Safe Haskell | None |
---|---|
Language | Haskell2010 |
Please read the Dhall.Tutorial module, which contains a tutorial explaining how to use the language, the compiler, and this library
Synopsis
- input :: Decoder a -> Text -> IO a
- inputWithSettings :: InputSettings -> Decoder a -> Text -> IO a
- inputFile :: Decoder a -> FilePath -> IO a
- inputFileWithSettings :: EvaluateSettings -> Decoder a -> FilePath -> IO a
- inputExpr :: Text -> IO (Expr Src Void)
- inputExprWithSettings :: InputSettings -> Text -> IO (Expr Src Void)
- rootDirectory :: Functor f => LensLike' f InputSettings FilePath
- sourceName :: Functor f => LensLike' f InputSettings FilePath
- startingContext :: (Functor f, HasEvaluateSettings s) => LensLike' f s (Context (Expr Src Void))
- normalizer :: (Functor f, HasEvaluateSettings s) => LensLike' f s (Maybe (ReifiedNormalizer Void))
- defaultInputSettings :: InputSettings
- data InputSettings
- defaultEvaluateSettings :: EvaluateSettings
- data EvaluateSettings
- class HasEvaluateSettings s
- detailed :: IO a -> IO a
- data Decoder a = Decoder {}
- newtype RecordDecoder a = RecordDecoder (Product (Const (Map Text (Expr Src Void))) (Compose ((->) (Expr Src Void)) (Extractor Src Void)) a)
- newtype UnionDecoder a = UnionDecoder (Compose (Map Text) Decoder a)
- data Encoder a = Encoder {}
- class FromDhall a where
- autoWith :: InterpretOptions -> Decoder a
- type Interpret = FromDhall
- data InvalidDecoder s a = InvalidDecoder {
- invalidDecoderExpected :: Expr s a
- invalidDecoderExpression :: Expr s a
- newtype ExtractErrors s a = ExtractErrors {}
- type Extractor s a = Validation (ExtractErrors s a)
- type MonadicExtractor s a = Either (ExtractErrors s a)
- typeError :: Expr s a -> Expr s a -> Extractor s a b
- extractError :: Text -> Extractor s a b
- toMonadic :: Extractor s a b -> MonadicExtractor s a b
- fromMonadic :: MonadicExtractor s a b -> Extractor s a b
- auto :: FromDhall a => Decoder a
- genericAuto :: (Generic a, GenericFromDhall (Rep a)) => Decoder a
- data InterpretOptions = InterpretOptions {}
- data SingletonConstructors
- defaultInterpretOptions :: InterpretOptions
- bool :: Decoder Bool
- natural :: Decoder Natural
- integer :: Decoder Integer
- scientific :: Decoder Scientific
- double :: Decoder Double
- lazyText :: Decoder Text
- strictText :: Decoder Text
- maybe :: Decoder a -> Decoder (Maybe a)
- sequence :: Decoder a -> Decoder (Seq a)
- list :: Decoder a -> Decoder [a]
- vector :: Decoder a -> Decoder (Vector a)
- function :: InterpretOptions -> Encoder a -> Decoder b -> Decoder (a -> b)
- setFromDistinctList :: (Ord a, Show a) => Decoder a -> Decoder (Set a)
- setIgnoringDuplicates :: Ord a => Decoder a -> Decoder (Set a)
- hashSetFromDistinctList :: (Hashable a, Ord a, Show a) => Decoder a -> Decoder (HashSet a)
- hashSetIgnoringDuplicates :: (Hashable a, Ord a) => Decoder a -> Decoder (HashSet a)
- map :: Ord k => Decoder k -> Decoder v -> Decoder (Map k v)
- hashMap :: (Eq k, Hashable k) => Decoder k -> Decoder v -> Decoder (HashMap k v)
- pairFromMapEntry :: Decoder k -> Decoder v -> Decoder (k, v)
- unit :: Decoder ()
- void :: Decoder Void
- string :: Decoder String
- pair :: Decoder a -> Decoder b -> Decoder (a, b)
- record :: RecordDecoder a -> Decoder a
- field :: Text -> Decoder a -> RecordDecoder a
- union :: UnionDecoder a -> Decoder a
- constructor :: Text -> Decoder a -> UnionDecoder a
- class GenericFromDhall f where
