -> FFTWFlag -> IO Plan Source #
Plan a real to complex transform using the guru interface.
cf_plan_guru_dft_c2r :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex Float) -> Ptr Float -> FFTWFlag -> IO Plan Source #
Plan a complex to real transform using the guru interface.
cf_plan_guru_r2r :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr Float -> Ptr Float -> Ptr FFTWKind -> FFTWFlag -> IO Plan Source #
Plan a real to real transform using the guru interface.
c_plan_guru_dft :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex Double) -> Ptr (Complex Double) -> FFTWSign -> FFTWFlag -> IO Plan Source #
Plan a complex to complex transform using the guru interface.
c_plan_guru_dft_r2c :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr Double -> Ptr (Complex Double) -> FFTWFlag -> IO Plan Source #
Plan a real to complex transform using the guru interface.
c_plan_guru_dft_c2r :: CInt -> Ptr IODim -> CInt -> Ptr IODim -> Ptr (Complex Double) -> Ptr Double -> FFTWFlag -> IO Plan Source #
Plan a complex to real transform using the guru interface.