effectful-core-2.2.2.2: An easy to use, performant extensible effects library.
Safe HaskellSafe-Inferred
LanguageHaskell2010

Effectful.NonDet

Description

Provider of the Alternative and MonadPlus instance for Eff.

Synopsis

Effect

data NonDet :: Effect where Source #

Provide the ability to use the Alternative and MonadPlus instance of Eff.

Since: 2.2.0.0

Constructors

Empty :: NonDet m a 
(:<|>:) :: m a -> m a -> NonDet m a 

Instances

Instances details
type DispatchOf NonDet Source # 
Instance details

Defined in Effectful.Internal.Monad

data OnEmptyPolicy Source #

Policy of dealing with modifications to thread local state in the environment in branches that end up calling the Empty operation.

Note: OnEmptyKeep is significantly faster as there is no need to back up the environment on each call to :<|>:.

Since: 2.2.0.0

Constructors

OnEmptyKeep

Keep modifications on Empty.

OnEmptyRollback

Rollback modifications on Empty.

Instances

Instances details
Generic OnEmptyPolicy Source # 
Instance details

Defined in Effectful.NonDet

Associated Types

type Rep OnEmptyPolicy :: Type -> Type #

Show OnEmptyPolicy Source # 
Instance details

Defined in Effectful.NonDet

Eq OnEmptyPolicy Source # 
Instance details

Defined in Effectful.NonDet

Ord OnEmptyPolicy Source # 
Instance details

Defined in Effectful.NonDet

type Rep OnEmptyPolicy Source # 
Instance details

Defined in Effectful.NonDet

type Rep OnEmptyPolicy = D1 ('MetaData "OnEmptyPolicy" "Effectful.NonDet" "effectful-core-2.2.2.2-3ZnPMiMlFXL41oNodyVfOb" 'False) (C1 ('MetaCons "OnEmptyKeep" 'PrefixI 'False) (U1 :: Type -> Type) :+: C1 ('MetaCons "OnEmptyRollback" 'PrefixI 'False) (U1 :: Type -> Type))

Handlers

runNonDet :: OnEmptyPolicy -> Eff (NonDet ': es) a -> Eff es (Either CallStack a) Source #

Run the NonDet effect with a given OnEmptyPolicy.

Note: :<|>: executes the second computation if (and only if) the first computation calls Empty.

Since: 2.2.0.0

Utils

emptyEff :: (HasCallStack, NonDet :> es) => Eff es a Source #

Specialized version of empty with the HasCallStack constraint for tracking purposes.

Since: 2.2.0.0

sumEff :: (HasCallStack, Foldable t, NonDet :> es) => t (Eff es a) -> Eff es a Source #

Specialized version of asum with the HasCallStack constraint for tracking purposes.

Since: 2.2.0.0

Re-exports

class Applicative f => Alternative (f :: Type -> Type) where #

A monoid on applicative functors.

If defined, some and many should be the least solutions of the equations:

Minimal complete definition

empty, (<|>)

Methods

empty :: f a #

The identity of <|>

(<|>) :: f a -> f a -> f a infixl 3 #

An associative binary operation

some :: f a -> f [a] #

One or more.

many :: f a -> f [a] #

Zero or more.

Instances

Instances details
Alternative ZipList

Since: base-4.11.0.0

Instance details

Defined in Control.Applicative

Methods

empty :: ZipList a #

(<|>) :: ZipList a -> ZipList a -> ZipList a #

some :: ZipList a -> ZipList [a] #

many :: ZipList a -> ZipList [a] #

Alternative STM

Since: base-4.8.0.0

Instance details

Defined in GHC.Conc.Sync

Methods

empty :: STM a #

(<|>) :: STM a -> STM a -> STM a #

some :: STM a -> STM [a] #

many :: STM a -> STM [a] #

Alternative P

Since: base-4.5.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

empty :: P a #

(<|>) :: P a -> P a -> P a #

some :: P a -> P [a] #

many :: P a -> P [a] #

Alternative ReadP

Since: base-4.6.0.0

Instance details

Defined in Text.ParserCombinators.ReadP

Methods

empty :: ReadP a #

(<|>) :: ReadP a -> ReadP a -> ReadP a #

some :: ReadP a -> ReadP [a] #

many :: ReadP a -> ReadP [a] #

Alternative IO

Since: base-4.9.0.0

Instance details

Defined in GHC.Base

Methods

empty :: IO a #

(<|>) :: IO a -> IO a -> IO a #

some :: IO a -> IO [a] #

many :: IO a -> IO [a] #

Alternative SmallArray 
Instance details

Defined in Data.Primitive.SmallArray

Alternative Maybe

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

empty :: Maybe a #

(<|>) :: Maybe a -> Maybe a -> Maybe a #

some :: Maybe a -> Maybe [a] #

many :: Maybe a -> Maybe [a] #

Alternative []