- genericAutoWith :: InterpretOptions -> State Int (Decoder (f a))
- class GenericToDhall f where
- genericToDhallWith :: InterpretOptions -> State Int (Encoder (f a))
- class ToDhall a where
- injectWith :: InterpretOptions -> Encoder a
- type Inject = ToDhall
- inject :: ToDhall a => Encoder a
- genericToDhall :: (Generic a, GenericToDhall (Rep a)) => Encoder a
- newtype RecordEncoder a = RecordEncoder (Map Text (Encoder a))
- encodeFieldWith :: Text -> Encoder a -> RecordEncoder a
- encodeField :: ToDhall a => Text -> RecordEncoder a
- recordEncoder :: RecordEncoder a -> Encoder a
- newtype UnionEncoder a = UnionEncoder (Product (Const (Map Text (Expr Src Void))) (Op (Text, Expr Src Void)) a)
- encodeConstructorWith :: Text -> Encoder a -> UnionEncoder a
- encodeConstructor :: ToDhall a => Text -> UnionEncoder a
- unionEncoder :: UnionEncoder a -> Encoder a
- (>|<) :: UnionEncoder a -> UnionEncoder b -> UnionEncoder (Either a b)
- rawInput :: Alternative f => Decoder a -> Expr s Void -> f a
- (>$<) :: Contravariant f => (a -> b) -> f b -> f a
- (>*<) :: Divisible f => f a -> f b -> f (a, b)
- data Natural
- data Seq a
- data Text
- data Vector a
- class Generic a
Input
:: Decoder a | The decoder for the Dhall value |
-> Text | The Dhall program |
-> IO a | The decoded value in Haskell |
Type-check and evaluate a Dhall program, decoding the result into Haskell
The first argument determines the type of value that you decode:
>>>
input integer "+2"
2>>>
input (vector double) "[1.0, 2.0]"
[1.0,2.0]
Use auto
to automatically select which type to decode based on the
inferred return type:
>>>
input auto "True" :: IO Bool
True
This uses the settings from defaultInputSettings
.
:: InputSettings | |
-> Decoder a | The decoder for the Dhall value |
-> Text | The Dhall program |
-> IO a | The decoded value in Haskell |
Extend input
with a root directory to resolve imports relative
to, a file to mention in errors as the source, a custom typing
context, and a custom normalization process.
Since: 1.16
:: Decoder a | The decoder for the Dhall value |
-> FilePath | The path to the Dhall program. |
-> IO a | The decoded value in Haskell. |
Type-check and evaluate a Dhall program that is read from the file-system.
This uses the settings from defaultEvaluateSettings
.
Since: 1.16
inputFileWithSettings Source #
:: EvaluateSettings | |
-> Decoder a | The decoder for the Dhall value |
-> FilePath | The path to the Dhall program. |
-> IO a | The decoded value in Haskell. |
Extend inputFile
with a custom typing context and a custom
normalization process.
Since: 1.16
Similar to input
, but without interpreting the Dhall Expr
into a Haskell
type.
Uses the settings from defaultInputSettings
.
inputExprWithSettings Source #
Extend inputExpr
with a root directory to resolve imports relative
to, a file to mention in errors as the source, a custom typing
context, and a custom normalization process.
Since: 1.16
rootDirectory :: Functor f => LensLike' f InputSettings FilePath Source #
Access the directory to resolve imports relative to.
Since: 1.16
sourceName :: Functor f => LensLike' f InputSettings FilePath Source #
Access the name of the source to report locations from; this is only used in error messages, so it's okay if this is a best guess or something symbolic.
Since: 1.16
startingContext :: (Functor f, HasEvaluateSettings s) => LensLike' f s (Context (Expr Src Void)) Source #
Access the starting context used for evaluation and type-checking.
