diagrams-lib-1.4.3: Embedded domain-specific language for declarative graphics

Copyright(c) 2014-2015 diagrams-lib team (see LICENSE)
LicenseBSD-style (see LICENSE)
Maintainerdiagrams-discuss@googlegroups.com
Safe HaskellSafe
LanguageHaskell2010

Diagrams.TwoD.Segment.Bernstein

Description

Bernstein polynomials, used internally by code to find intersections of paths. This module is probably not of any relevance to most users of diagrams.

Synopsis

Documentation

data BernsteinPoly n Source #

Constructors

BernsteinPoly 
Instances
Functor BernsteinPoly Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Methods

fmap :: (a -> b) -> BernsteinPoly a -> BernsteinPoly b #

(<$) :: a -> BernsteinPoly b -> BernsteinPoly a #

Fractional n => Num (BernsteinPoly n) Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Show n => Show (BernsteinPoly n) Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Fractional n => Sectionable (BernsteinPoly n) Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Fractional n => EndValues (BernsteinPoly n) Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Num n => DomainBounds (BernsteinPoly n) Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

Fractional n => Parametric (BernsteinPoly n) Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

type V (BernsteinPoly n) Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

type V (BernsteinPoly n) = V1
type N (BernsteinPoly n) Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

type N (BernsteinPoly n) = n
type Codomain (BernsteinPoly n) Source # 
Instance details

Defined in Diagrams.TwoD.Segment.Bernstein

listToBernstein :: Fractional n => [n] -> BernsteinPoly n Source #

Create a bernstein polynomial from a list of coëfficients.

evaluateBernstein :: Fractional n => BernsteinPoly n -> n -> n Source #

Evaluate the bernstein polynomial.

degreeElevate :: Fractional n => BernsteinPoly n -> Int -> BernsteinPoly n Source #

Degree elevate a bernstein polynomial a number of times.

bernsteinDeriv :: Fractional n => BernsteinPoly n -> BernsteinPoly n Source #

Find the derivative of a bernstein polynomial.

evaluateBernsteinDerivs :: Fractional n => BernsteinPoly n -> n -> [n] Source #

Evaluate the bernstein polynomial and its derivatives.