Since: base-2.1

Instance details

Defined in GHC.Base

Methods

empty :: [a] #

(<|>) :: [a] -> [a] -> [a] #

some :: [a] -> [[a]] #

many :: [a] -> [[a]] #

MonadPlus m => Alternative (WrappedMonad m)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

empty :: WrappedMonad m a #

(<|>) :: WrappedMonad m a -> WrappedMonad m a -> WrappedMonad m a #

some :: WrappedMonad m a -> WrappedMonad m [a] #

many :: WrappedMonad m a -> WrappedMonad m [a] #

ArrowPlus a => Alternative (ArrowMonad a)

Since: base-4.6.0.0

Instance details

Defined in Control.Arrow

Methods

empty :: ArrowMonad a a0 #

(<|>) :: ArrowMonad a a0 -> ArrowMonad a a0 -> ArrowMonad a a0 #

some :: ArrowMonad a a0 -> ArrowMonad a [a0] #

many :: ArrowMonad a a0 -> ArrowMonad a [a0] #

Alternative (U1 :: Type -> Type)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: U1 a #

(<|>) :: U1 a -> U1 a -> U1 a #

some :: U1 a -> U1 [a] #

many :: U1 a -> U1 [a] #

NonDet :> es => Alternative (Eff es) Source #

Since: 2.2.0.0

Instance details

Defined in Effectful.Internal.Monad

Methods

empty :: Eff es a #

(<|>) :: Eff es a -> Eff es a -> Eff es a #

some :: Eff es a -> Eff es [a] #

many :: Eff es a -> Eff es [a] #

Applicative m => Alternative (ListT m) 
Instance details

Defined in Control.Monad.Trans.List

Methods

empty :: ListT m a #

(<|>) :: ListT m a -> ListT m a -> ListT m a #

some :: ListT m a -> ListT m [a] #

many :: ListT m a -> ListT m [a] #

(Functor m, Monad m) => Alternative (MaybeT m) 
Instance details

Defined in Control.Monad.Trans.Maybe

Methods

empty :: MaybeT m a #

(<|>) :: MaybeT m a -> MaybeT m a -> MaybeT m a #

some :: MaybeT m a -> MaybeT m [a] #

many :: MaybeT m a -> MaybeT m [a] #

(ArrowZero a, ArrowPlus a) => Alternative (WrappedArrow a b)

Since: base-2.1

Instance details

Defined in Control.Applicative

Methods

empty :: WrappedArrow a b a0 #

(<|>) :: WrappedArrow a b a0 -> WrappedArrow a b a0 -> WrappedArrow a b a0 #

some :: WrappedArrow a b a0 -> WrappedArrow a b [a0] #

many :: WrappedArrow a b a0 -> WrappedArrow a b [a0] #

Alternative m => Alternative (Kleisli m a)

Since: base-4.14.0.0

Instance details

Defined in Control.Arrow

Methods

empty :: Kleisli m a a0 #

(<|>) :: Kleisli m a a0 -> Kleisli m a a0 -> Kleisli m a a0 #

some :: Kleisli m a a0 -> Kleisli m a [a0] #

many :: Kleisli m a a0 -> Kleisli m a [a0] #

Alternative f => Alternative (Ap f)

Since: base-4.12.0.0

Instance details

Defined in Data.Monoid

Methods

empty :: Ap f a #

(<|>) :: Ap f a -> Ap f a -> Ap f a #

some :: Ap f a -> Ap f [a] #

many :: Ap f a -> Ap f [a] #

Alternative f => Alternative (Alt f)

Since: base-4.8.0.0

Instance details

Defined in Data.Semigroup.Internal

Methods

empty :: Alt f a #

(<|>) :: Alt f a -> Alt f a -> Alt f a #

some :: Alt f a -> Alt f [a] #

many :: Alt f a -> Alt f [a] #

Alternative f => Alternative (Rec1 f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: Rec1 f a #

