{-# LANGUAGE RankNTypes, BangPatterns, FlexibleContexts, Strict #-}
module Data.Graph.Dom (
Node,Path,Edge
,Graph,Rooted
,idom,ipdom
,domTree,pdomTree
,dom,pdom
,pddfs,rpddfs
,fromAdj,fromEdges
,toAdj,toEdges
,asTree,asGraph
,parents,ancestors
) where
import Data.Monoid(Monoid(..))
import Data.Bifunctor
import Data.Tuple (swap)
import Data.Tree
import Data.List
import Data.IntMap(IntMap)
import Data.IntSet(IntSet)
import qualified Data.IntMap.Strict as IM
import qualified Data.IntSet as IS
import Control.Monad
import Control.Monad.ST.Strict
import Data.Array.ST
import Data.Array.Base
(unsafeNewArray_
,unsafeWrite,unsafeRead)
type Node = Int
type Path = [Node]
type Edge = (Node,Node)
type Graph = IntMap IntSet
type Rooted = (Node, Graph)
dom :: Rooted -> [(Node, Path)]
dom = ancestors . domTree
pdom :: Rooted -> [(Node, Path)]
pdom = ancestors . pdomTree
domTree :: Rooted -> Tree Node
domTree a@(r,_) =
let is = filter ((/=r).fst) (idom a)
tg = fromEdges (fmap swap is)
in asTree (r,tg)
pdomTree :: Rooted -> Tree Node
pdomTree a@(r,_) =
let is = filter ((/=r).fst) (ipdom a)
tg = fromEdges (fmap swap is)
in asTree (r,tg)
idom :: Rooted -> [(Node,Node)]
idom rg = runST (evalS idomM =<< initEnv (pruneReach rg))
ipdom :: Rooted -> [(Node,Node)]
ipdom rg = runST (evalS idomM =<< initEnv (pruneReach (second predG rg)))
pddfs :: Rooted -> [Node]
pddfs = reverse . rpddfs
rpddfs :: Rooted -> [Node]
rpddfs = concat . levels . pdomTree
type Dom s a = S s (Env s) a
type NodeSet = IntSet
type NodeMap a = IntMap a
data Env s = Env
{succE :: !Graph
,predE :: !Graph
,bucketE :: !Graph
,dfsE :: {-# UNPACK #-}!Int
,zeroE :: {-# UNPACK #-}!Node
,rootE :: {-# UNPACK #-}!Node
,labelE :: {-# UNPACK #-}!(Arr s Node)
,parentE :: {-# UNPACK #-}!(Arr s Node)
,ancestorE :: {-# UNPACK #-}!(Arr s Node)
,childE :: {-# UNPACK #-}!(Arr s Node)
,ndfsE :: {-# UNPACK #-}!(Arr s Node)
,dfnE :: {-# UNPACK #-}!(Arr s Int)
,sdnoE :: {-# UNPACK #-}!(Arr s Int)
,sizeE :: {-# UNPACK #-}!(Arr s Int)
,domE :: {-# UNPACK #-}!(Arr s Node)
,rnE :: {-# UNPACK #-}!(Arr s Node)}
idomM :: Dom s [(Node,Node)]
idomM = do
dfsDom =<< rootM
n <- gets dfsE
forM_ [n,n-1..1] (\i-> do
w <- ndfsM i
sw <- sdnoM w
ps <- predsM w
forM_ ps (\v-> do
u <- eval v
su <- sdnoM u
when (su < sw)
(store sdnoE w su))
z <- ndfsM =<< sdnoM w
modify(\e->e{bucketE=IM.adjust
(w`IS.insert`)
z (bucketE e)})
pw <- parentM w
link pw w
bps <- bucketM pw
forM_ bps (\v-> do
u <- eval v
su <- sdnoM u
sv <- sdnoM v
let dv = case su < sv of
True-> u
False-> pw
store domE v dv))
forM_ [1..n] (\i-> do
w <- ndfsM i
j <- sdnoM w
z <- ndfsM j
dw <- domM w
when (dw /= z)
(do ddw <- domM dw
store domE w ddw))
fromEnv
eval :: Node -> Dom s Node
eval v = do
n0 <- zeroM
a <- ancestorM v
case a==n0 of
True-> labelM v
False-> do
compress v
a <- ancestorM v
l <- labelM v
la <- labelM a
sl <- sdnoM l
sla <- sdnoM la
case sl <= sla of
True-> return l
False-> return la
compress :: Node -> Dom s ()
compress v = do
n0 <- zeroM
a <- ancestorM v
aa <- ancestorM a
when (aa /= n0) (do
compress a
a <- ancestorM v
aa <- ancestorM a
l <- labelM v
la <- labelM a
sl <- sdnoM l
sla <- sdnoM la
when (sla < sl)
(store labelE v la)
store ancestorE v aa)
