Copyright | (c) 2019-2024 Rudy Matela |
---|---|
License | 3-Clause BSD (see the file LICENSE) |
Maintainer | Rudy Matela <rudy@matela.com.br> |
Safe Haskell | Safe-Inferred |
Language | Haskell2010 |
Utilities for manipulating variables and typed holes encoded as Expr
s.
Synopsis
- varAsTypeOf :: String -> Expr -> Expr
- listVars :: Typeable a => String -> a -> [Expr]
- listVarsAsTypeOf :: String -> Expr -> [Expr]
- hole :: Typeable a => a -> Expr
- isHole :: Expr -> Bool
- hasHole :: Expr -> Bool
- isComplete :: Expr -> Bool
- holes :: Expr -> [Expr]
- nubHoles :: Expr -> [Expr]
- holeAsTypeOf :: Expr -> Expr
- fill :: Expr -> [Expr] -> Expr
Creating variables
listVars :: Typeable a => String -> a -> [Expr] Source #
Generate an infinite list of variables
based on a template and a given type.
(cf. listVarsAsTypeOf
)
> putL 10 $ listVars "x" (undefined :: Int) [ x :: Int , y :: Int , z :: Int , x' :: Int , y' :: Int , z' :: Int , x'' :: Int , ... ]
> putL 10 $ listVars "p" (undefined :: Bool) [ p :: Bool , q :: Bool , r :: Bool , p' :: Bool , q' :: Bool , r' :: Bool , p'' :: Bool , ... ]
listVarsAsTypeOf :: String -> Expr -> [Expr] Source #
Generate an infinite list of variables
based on a template
and the type of a given Expr
.
(cf. listVars
)
> let one = val (1::Int) > putL 10 $ "x" `listVarsAsTypeOf` one [ x :: Int , y :: Int , z :: Int , x' :: Int , ... ]
> let false = val False > putL 10 $ "p" `listVarsAsTypeOf` false [ p :: Bool , q :: Bool , r :: Bool , p' :: Bool , ... ]
Typed holes
hole :: Typeable a => a -> Expr Source #
O(1).
Creates an Expr
representing a typed hole of the given argument type.
> hole (undefined :: Int) _ :: Int
> hole (undefined :: Maybe String) _ :: Maybe [Char]
A hole is represented as a variable with no name or
a value named "_"
:
hole x = var "" x hole x = value "_" x
hasHole :: Expr -> Bool Source #
O(n). Returns whether an expression contains a hole
> hasHole $ hole (undefined :: Bool) True
> hasHole $ value "not" not :$ val True False
> hasHole $ value "not" not :$ hole (undefined :: Bool) True
isComplete :: Expr -> Bool Source #
O(n). Returns whether an expression is complete. A complete expression is one without holes.
> isComplete $ hole (undefined :: Bool) False
> isComplete $ value "not" not :$ val True True
> isComplete $ value "not" not :$ hole (undefined :: Bool) False
isComplete
is the negation of hasHole
.
isComplete = not . hasHole
isComplete
is to hasHole
what
isGround
is to hasVar
.
holes :: Expr -> [Expr] Source #
O(n).
Lists all holes in an expression, in order and with repetitions.
(cf. nubHoles
)
> holes $ hole (undefined :: Bool) [_ :: Bool]
> holes $ value "&&" (&&) :$ hole (undefined :: Bool) :$ hole (undefined :: Bool) [_ :: Bool,_ :: Bool]
> holes $ hole (undefined :: Bool->Bool) :$ hole (undefined::Bool) [_ :: Bool -> Bool,_ :: Bool]
nubHoles :: Expr -> [Expr] Source #
O(n^2).
Lists all holes in an expression without repetitions.
(cf. holes
)
> nubHoles $ hole (undefined :: Bool) [_ :: Bool]
> nubHoles $ value "&&" (&&) :$ hole (undefined :: Bool) :$ hole (undefined :: Bool) [_ :: Bool]
> nubHoles $ hole (undefined :: Bool->Bool) :$ hole (undefined::Bool) [_ :: Bool,_ :: Bool -> Bool]
Runtime averages to
O(n log n) on evenly distributed expressions
such as (f x + g y) + (h z + f w)
;
and to O(n^2) on deep expressions
such as f (g (h (f (g (h x)))))
.
holeAsTypeOf :: Expr -> Expr Source #
fill :: Expr -> [Expr] -> Expr Source #
Fill holes in an expression with the given list.
> let i_ = hole (undefined :: Int) > let e1 -+- e2 = value "+" ((+) :: Int -> Int -> Int) :$ e1 :$ e2 > let xx = var "x" (undefined :: Int) > let yy = var "y" (undefined :: Int)
> fill (i_ -+- i_) [xx, yy] x + y :: Int
> fill (i_ -+- i_) [xx, xx] x + x :: Int
> let one = val (1::Int)
> fill (i_ -+- i_) [one, one -+- one] 1 + (1 + 1) :: Int
This function silently remaining expressions:
> fill i_ [xx, yy] x :: Int
This function silently keeps remaining holes:
> fill (i_ -+- i_ -+- i_) [xx, yy] (x + y) + _ :: Int
This function silently skips remaining holes if one is not of the right type:
> fill (i_ -+- i_ -+- i_) [xx, val 'c', yy] (x + _) + _ :: Int