Safe Haskell | Safe-Inferred |
---|
Bounded integer ranges
- data Range a = Range {
- lowerBound :: a
- upperBound :: a
- type BoundedInt a = (BoundedSuper a, BoundedSuper (UnsignedRep a))
- class (Ord a, Num a, Bounded a, Integral a, Bits a) => BoundedSuper a
- finiteBitSize :: Bits b => b -> Int
- type family UnsignedRep a
- unsigned :: (Integral a, Integral (UnsignedRep a)) => a -> UnsignedRep a
- handleSign :: forall a b. BoundedInt a => (Range a -> b) -> (Range a -> b) -> Range a -> b
- showBound :: (Show a, BoundedInt a) => a -> String
- showRange :: (Show a, BoundedInt a) => Range a -> String
- mapMonotonic :: (a -> b) -> Range a -> Range b
- mapMonotonic2 :: (a -> b -> c) -> Range a -> Range b -> Range c
- emptyRange :: BoundedInt a => Range a
- fullRange :: BoundedInt a => Range a
- range :: Ord a => a -> a -> Range a
- singletonRange :: a -> Range a
- naturalRange :: BoundedInt a => Range a
- positiveRange :: BoundedInt a => Range a
- negativeRange :: forall a. BoundedInt a => Range a
- rangeSize :: BoundedInt a => Range a -> a
- isEmpty :: BoundedInt a => Range a -> Bool
- isFull :: BoundedInt a => Range a -> Bool
- isSingleton :: BoundedInt a => Range a -> Bool
- isSubRangeOf :: BoundedInt a => Range a -> Range a -> Bool
- isNatural :: BoundedInt a => Range a -> Bool
- isPositive :: BoundedInt a => Range a -> Bool
- isNegative :: BoundedInt a => Range a -> Bool
- inRange :: BoundedInt a => a -> Range a -> Bool
- rangeOp :: BoundedInt a => (Range a -> Range a) -> Range a -> Range a
- rangeOp2 :: BoundedInt a => (Range a -> Range a -> Range a) -> Range a -> Range a -> Range a
- rangeUnion :: BoundedInt a => Range a -> Range a -> Range a
- rangeIntersection :: BoundedInt a => Range a -> Range a -> Range a
- disjoint :: BoundedInt a => Range a -> Range a -> Bool
- rangeByRange :: BoundedInt a => Range a -> Range a -> Range a
- rangeGap :: BoundedInt a => Range a -> Range a -> Range a
- rangeLess :: BoundedInt a => Range a -> Range a -> Bool
- rangeLessEq :: BoundedInt a => Range a -> Range a -> Bool
- rangeAbs :: BoundedInt a => Range a -> Range a
- rangeSignum :: BoundedInt a => Range a -> Range a
- rangeSignumSigned :: BoundedInt a => Range a -> Range a
- rangeSignumUnsigned :: BoundedInt a => Range a -> Range a
- rangeNeg :: BoundedInt a => Range a -> Range a
- rangeNegUnsigned :: BoundedInt a => Range a -> Range a
- rangeNegSigned :: BoundedInt a => Range a -> Range a
- rangeAdd :: BoundedInt a => Range a -> Range a -> Range a
- rangeAddUnsigned :: BoundedInt a => Range a -> Range a -> Range a
- rangeAddSigned :: BoundedInt a => Range a -> Range a -> Range a
- rangeSub :: BoundedInt a => Range a -> Range a -> Range a
- rangeSubUnsigned :: BoundedInt a => Range a -> Range a -> Range a
- rangeSubSigned :: BoundedInt a => Range a -> Range a -> Range a
- subSat :: BoundedInt a => a -> a -> a
- rangeSubSat :: BoundedInt a => Range a -> Range a -> Range a
- rangeMul :: BoundedInt a => Range a -> Range a -> Range a
- rangeMulSigned :: forall a. BoundedInt a => Range a -> Range a -> Range a
- rangeMulUnsigned :: forall a. BoundedInt a => Range a -> Range a -> Range a
- bits :: forall b. BoundedInt b => b -> Int
- rangeExp :: BoundedInt a => Range a -> Range a -> Range a
- rangeExpUnsigned :: BoundedInt a => Range a -> Range a -> Range a
- rangeExpSigned :: BoundedInt a => Range a -> Range a -> Range a
- maxPlus :: BoundedInt a => a -> a -> a
- minOrUnsigned :: BoundedInt a => a -> a -> a -> a -> a
- minOr :: BoundedSuper a => a -> a -> a -> a -> a
- maxOrUnsigned :: BoundedInt a => a -> a -> a -> a -> a
- maxOr :: BoundedSuper a => a -> a -> a -> a -> a
- minAndUnsigned :: BoundedInt a => a -> a -> a -> a -> a