link :: Node -> Node -> Dom s ()
link v w = do
n0 <- zeroM
lw <- labelM w
slw <- sdnoM lw
let balance s = do
c <- childM s
lc <- labelM c
slc <- sdnoM lc
case slw < slc of
False-> return s
True-> do
zs <- sizeM s
zc <- sizeM c
cc <- childM c
zcc <- sizeM cc
case 2*zc <= zs+zcc of
True-> do
store ancestorE c s
store childE s cc
balance s
False-> do
store sizeE c zs
store ancestorE s c
balance c
s <- balance w
lw <- labelM w
zw <- sizeM w
store labelE s lw
store sizeE v . (+zw) =<< sizeM v
let follow s = do
when (s /= n0) (do
store ancestorE s v
follow =<< childM s)
zv <- sizeM v
follow =<< case zv < 2*zw of
False-> return s
True-> do
cv <- childM v
store childE v s
return cv
dfsDom :: Node -> Dom s ()
dfsDom i = do
_ <- go i
n0 <- zeroM
r <- rootM
store parentE r n0
where go i = do
n <- nextM
store dfnE i n
store sdnoE i n
store ndfsE n i
store labelE i i
ss <- succsM i
forM_ ss (\j-> do
s <- sdnoM j
case s==0 of
False-> return()
True-> do
store parentE j i
go j)
initEnv :: Rooted -> ST s (Env s)
initEnv (r0,g0) = do
let (g,rnmap) = renum 1 g0
pred = predG g
r = rnmap IM.! r0
n = IM.size g
ns = [0..n]
m = n+1
let bucket = IM.fromList
(zip ns (repeat mempty))
rna <- newI m
writes rna (fmap swap
(IM.toList rnmap))
doms <- newI m
sdno <- newI m
size <- newI m
parent <- newI m
ancestor <- newI m
child <- newI m
label <- newI m
ndfs <- newI m
dfn <- newI m
forM_ [0..n] (doms.=0)
forM_ [0..n] (sdno.=0)
forM_ [1..n] (size.=1)
forM_ [0..n] (ancestor.=0)
forM_ [0..n] (child.=0)
(doms.=r) r
(size.=0) 0
(label.=0) 0
return (Env
{rnE = rna
,dfsE = 0
,zeroE = 0
,rootE = r
,labelE = label
,parentE = parent
,ancestorE = ancestor
,childE = child
,ndfsE = ndfs
,dfnE = dfn
,sdnoE = sdno
,sizeE = size
,succE = g
,predE = pred
,bucketE = bucket
,domE = doms})
fromEnv :: Dom s [(Node,Node)]
fromEnv = do
dom <- gets domE
rn <- gets rnE
(_,n) <- st (getBounds dom)
forM [1..n] (\i-> do
j <- st(rn!:i)
d <- st(dom!:i)
k <- st(rn!:d)
return (j,k))
zeroM :: Dom s Node
zeroM = gets zeroE
domM :: Node -> Dom s Node
domM = fetch domE
rootM :: Dom s Node
rootM = gets rootE
succsM :: Node -> Dom s [Node]
succsM i = gets (IS.toList . (!i) . succE)
predsM :: Node -> Dom s [Node]
predsM i = gets (IS.toList . (!i) . predE)
bucketM :: Node -> Dom s [Node]
bucketM i = gets (IS.toList . (!i) . bucketE)
sizeM :: Node -> Dom s Int
sizeM = fetch sizeE
sdnoM :: Node -> Dom s Int
sdnoM = fetch sdnoE
ndfsM :: Int -> Dom s Node
ndfsM = fetch ndfsE
childM :: Node -> Dom s Node
childM = fetch childE
ancestorM :: Node -> Dom s Node
ancestorM = fetch ancestorE
parentM :: Node -> Dom s Node
parentM = fetch parentE
labelM :: Node -> Dom s Node
labelM = fetch labelE
nextM :: Dom s Int
nextM = do
n <- gets dfsE
let n' = n+1
modify(\e->e{dfsE=n'})
return n'
type A = STUArray
type Arr s a = A s Int a
infixl 9 !:
infixr 2 .=
(.=) :: (MArray (A s) a (ST s))
=> Arr s a -> a -> Int -> ST s ()
(v .= x) i = unsafeWrite v i x
(!:) :: (MArray (A s) a (ST s))
=> A s Int a -> Int -> ST s a
a !: i = do
o <- unsafeRead a i
return $! o
new :: (MArray (A s) a (ST s))
=> Int -> ST s (Arr s a)
new n = unsafeNewArray_ (0,n-1)
newI :: Int -> ST s (Arr s Int)
newI = new
writes :: (MArray (A s) a (ST s))
