Copyright | Patrick Bahr 2010 |
---|---|
License | BSD-3-Clause |
Maintainer | Patrick Bahr, Andreas Abel |
Stability | stable |
Portability | non-portable (MPTC with FD) |
Safe Haskell | None |
Language | Haskell2010 |
Synopsis
- class (Monad m, Applicative m, Ord v) => MonadEquiv c v d m | m -> v, m -> c, m -> d where
- newtype EquivT s c v m a = EquivT {}
- type EquivT' s = EquivT s ()
- type EquivM s c v = EquivT s c v Identity
- type EquivM' s v = EquivM s () v
- runEquivT :: (Monad m, Applicative m) => (v -> c) -> (c -> c -> c) -> (forall s. EquivT s c v m a) -> m a
- runEquivT' :: (Monad m, Applicative m) => (forall s. EquivT' s v m a) -> m a
- runEquivM :: (v -> c) -> (c -> c -> c) -> (forall s. EquivM s c v a) -> a
- runEquivM' :: (forall s. EquivM' s v a) -> a
Documentation
class (Monad m, Applicative m, Ord v) => MonadEquiv c v d m | m -> v, m -> c, m -> d where Source #
This class specifies the interface for a monadic computation that maintains an equivalence relation.
Nothing
equivalent :: v -> v -> m Bool Source #
This function decides whether the two given elements are equivalent in the current equivalence relation.
default equivalent :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => v -> v -> m Bool Source #
classDesc :: v -> m d Source #
This function obtains the descriptor of the given element's equivalence class.
default classDesc :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => v -> m d Source #
equateAll :: [v] -> m () Source #
This function equates the element in the given list. That is, it unions the equivalence classes of the elements and combines their descriptor.
default equateAll :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => [v] -> m () Source #
equate :: v -> v -> m () Source #
This function equates the given two elements. That is it unions the equivalence classes of the two elements.
removeClass :: v -> m Bool Source #
This function removes the equivalence class of the given
element. If there is no corresponding equivalence class, False
is
returned; otherwise True
.
default removeClass :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => v -> m Bool Source #
This function provides the equivalence class of the given element.
default getClass :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => v -> m c Source #
combineAll :: [c] -> m () Source #
This function combines all equivalence classes in the given list. Afterwards all elements in the argument list represent the same equivalence class!
default combineAll :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => [c] -> m () Source #
combine :: c -> c -> m c Source #
This function combines the two given equivalence classes. Afterwards both arguments represent the same equivalence class! One of it is returned in order to represent the new combined equivalence class.
(===) :: c -> c -> m Bool Source #
This function decides whether the two given equivalence classes are the same.
default (===) :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => c -> c -> m Bool Source #
This function returns the descriptor of the given equivalence class.
default desc :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => c -> m d Source #
remove :: c -> m Bool Source #
This function removes the given equivalence class. If the
equivalence class does not exist anymore, False
is returned;
otherwise True
.
default remove :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => c -> m Bool Source #
This function returns all values represented by some equivalence class.
Since: 0.4.1
default values :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => m [v] Source #
This function returns the list of all equivalence classes.
Since: 0.4.1
default classes :: (MonadEquiv c v d n, MonadTrans t, t n ~ m) => m [c] Source #
Instances
newtype EquivT s c v m a Source #
This monad transformer encapsulates computations maintaining an
equivalence relation. A monadic computation of type EquivT
s c v m
a
maintains a state space indexed by type s
, maintains an
equivalence relation over elements of type v
with equivalence class
descriptors of type c
and contains an internal monadic computation
of type m a
.
Instances
MonadWriter w m => MonadWriter w (EquivT s c v m) Source # | |
MonadState st m => MonadState st (EquivT s c v m) Source # | |
MonadReader r m => MonadReader r (EquivT s c v m) Source # | |
MonadError e m => MonadError e (EquivT s c v m) Source # | |
Defined in Data.Equivalence.Monad throwError :: e -> EquivT s c v m a Source # catchError :: EquivT s c v m a -> (e -> EquivT s c v m a) -> EquivT s c v m a Source # | |
MonadTrans (EquivT s c v) Source # | |
(Monad m, Applicative m, Ord v) => MonadEquiv (Class s d v) v d (EquivT s d v m) Source # | |
Defined in Data.Equivalence.Monad equivalent :: v -> v -> EquivT s d v m Bool Source # classDesc :: v -> EquivT s d v m d Source # equateAll :: [v] -> EquivT s d v m () Source # equate :: v -> v -> EquivT s d v m () Source # removeClass :: v -> EquivT s d v m Bool Source # getClass :: v -> EquivT s d v m (Class s d v) Source # combineAll :: [Class s d v] -> EquivT s d v m () Source # combine :: Class s d v -> Class s d v -> EquivT s d v m (Class s d v) Source # (===) :: Class s d v -> Class s d v -> EquivT s d v m Bool Source # desc :: Class s d v -> EquivT s d v m d Source # remove :: Class s d v -> EquivT s d v m Bool Source # | |
Monad m => Monad (EquivT s c v m) Source # | |
Functor m => Functor (EquivT s c v m) Source # | |
Monad m => MonadFail (EquivT s c v m) Source # | |
Monad m => Applicative (EquivT s c v m) Source # | |
Defined in Data.Equivalence.Monad pure :: a -> EquivT s c v m a Source # (<*>) :: EquivT s c v m (a -> b) -> EquivT s c v m a -> EquivT s c v m b Source # liftA2 :: (a -> b -> c0) -> EquivT s c v m a -> EquivT s c v m b -> EquivT s c v m c0 Source # (*>) :: EquivT s c v m a -> EquivT s c v m b -> EquivT s c v m b Source # (<*) :: EquivT s c v m a -> EquivT s c v m b -> EquivT s c v m a Source # |
type EquivT' s = EquivT s () Source #
This monad transformer is a special case of EquivT
that only
maintains trivial equivalence class descriptors of type ()
.
type EquivM s c v = EquivT s c v Identity Source #
This monad encapsulates computations maintaining an equivalence
relation. A monadic computation of type EquivM
s c v a
maintains a
state space indexed by type s
, maintains an equivalence relation
over elements of type v
with equivalence class descriptors of type
c
and returns a value of type a
.
type EquivM' s v = EquivM s () v Source #
This monad is a special case of EquivM
that only maintains
trivial equivalence class descriptors of type ()
.
:: (Monad m, Applicative m) | |
=> (v -> c) | Used to construct an equivalence class descriptor for a singleton class. |
-> (c -> c -> c) | Used to combine the equivalence class descriptor of two classes which are meant to be combined. |
-> (forall s. EquivT s c v m a) | |
-> m a |
This function runs a monadic computation that maintains an equivalence relation. The first two arguments specify how to construct an equivalence class descriptor for a singleton class and how to combine two equivalence class descriptors.
runEquivT' :: (Monad m, Applicative m) => (forall s. EquivT' s v m a) -> m a Source #
This function is a special case of runEquivT
that only maintains
trivial equivalence class descriptors of type ()
.
:: (v -> c) | Used to construct an equivalence class descriptor for a singleton class. |
-> (c -> c -> c) | Used to combine the equivalence class descriptor of two classes which are meant to be combined. |
-> (forall s. EquivM s c v a) | |
-> a |
This function runs a monadic computation that maintains an equivalence relation. The first tow arguments specify how to construct an equivalence class descriptor for a singleton class and how to combine two equivalence class descriptors.
runEquivM' :: (forall s. EquivM' s v a) -> a Source #
This function is a special case of runEquivM
that only maintains
trivial equivalence class descriptors of type ()
.