- maxAndUnsigned :: BoundedInt a => a -> a -> a -> a -> a
- minXorUnsigned :: BoundedInt a => a -> a -> a -> a -> a
- maxXorUnsigned :: BoundedInt a => a -> a -> a -> a -> a
- minOrSigned :: BoundedInt a => a -> a -> a -> a -> a
- maxOrSigned :: BoundedInt a => a -> a -> a -> a -> a
- minAndSigned :: BoundedInt a => a -> a -> a -> a -> a
- maxAndSigned :: BoundedInt a => a -> a -> a -> a -> a
- rangeOr :: forall a. BoundedInt a => Range a -> Range a -> Range a
- rangeOrUnsignedAccurate :: BoundedInt a => Range a -> Range a -> Range a
- rangeOrSignedAccurate :: BoundedInt a => Range a -> Range a -> Range a
- rangeAnd :: forall a. BoundedInt a => Range a -> Range a -> Range a
- rangeAndUnsignedAccurate :: BoundedInt a => Range a -> Range a -> Range a
- rangeAndSignedAccurate :: BoundedInt a => Range a -> Range a -> Range a
- rangeXor :: forall a. BoundedInt a => Range a -> Range a -> Range a
- rangeXorUnsignedAccurate :: BoundedInt a => Range a -> Range a -> Range a
- rangeShiftLU :: (BoundedInt a, BoundedInt b) => Range a -> Range b -> Range a
- rangeShiftLUUnsigned :: (BoundedInt a, Integral b) => Range a -> Range b -> Range a
- rangeShiftRU :: (BoundedInt a, BoundedInt b) => Range a -> Range b -> Range a
- rangeShiftRUUnsigned :: (BoundedInt a, BoundedInt b) => Range a -> Range b -> Range a
- correctShiftRU :: (Num a, Bits a, BoundedInt b) => a -> b -> a
- rangeComplement :: (Bits a, BoundedInt a) => Range a -> Range a
- rangeMax :: BoundedInt a => Range a -> Range a -> Range a
- rangeMin :: BoundedInt a => Range a -> Range a -> Range a
- rangeMod :: BoundedInt a => Range a -> Range a -> Range a
- rangeRem :: BoundedInt a => Range a -> Range a -> Range a
- predAbs :: (Bounded a, Eq a, Num a, Enum a) => a -> a
- rangeDiv :: BoundedInt a => Range a -> Range a -> Range a
- rangeDivU :: BoundedInt a => Range a -> Range a -> Range a
- rangeQuot :: BoundedInt a => Range a -> Range a -> Range a
- rangeQuotU :: BoundedInt a => Range a -> Range a -> Range a
- rangeLessAbs :: BoundedInt a => Range a -> Range a -> Bool
- absRangeLessAbs :: BoundedInt a => Range a -> Range a -> Bool
- liftR :: (BoundedInt b, BoundedInt c, BoundedInt d) => (forall a. BoundedInt a => Range a) -> (Range b, Range c, Range d)
- binopR :: (BoundedInt a, BoundedInt b, BoundedInt c) => (forall d. BoundedInt d => Range d -> Range d -> Range d) -> (Range a, Range b, Range c) -> (Range a, Range b, Range c) -> (Range a, Range b, Range c)
- mapR :: (BoundedInt a, BoundedInt b, BoundedInt c) => (forall d. BoundedInt d => Range d -> Range d) -> (Range a, Range b, Range c) -> (Range a, Range b, Range c)
- approx :: (BoundedInt a, BoundedInt b, BoundedInt c, BoundedInt d) => (Range a, Range b, Range c) -> Range d
Definition
A bounded range of values of type a
Range | |
|
Eq a => Eq (Range a) | |
BoundedInt a => Num (Range a) | Implements |
BoundedInt a => Ord (Range a) | |
Show a => Show (Range a) | |
BoundedInt a => Lattice (Range a) | |
(BoundedInt a, BoundedInt b, BoundedInt c) => Num (Range a, Range b, Range c) |
type BoundedInt a = (BoundedSuper a, BoundedSuper (UnsignedRep a))Source
Convenience alias for bounded integers
class (Ord a, Num a, Bounded a, Integral a, Bits a) => BoundedSuper a Source
Super class to BoundedInt
finiteBitSize :: Bits b => b -> IntSource
type family UnsignedRep a Source
Type famliy to determine the bit representation of a type
unsigned :: (Integral a, Integral (UnsignedRep a)) => a -> UnsignedRep aSource
Convert an Integral
to its unsigned representation while preserving
bit width
handleSign :: forall a b. BoundedInt a => (Range a -> b) -> (Range a -> b) -> Range a -> bSource
A convenience function for defining range propagation.