Since: 1.16
normalizer :: (Functor f, HasEvaluateSettings s) => LensLike' f s (Maybe (ReifiedNormalizer Void)) Source #
Access the custom normalizer.
Since: 1.16
defaultInputSettings :: InputSettings Source #
Default input settings: resolves imports relative to .
(the
current working directory), report errors as coming from (input)
,
and default evaluation settings from defaultEvaluateSettings
.
Since: 1.16
data InputSettings Source #
Since: 1.16
Instances
HasEvaluateSettings InputSettings Source # | |
Defined in Dhall |
defaultEvaluateSettings :: EvaluateSettings Source #
Default evaluation settings: no extra entries in the initial context, and no special normalizer behaviour.
Since: 1.16
data EvaluateSettings Source #
Since: 1.16
Instances
HasEvaluateSettings EvaluateSettings Source # | |
Defined in Dhall |
class HasEvaluateSettings s Source #
Since: 1.16
evaluateSettings
Instances
HasEvaluateSettings EvaluateSettings Source # | |
Defined in Dhall | |
HasEvaluateSettings InputSettings Source # | |
Defined in Dhall |
detailed :: IO a -> IO a Source #
Use this to provide more detailed error messages
> input auto "True" :: IO Integer *** Exception: Error: Expression doesn't match annotation True : Integer (input):1:1
> detailed (input auto "True") :: IO Integer *** Exception: Error: Expression doesn't match annotation Explanation: You can annotate an expression with its type or kind using the ❰:❱ symbol, like this: ┌───────┐ │ x : t │ ❰x❱ is an expression and ❰t❱ is the annotated type or kind of ❰x❱ └───────┘ The type checker verifies that the expression's type or kind matches the provided annotation For example, all of the following are valid annotations that the type checker accepts: ┌─────────────┐ │ 1 : Natural │ ❰1❱ is an expression that has type ❰Natural❱, so the type └─────────────┘ checker accepts the annotation ┌───────────────────────┐ │ Natural/even 2 : Bool │ ❰Natural/even 2❱ has type ❰Bool❱, so the type └───────────────────────┘ checker accepts the annotation ┌────────────────────┐ │ List : Type → Type │ ❰List❱ is an expression that has kind ❰Type → Type❱, └────────────────────┘ so the type checker accepts the annotation ┌──────────────────┐ │ List Text : Type │ ❰List Text❱ is an expression that has kind ❰Type❱, so └──────────────────┘ the type checker accepts the annotation However, the following annotations are not valid and the type checker will reject them: ┌──────────┐ │ 1 : Text │ The type checker rejects this because ❰1❱ does not have type └──────────┘ ❰Text❱ ┌─────────────┐ │ List : Type │ ❰List❱ does not have kind ❰Type❱ └─────────────┘ You or the interpreter annotated this expression: ↳ True ... with this type or kind: ↳ Integer ... but the inferred type or kind of the expression is actually: ↳ Bool Some common reasons why you might get this error: ● The Haskell Dhall interpreter implicitly inserts a top-level annotation matching the expected type For example, if you run the following Haskell code: ┌───────────────────────────────┐ │ >>> input auto "1" :: IO Text │ └───────────────────────────────┘ ... then the interpreter will actually type check the following annotated expression: ┌──────────┐ │ 1 : Text │ └──────────┘ ... and then type-checking will fail ──────────────────────────────────────────────────────────────────────────────── True : Integer (input):1:1
Decoders
A (Decoder a)
represents a way to marshal a value of type 'a'
from Dhall
into Haskell
You can produce Decoder
s either explicitly:
example :: Decoder (Vector Text) example = vector text
... or implicitly using auto
:
example :: Decoder (Vector Text) example = auto
You can consume Decoder
s using the input
function:
input :: Decoder a -> Text -> IO a
newtype RecordDecoder a Source #
The RecordDecoder
applicative functor allows you to build a Decoder
from a Dhall record.
