factory-0.3.0.0: Rational arithmetic in an irrational world.

Safe HaskellNone
LanguageHaskell2010

Factory.Data.QuotientRing

Contents

Description

AUTHOR
Dr. Alistair Ward
DESCRIPTION

Synopsis

Type-classes

class Ring q => QuotientRing q where Source #

Defines a sub-class of Ring, in which division is implemented.

Minimal complete definition

quotRem'

Methods

quotRem' :: q -> q -> (q, q) Source #

Instances

(Eq c, Fractional c, Num e, Ord e) => QuotientRing (Polynomial c e) Source #

Defines the ability to divide polynomials.

Methods

quotRem' :: Polynomial c e -> Polynomial c e -> (Polynomial c e, Polynomial c e) Source #

(Eq c, Num c, Num e, Ord e, Show c, Show e) => QuotientRing (MonicPolynomial c e) Source # 

Functions

quot' Source #

Arguments

:: QuotientRing q 
=> q

Numerator.

-> q

Denominator.

-> q 

Returns the quotient, after division of the two specified QuotientRings.

rem' Source #

Arguments

:: QuotientRing q 
=> q

Numerator.

-> q

Denominator.

-> q 

Returns the remainder, after division of the two specified QuotientRings.

Predicates

areCongruentModulo Source #

Arguments

:: (Eq q, QuotientRing q) 
=> q

LHS.

-> q

RHS.

-> q

Modulus.

-> Bool 

isDivisibleBy Source #

Arguments

:: (Eq q, QuotientRing q) 
=> q

Numerator.

-> q

Denominator.

-> Bool 

True if the second operand divides the first.