handleSign propU propS
chooses propU
for unsigned types and
propS
for signed types.
showBound :: (Show a, BoundedInt a) => a -> StringSource
Shows a bound.
mapMonotonic :: (a -> b) -> Range a -> Range bSource
Requires a monotonic function
mapMonotonic2 :: (a -> b -> c) -> Range a -> Range b -> Range cSource
Requires a monotonic function
Lattice operations
emptyRange :: BoundedInt a => Range aSource
The range containing no elements
fullRange :: BoundedInt a => Range aSource
The range containing all elements of a type
singletonRange :: a -> Range aSource
The range containing one element
naturalRange :: BoundedInt a => Range aSource
The range from 0
to the maximum element
positiveRange :: BoundedInt a => Range aSource
The range from 1
to the maximum element
negativeRange :: forall a. BoundedInt a => Range aSource
The range from the smallest negative element to -1
.
Undefined for unsigned types
rangeSize :: BoundedInt a => Range a -> aSource
The size of a range. Beware that the size may not always be representable
for signed types. For instance
rangeSize (range minBound maxBound) :: Int
gives a nonsense answer.
isEmpty :: BoundedInt a => Range a -> BoolSource
Checks if the range is empty
isFull :: BoundedInt a => Range a -> BoolSource
Checks if the range contains all values of the type
isSingleton :: BoundedInt a => Range a -> BoolSource
Checks is the range contains exactly one element
isSubRangeOf :: BoundedInt a => Range a -> Range a -> BoolSource
r1 `isSubRangeOf` r2
checks is all the elements in r1
are included
in r2
isNatural :: BoundedInt a => Range a -> BoolSource
Checks whether a range is a sub-range of the natural numbers.
isPositive :: BoundedInt a => Range a -> BoolSource
Checks whether a range is a sub-range of the positive numbers.
isNegative :: BoundedInt a => Range a -> BoolSource
Checks whether a range is a sub-range of the negative numbers.
inRange :: BoundedInt a => a -> Range a -> BoolSource
a `inRange` r
checks is a
is an element of the range r
.
rangeOp :: BoundedInt a => (Range a -> Range a) -> Range a -> Range aSource
A convenience function for defining range propagation. If the input range is empty then the result is also empty.
rangeOp2 :: BoundedInt a => (Range a -> Range a -> Range a) -> Range a -> Range a -> Range aSource
See rangeOp
.
rangeUnion :: BoundedInt a => Range a -> Range a -> Range aSource
Union on ranges.
rangeIntersection :: BoundedInt a => Range a -> Range a -> Range aSource
Intersection on ranges.
disjoint :: BoundedInt a => Range a -> Range a -> BoolSource
disjoint r1 r2
returns true when r1
and r2
have no elements in
common.
rangeByRange :: BoundedInt a => Range a -> Range a -> Range aSource
rangeByRange ra rb
: Computes the range of the following set
{x | a <- ra, b <- rb, x <- Range a b}
rangeGap :: BoundedInt a => Range a -> Range a -> Range aSource
rangeGap r1 r2
returns a range of all the elements between r1
and
r2
including the boundary elements. If r1
and r2
have elements in
common the result is an empty range.
rangeLess :: BoundedInt a => Range a -> Range a -> BoolSource
r1 `rangeLess` r2:
Checks if all elements of r1
are less than all elements of r2
.
rangeLessEq :: BoundedInt a => Range a -> Range a -> BoolSource
r1 `rangeLessEq` r2:
Checks if all elements of r1
are less than or equal to all elements of
r2
.