=> Arr s a -> [(Int,a)] -> ST s ()
writes a xs = forM_ xs (\(i,x) -> (a.=x) i)
(!) :: Monoid a => IntMap a -> Int -> a
(!) g n = maybe mempty id (IM.lookup n g)
fromAdj :: [(Node, [Node])] -> Graph
fromAdj = IM.fromList . fmap (second IS.fromList)
fromEdges :: [Edge] -> Graph
fromEdges = collectI IS.union fst (IS.singleton . snd)
toAdj :: Graph -> [(Node, [Node])]
toAdj = fmap (second IS.toList) . IM.toList
toEdges :: Graph -> [Edge]
toEdges = concatMap (uncurry (fmap . (,))) . toAdj
predG :: Graph -> Graph
predG g = IM.unionWith IS.union (go g) g0
where g0 = fmap (const mempty) g
go = flip IM.foldrWithKey mempty (\i a m ->
foldl' (\m p -> IM.insertWith mappend p
(IS.singleton i) m)
m
(IS.toList a))
pruneReach :: Rooted -> Rooted
pruneReach (r,g) = (r,g2)
where is = reachable
(maybe mempty id
. flip IM.lookup g) $ r
g2 = IM.fromList
. fmap (second (IS.filter (`IS.member`is)))
. filter ((`IS.member`is) . fst)
. IM.toList $ g
tip :: Tree a -> (a, [Tree a])
tip (Node a ts) = (a, ts)
parents :: Tree a -> [(a, a)]
parents (Node i xs) = p i xs
++ concatMap parents xs
where p i = fmap (flip (,) i . rootLabel)
ancestors :: Tree a -> [(a, [a])]
ancestors = go []
where go acc (Node i xs)
= let acc' = i:acc
in p acc' xs ++ concatMap (go acc') xs
p is = fmap (flip (,) is . rootLabel)
asGraph :: Tree Node -> Rooted
asGraph t@(Node a _) = let g = go t in (a, fromAdj g)
where go (Node a ts) = let as = (fst . unzip . fmap tip) ts
in (a, as) : concatMap go ts
asTree :: Rooted -> Tree Node
asTree (r,g) = let go a = Node a (fmap go ((IS.toList . f) a))
f = (g !)
in go r
reachable :: (Node -> NodeSet) -> (Node -> NodeSet)
reachable f a = go (IS.singleton a) a
where go seen a = let s = f a
as = IS.toList (s `IS.difference` seen)
in foldl' go (s `IS.union` seen) as
collectI :: (c -> c -> c)
-> (a -> Int) -> (a -> c) -> [a] -> IntMap c
collectI (<>) f g
= foldl' (\m a -> IM.insertWith (<>)
(f a)
(g a) m) mempty
renum :: Int -> Graph -> (Graph, NodeMap Node)
renum from = (\(_,m,g)->(g,m))
. IM.foldrWithKey
(\i ss (!n,!env,!new)->
let (j,n2,env2) = go n env i
(n3,env3,ss2) = IS.fold
(\k (!n,!env,!new)->
case go n env k of
(l,n2,env2)-> (n2,env2,l `IS.insert` new))
(n2,env2,mempty) ss
new2 = IM.insertWith IS.union j ss2 new
in (n3,env3,new2)) (from,mempty,mempty)
where go :: Int
-> NodeMap Node
-> Node
-> (Node,Int,NodeMap Node)
go !n !env i =
case IM.lookup i env of
Just j -> (j,n,env)
Nothing -> (n,n+1,IM.insert i n env)
newtype S z s a = S {unS :: forall o. (a -> s -> ST z o) -> s -> ST z o}
instance Functor (S z s) where
fmap f (S g) = S (\k -> g (k . f))
instance Monad (S z s) where
return = pure
S g >>= f = S (\k -> g (\a -> unS (f a) k))
instance Applicative (S z s) where
pure a = S (\k -> k a)
(<*>) = ap
gets :: (s -> a) -> S z s a
gets f = S (\k s -> k (f s) s)
modify :: (s -> s) -> S z s ()
modify f = S (\k -> k () . f)
evalS :: S z s a -> s -> ST z a
evalS (S g) = g ((return .) . const)
st :: ST z a -> S z s a
st m = S (\k s-> do
a <- m
k a s)
store :: (MArray (A z) a (ST z))
=> (s -> Arr z a) -> Int -> a -> S z s ()
store f i x = do
a <- gets f
st ((a.=x) i)
fetch :: (MArray (A z) a (ST z))
=> (s -> Arr z a) -> Int -> S z s a
fetch f i = do
a <- gets f
st (a!:i)