dsp-0.2.5: Haskell Digital Signal Processing

Copyright(c) Matthew Donadio 2003
LicenseGPL
Maintainerm.p.donadio@ieee.org
Stabilityexperimental
Portabilityportable
Safe HaskellSafe
LanguageHaskell98

Numeric.Transform.Fourier.FFT

Description

FFT driver functions

Synopsis

Documentation

fft Source #

Arguments

:: (Ix a, Integral a, RealFloat b) 
=> Array a (Complex b)

x[n]

-> Array a (Complex b)

X[k]

This is the driver routine for calculating FFT's. All of the recursion in the various algorithms are defined in terms of fft.

ifft Source #

Arguments

:: (Ix a, Integral a, RealFloat b) 
=> Array a (Complex b)

X[k]

-> Array a (Complex b)

x[n]

Inverse FFT, including scaling factor, defined in terms of fft

rfft Source #

Arguments

:: (Ix a, Integral a, RealFloat b) 
=> Array a b

x[n]

-> Array a (Complex b)

X[k]

This is the algorithm for computing 2N-point real FFT with an N-point complex FFT, defined in terms of fft

irfft Source #

Arguments

:: (Ix a, Integral a, RealFloat b) 
=> Array a (Complex b)

X[k]

-> Array a b

x[n]

This is the algorithm for computing a 2N-point real inverse FFT with an N-point complex FFT, defined in terms of ifft

r2fft Source #

Arguments

:: (Ix a, Integral a, RealFloat b) 
=> Array a b

x1[n]

-> Array a b

x2[n]

-> (Array a (Complex b), Array a (Complex b))

(X1[k],X2[k])

Algorithm for 2 N-point real FFT's computed with N-point complex FFT, defined in terms of fft