For example, let's take the following Haskell data type:
>>>
:{
data Project = Project { projectName :: Text , projectDescription :: Text , projectStars :: Natural } :}
And assume that we have the following Dhall record that we would like to
parse as a Project
:
{ name = "dhall-haskell" , description = "A configuration language guaranteed to terminate" , stars = 289 }
Our decoder has type Decoder
Project
, but we can't build that out of any
smaller decoders, as Decoder
s cannot be combined (they are only Functor
s).
However, we can use a RecordDecoder
to build a Decoder
for Project
:
>>>
:{
project :: Decoder Project project = record ( Project <$> field "name" strictText <*> field "description" strictText <*> field "stars" natural ) :}
RecordDecoder (Product (Const (Map Text (Expr Src Void))) (Compose ((->) (Expr Src Void)) (Extractor Src Void)) a) |
Instances
Functor RecordDecoder Source # | |
Defined in Dhall fmap :: (a -> b) -> RecordDecoder a -> RecordDecoder b # (<$) :: a -> RecordDecoder b -> RecordDecoder a # | |
Applicative RecordDecoder Source # | |
Defined in Dhall pure :: a -> RecordDecoder a # (<*>) :: RecordDecoder (a -> b) -> RecordDecoder a -> RecordDecoder b # liftA2 :: (a -> b -> c) -> RecordDecoder a -> RecordDecoder b -> RecordDecoder c # (*>) :: RecordDecoder a -> RecordDecoder b -> RecordDecoder b # (<*) :: RecordDecoder a -> RecordDecoder b -> RecordDecoder a # |
newtype UnionDecoder a Source #
The UnionDecoder
monoid allows you to build a Decoder
from a Dhall union
For example, let's take the following Haskell data type:
>>>
:{
data Status = Queued Natural | Result Text | Errored Text :}
And assume that we have the following Dhall union that we would like to
parse as a Status
:
< Result : Text | Queued : Natural | Errored : Text >.Result "Finish successfully"
Our decoder has type Decoder
Status
, but we can't build that out of any
smaller decoders, as Decoder
s cannot be combined (they are only Functor
s).
However, we can use a UnionDecoder
to build a Decoder
for Status
:
>>>
:{
status :: Decoder Status status = union ( ( Queued <$> constructor "Queued" natural ) <> ( Result <$> constructor "Result" strictText ) <> ( Errored <$> constructor "Errored" strictText ) ) :}
UnionDecoder (Compose (Map Text) Decoder a) |
Instances
Functor UnionDecoder Source # | |
Defined in Dhall fmap :: (a -> b) -> UnionDecoder a -> UnionDecoder b # (<$) :: a -> UnionDecoder b -> UnionDecoder a # | |
Semigroup (UnionDecoder a) Source # | |
Defined in Dhall (<>) :: UnionDecoder a -> UnionDecoder a -> UnionDecoder a # sconcat :: NonEmpty (UnionDecoder a) -> UnionDecoder a # stimes :: Integral b => b -> UnionDecoder a -> UnionDecoder a # | |
Monoid (UnionDecoder a) Source # | |
Defined in Dhall mempty :: UnionDecoder a # mappend :: UnionDecoder a -> UnionDecoder a -> UnionDecoder a # mconcat :: [UnionDecoder a] -> UnionDecoder a # |
An (Encoder a)
represents a way to marshal a value of type 'a'
from
Haskell into Dhall
class FromDhall a where Source #
Any value that implements FromDhall
can be automatically decoded based on
the inferred return type of input
>>>
input auto "[1, 2, 3]" :: IO (Vector Natural)
[1,2,3]>>>
input auto "toMap { a = False, b = True }" :: IO (Map Text Bool)
fromList [("a",False),("b",True)]
This class auto-generates a default implementation for records that
implement Generic
. This does not auto-generate an instance for recursive
types.