Propagation
rangeAbs :: BoundedInt a => Range a -> Range aSource
Propagates range information through abs
.
rangeSignum :: BoundedInt a => Range a -> Range aSource
Propagates range information through signum
.
rangeSignumSigned :: BoundedInt a => Range a -> Range aSource
Signed case for rangeSignum
.
rangeSignumUnsigned :: BoundedInt a => Range a -> Range aSource
Unsigned case for rangeSignum
.
rangeNeg :: BoundedInt a => Range a -> Range aSource
Propagates range information through negation.
rangeNegUnsigned :: BoundedInt a => Range a -> Range aSource
Unsigned case for rangeNeg
.
rangeNegSigned :: BoundedInt a => Range a -> Range aSource
Signed case for rangeNeg
.
rangeAdd :: BoundedInt a => Range a -> Range a -> Range aSource
Propagates range information through addition.
rangeAddUnsigned :: BoundedInt a => Range a -> Range a -> Range aSource
Unsigned case for rangeAdd
.
rangeAddSigned :: BoundedInt a => Range a -> Range a -> Range aSource
Signed case for rangeAdd
.
rangeSub :: BoundedInt a => Range a -> Range a -> Range aSource
Propagates range information through subtraction.
rangeSubUnsigned :: BoundedInt a => Range a -> Range a -> Range aSource
Unsigned case for rangeSub
.
rangeSubSigned :: BoundedInt a => Range a -> Range a -> Range aSource
subSat :: BoundedInt a => a -> a -> aSource
Saturating unsigned subtraction
rangeSubSat :: BoundedInt a => Range a -> Range a -> Range aSource
Range propagation for subSat
rangeMul :: BoundedInt a => Range a -> Range a -> Range aSource
Propagates range information through multiplication
rangeMulSigned :: forall a. BoundedInt a => Range a -> Range a -> Range aSource
Signed case for rangeMul
.
rangeMulUnsigned :: forall a. BoundedInt a => Range a -> Range a -> Range aSource
Unsigned case for rangeMul
.
bits :: forall b. BoundedInt b => b -> IntSource
Returns the position of the highest bit set to 1. Counting starts at 1.
rangeExp :: BoundedInt a => Range a -> Range a -> Range aSource
Propagates range information through exponentiation.
rangeExpUnsigned :: BoundedInt a => Range a -> Range a -> Range aSource
Unsigned case for rangeExp
.
rangeExpSigned :: BoundedInt a => Range a -> Range a -> Range aSource
Sigend case for rangeExp
maxPlus :: BoundedInt a => a -> a -> aSource
a `maxPlus` b
adds a
and b
but if the addition overflows then
maxBound
is returned.
minOrUnsigned :: BoundedInt a => a -> a -> a -> a -> aSource
Accurate lower bound for .|.
on unsigned numbers.
minOr :: BoundedSuper a => a -> a -> a -> a -> aSource
maxOrUnsigned :: BoundedInt a => a -> a -> a -> a -> aSource
Accurate upper bound for .|.
on unsigned numbers.
maxOr :: BoundedSuper a => a -> a -> a -> a -> aSource
minAndUnsigned :: BoundedInt a => a -> a -> a -> a -> aSource
Accurate lower bound for .&.
on unsigned numbers
maxAndUnsigned :: BoundedInt a => a -> a -> a -> a -> aSource
Accurate upper bound for .&.
on unsigned numbers
minXorUnsigned :: BoundedInt a => a -> a -> a -> a -> aSource
Accurate lower bound for xor
on unsigned numbers
maxXorUnsigned :: BoundedInt a => a -> a -> a -> a -> aSource
Accurate upper bound for xor
on unsigned numbers
minOrSigned :: BoundedInt a => a -> a -> a -> a -> aSource
maxOrSigned :: BoundedInt a => a -> a -> a -> a -> aSource
minAndSigned :: BoundedInt a => a -> a -> a -> a -> aSource
maxAndSigned :: BoundedInt a => a -> a -> a -> a -> aSource
rangeOr :: forall a. BoundedInt a => Range a -> Range a -> Range aSource
Propagates range information through .|.