(<|>) :: Rec1 f a -> Rec1 f a -> Rec1 f a #

some :: Rec1 f a -> Rec1 f [a] #

many :: Rec1 f a -> Rec1 f [a] #

(Monoid w, Functor m, MonadPlus m) => Alternative (AccumT w m) 
Instance details

Defined in Control.Monad.Trans.Accum

Methods

empty :: AccumT w m a #

(<|>) :: AccumT w m a -> AccumT w m a -> AccumT w m a #

some :: AccumT w m a -> AccumT w m [a] #

many :: AccumT w m a -> AccumT w m [a] #

(Functor m, Monad m, Error e) => Alternative (ErrorT e m) 
Instance details

Defined in Control.Monad.Trans.Error

Methods

empty :: ErrorT e m a #

(<|>) :: ErrorT e m a -> ErrorT e m a -> ErrorT e m a #

some :: ErrorT e m a -> ErrorT e m [a] #

many :: ErrorT e m a -> ErrorT e m [a] #

(Functor m, Monad m, Monoid e) => Alternative (ExceptT e m) 
Instance details

Defined in Control.Monad.Trans.Except

Methods

empty :: ExceptT e m a #

(<|>) :: ExceptT e m a -> ExceptT e m a -> ExceptT e m a #

some :: ExceptT e m a -> ExceptT e m [a] #

many :: ExceptT e m a -> ExceptT e m [a] #

Alternative m => Alternative (IdentityT m) 
Instance details

Defined in Control.Monad.Trans.Identity

Methods

empty :: IdentityT m a #

(<|>) :: IdentityT m a -> IdentityT m a -> IdentityT m a #

some :: IdentityT m a -> IdentityT m [a] #

many :: IdentityT m a -> IdentityT m [a] #

Alternative m => Alternative (ReaderT r m) 
Instance details

Defined in Control.Monad.Trans.Reader

Methods

empty :: ReaderT r m a #

(<|>) :: ReaderT r m a -> ReaderT r m a -> ReaderT r m a #

some :: ReaderT r m a -> ReaderT r m [a] #

many :: ReaderT r m a -> ReaderT r m [a] #

(Functor m, MonadPlus m) => Alternative (SelectT r m) 
Instance details

Defined in Control.Monad.Trans.Select

Methods

empty :: SelectT r m a #

(<|>) :: SelectT r m a -> SelectT r m a -> SelectT r m a #

some :: SelectT r m a -> SelectT r m [a] #

many :: SelectT r m a -> SelectT r m [a] #

(Functor m, MonadPlus m) => Alternative (StateT s m) 
Instance details

Defined in Control.Monad.Trans.State.Lazy

Methods

empty :: StateT s m a #

(<|>) :: StateT s m a -> StateT s m a -> StateT s m a #

some :: StateT s m a -> StateT s m [a] #

many :: StateT s m a -> StateT s m [a] #

(Functor m, MonadPlus m) => Alternative (StateT s m) 
Instance details

Defined in Control.Monad.Trans.State.Strict

Methods

empty :: StateT s m a #

(<|>) :: StateT s m a -> StateT s m a -> StateT s m a #

some :: StateT s m a -> StateT s m [a] #

many :: StateT s m a -> StateT s m [a] #

(Functor m, MonadPlus m) => Alternative (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.CPS

Methods

empty :: WriterT w m a #

(<|>) :: WriterT w m a -> WriterT w m a -> WriterT w m a #

some :: WriterT w m a -> WriterT w m [a] #

many :: WriterT w m a -> WriterT w m [a] #

(Monoid w, Alternative m) => Alternative (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.Lazy

Methods

empty :: WriterT w m a #

(<|>) :: WriterT w m a -> WriterT w m a -> WriterT w m a #

some :: WriterT w m a -> WriterT w m [a] #

many :: WriterT w m a -> WriterT w m [a] #

(Monoid w, Alternative m) => Alternative (WriterT w m) 
Instance details

Defined in Control.Monad.Trans.Writer.Strict

Methods

empty :: WriterT w m a #

(<|>) :: WriterT w m a -> WriterT w m a -> WriterT w m a #

some :: WriterT w m a -> WriterT w m [a] #

many :: WriterT w m a -> WriterT w m [a] #

(Alternative f, Alternative g) => Alternative (Product f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Product

Methods

empty :: Product f g a #

(<|>) :: Product f g a -> Product f g a -> Product f g a #

some :: Product f g a -> Product f g [a] #

many :: Product f g a -> Product f g [a] #

(Alternative f, Alternative g) => Alternative (f :*: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: (f :*: g) a #

(<|>) :: (f :*: g) a -> (f :*: g) a -> (f :*: g) a #

some :: (f :*: g) a -> (f :*: g) [a] #

many :: (f :*: g) a -> (f :*: g) [a] #

(Alternative f, Applicative g) => Alternative (Compose f g)

Since: base-4.9.0.0

Instance details

Defined in Data.Functor.Compose

Methods

empty :: Compose f g a #

(<|>) :: Compose f g a -> Compose f g a -> Compose f g a #

some :: Compose f g a -> Compose f g [a] #

many :: Compose f g a -> Compose f g [a] #

(Alternative f, Applicative g) => Alternative (f :.: g)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: (f :.: g) a #