.
rangeOrUnsignedAccurate :: BoundedInt a => Range a -> Range a -> Range aSource
Accurate range propagation through .|.
for unsigned types.
rangeOrSignedAccurate :: BoundedInt a => Range a -> Range a -> Range aSource
rangeAnd :: forall a. BoundedInt a => Range a -> Range a -> Range aSource
Propagating range information through .&.
.
rangeAndUnsignedAccurate :: BoundedInt a => Range a -> Range a -> Range aSource
Accurate range propagation through .&.
for unsigned types
rangeAndSignedAccurate :: BoundedInt a => Range a -> Range a -> Range aSource
rangeXor :: forall a. BoundedInt a => Range a -> Range a -> Range aSource
Propagating range information through xor
.
rangeXorUnsignedAccurate :: BoundedInt a => Range a -> Range a -> Range aSource
Accurate range propagation through xor
for unsigned types
rangeShiftLU :: (BoundedInt a, BoundedInt b) => Range a -> Range b -> Range aSource
| Propagating range information through shiftLU
.
rangeShiftLUUnsigned :: (BoundedInt a, Integral b) => Range a -> Range b -> Range aSource
Unsigned case for rangeShiftLU
.
rangeShiftRU :: (BoundedInt a, BoundedInt b) => Range a -> Range b -> Range aSource
Propagating range information through shiftRU
.
rangeShiftRUUnsigned :: (BoundedInt a, BoundedInt b) => Range a -> Range b -> Range aSource
Unsigned case for rangeShiftRU
.
correctShiftRU :: (Num a, Bits a, BoundedInt b) => a -> b -> aSource
This is a replacement fror Haskell's shiftR. If we carelessly use Haskell's variant then we will get left shifts for very large shift values.
rangeComplement :: (Bits a, BoundedInt a) => Range a -> Range aSource
Propagating range information through complement
rangeMax :: BoundedInt a => Range a -> Range a -> Range aSource
Propagates range information through max
.
rangeDiv :: BoundedInt a => Range a -> Range a -> Range aSource
Propagates range information through div
rangeQuot :: BoundedInt a => Range a -> Range a -> Range aSource
Propagates range information through quot
.
rangeQuotU :: BoundedInt a => Range a -> Range a -> Range aSource
Unsigned case for rangeQuot
.
rangeLessAbs :: BoundedInt a => Range a -> Range a -> BoolSource
Writing d `rangeLess` abs r
doesn't mean what you think it does because
r
may contain minBound which doesn't have a positive representation.
Instead, this function should be used.
absRangeLessAbs :: BoundedInt a => Range a -> Range a -> BoolSource
Similar to rangeLessAbs
but replaces the expression
abs d `rangeLess` abs r
instead.
Products of ranges
liftR :: (BoundedInt b, BoundedInt c, BoundedInt d) => (forall a. BoundedInt a => Range a) -> (Range b, Range c, Range d)Source
binopR :: (BoundedInt a, BoundedInt b, BoundedInt c) => (forall d. BoundedInt d => Range d -> Range d -> Range d) -> (Range a, Range b, Range c) -> (Range a, Range b, Range c) -> (Range a, Range b, Range c)Source
mapR :: (BoundedInt a, BoundedInt b, BoundedInt c) => (forall d. BoundedInt d => Range d -> Range d) -> (Range a, Range b, Range c) -> (Range a, Range b, Range c)Source
approx :: (BoundedInt a, BoundedInt b, BoundedInt c, BoundedInt d) => (Range a, Range b, Range c) -> Range dSource