(<|>) :: (f :.: g) a -> (f :.: g) a -> (f :.: g) a #

some :: (f :.: g) a -> (f :.: g) [a] #

many :: (f :.: g) a -> (f :.: g) [a] #

Alternative f => Alternative (M1 i c f)

Since: base-4.9.0.0

Instance details

Defined in GHC.Generics

Methods

empty :: M1 i c f a #

(<|>) :: M1 i c f a -> M1 i c f a -> M1 i c f a #

some :: M1 i c f a -> M1 i c f [a] #

many :: M1 i c f a -> M1 i c f [a] #

(Functor m, MonadPlus m) => Alternative (RWST r w s m) 
Instance details

Defined in Control.Monad.Trans.RWS.CPS

Methods

empty :: RWST r w s m a #

(<|>) :: RWST r w s m a -> RWST r w s m a -> RWST r w s m a #

some :: RWST r w s m a -> RWST r w s m [a] #

many :: RWST r w s m a -> RWST r w s m [a] #

(Monoid w, Functor m, MonadPlus m) => Alternative (RWST r w s m) 
Instance details

Defined in Control.Monad.Trans.RWS.Lazy

Methods

empty :: RWST r w s m a #

(<|>) :: RWST r w s m a -> RWST r w s m a -> RWST r w s m a #

some :: RWST r w s m a -> RWST r w s m [a] #

many :: RWST r w s m a -> RWST r w s m [a] #

(Monoid w, Functor m, MonadPlus m) => Alternative (RWST r w s m) 
Instance details

Defined in Control.Monad.Trans.RWS.Strict

Methods

empty :: RWST r w s m a #

(<|>) :: RWST r w s m a -> RWST r w s m a -> RWST r w s m a #

some :: RWST r w s m a -> RWST r w s m [a] #

many :: RWST r w s m a -> RWST r w s m [a] #

type HasCallStack = ?callStack :: CallStack #

Request a CallStack.

NOTE: The implicit parameter ?callStack :: CallStack is an implementation detail and should not be considered part of the CallStack API, we may decide to change the implementation in the future.

Since: base-4.9.0.0

data CallStack #

CallStacks are a lightweight method of obtaining a partial call-stack at any point in the program.

A function can request its call-site with the HasCallStack constraint. For example, we can define

putStrLnWithCallStack :: HasCallStack => String -> IO ()

as a variant of putStrLn that will get its call-site and print it, along with the string given as argument. We can access the call-stack inside putStrLnWithCallStack with callStack.

>>> :{
putStrLnWithCallStack :: HasCallStack => String -> IO ()
putStrLnWithCallStack msg = do
  putStrLn msg
  putStrLn (prettyCallStack callStack)
:}

Thus, if we call putStrLnWithCallStack we will get a formatted call-stack alongside our string.

>>> putStrLnWithCallStack "hello"
hello
CallStack (from HasCallStack):
  putStrLnWithCallStack, called at <interactive>:... in interactive:Ghci...

GHC solves HasCallStack constraints in three steps:

  1. If there is a CallStack in scope -- i.e. the enclosing function has a HasCallStack constraint -- GHC will append the new call-site to the existing CallStack.
  2. If there is no CallStack in scope -- e.g. in the GHCi session above -- and the enclosing definition does not have an explicit type signature, GHC will infer a HasCallStack constraint for the enclosing definition (subject to the monomorphism restriction).
  3. If there is no CallStack in scope and the enclosing definition has an explicit type signature, GHC will solve the HasCallStack constraint for the singleton CallStack containing just the current call-site.

CallStacks do not interact with the RTS and do not require compilation with -prof. On the other hand, as they are built up explicitly via the HasCallStack constraints, they will generally not contain as much information as the simulated call-stacks maintained by the RTS.

A CallStack is a [(String, SrcLoc)]. The String is the name of function that was called, the SrcLoc is the call-site. The list is ordered with the most recently called function at the head.

NOTE: The intrepid user may notice that HasCallStack is just an alias for an implicit parameter ?callStack :: CallStack. This is an implementation detail and should not be considered part of the CallStack API, we may decide to change the implementation in the future.

Since: base-4.8.1.0

Instances

Instances details
IsList CallStack

Be aware that 'fromList . toList = id' only for unfrozen CallStacks, since toList removes frozenness information.

Since: base-4.9.0.0

Instance details

Defined in GHC.Exts

Associated Types

type Item CallStack #

Show CallStack

Since: base-4.9.0.0

Instance details

Defined in GHC.Show

type Item CallStack 
Instance details

Defined in GHC.Exts

getCallStack :: CallStack -> [([Char], SrcLoc)] #

Extract a list of call-sites from the CallStack.

The list is ordered by most recent call.

Since: base-4.8.1.0

prettyCallStack :: CallStack -> String #

Pretty print a CallStack.

Since: base-4.9.0.0