Nothing
autoWith :: InterpretOptions -> Decoder a Source #
autoWith :: (Generic a, GenericFromDhall (Rep a)) => InterpretOptions -> Decoder a Source #
Instances
FromDhall Bool Source # | |
FromDhall Double Source # | |
FromDhall Integer Source # | |
FromDhall Natural Source # | |
FromDhall () Source # | |
FromDhall Scientific Source # | |
Defined in Dhall | |
FromDhall Text Source # | |
FromDhall Text Source # | |
FromDhall Void Source # | |
FromDhall [Char] Source # | |
FromDhall a => FromDhall [a] Source # | |
FromDhall a => FromDhall (Maybe a) Source # | |
FromDhall a => FromDhall (Seq a) Source # | |
(FromDhall a, Ord a, Show a) => FromDhall (Set a) Source # | Note that this instance will throw errors in the presence of duplicates in
the list. To ignore duplicates, use |
(Functor f, FromDhall (f (Result f))) => FromDhall (Fix f) Source # | You can use this instance to marshal recursive types from Dhall to Haskell. Here is an example use of this instance: {-# LANGUAGE DeriveAnyClass #-} {-# LANGUAGE DeriveFoldable #-} {-# LANGUAGE DeriveFunctor #-} {-# LANGUAGE DeriveTraversable #-} {-# LANGUAGE DeriveGeneric #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE QuasiQuotes #-} {-# LANGUAGE StandaloneDeriving #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TemplateHaskell #-} import Data.Fix (Fix(..)) import Data.Text (Text) import Dhall (FromDhall) import GHC.Generics (Generic) import Numeric.Natural (Natural) import qualified Data.Fix as Fix import qualified Data.Functor.Foldable as Foldable import qualified Data.Functor.Foldable.TH as TH import qualified Dhall import qualified NeatInterpolation data Expr = Lit Natural | Add Expr Expr | Mul Expr Expr deriving (Show) TH.makeBaseFunctor ''Expr deriving instance Generic (ExprF a) deriving instance FromDhall a => FromDhall (ExprF a) example :: Text example = [NeatInterpolation.text| \(Expr : Type) -> let ExprF = < LitF : Natural | AddF : { _1 : Expr, _2 : Expr } | MulF : { _1 : Expr, _2 : Expr } > in \(Fix : ExprF -> Expr) -> let Lit = \(x : Natural) -> Fix (ExprF.LitF x) let Add = \(x : Expr) -> \(y : Expr) -> Fix (ExprF.AddF { _1 = x, _2 = y }) let Mul = \(x : Expr) -> \(y : Expr) -> Fix (ExprF.MulF { _1 = x, _2 = y }) in Add (Mul (Lit 3) (Lit 7)) (Add (Lit 1) (Lit 2)) |] convert :: Fix ExprF -> Expr convert = Fix.cata Foldable.embed main :: IO () main = do x <- Dhall.input Dhall.auto example :: IO (Fix ExprF) print (convert x :: Expr) |
(FromDhall a, Hashable a, Ord a, Show a) => FromDhall (HashSet a) Source # | Note that this instance will throw errors in the presence of duplicates in
the list. To ignore duplicates, use |
FromDhall a => FromDhall (Vector a) Source # | |
(ToDhall a, FromDhall b) => FromDhall (a -> b) Source # | |
(FromDhall a, FromDhall b) => FromDhall (a, b) Source # | |
(Eq k, Hashable k, FromDhall k, FromDhall v) => FromDhall (HashMap k v) Source # | |
(Ord k, FromDhall k, FromDhall v) => FromDhall (Map k v) Source # | |
type Interpret = FromDhall Source #
A compatibility alias for FromDhall
This will eventually be removed.
data InvalidDecoder s a Source #
Every Decoder
must obey the contract that if an expression's type matches the
the expected
type then the extract
function must not fail with a type error.
If not, then this value is returned.
This value indicates that an invalid Decoder
was provided to the input
function
InvalidDecoder | |
|
Instances
(Pretty s, Pretty a, Typeable s, Typeable a) => Show (InvalidDecoder s a) Source # | |
Defined in Dhall showsPrec :: Int -> InvalidDecoder s a -> ShowS # show :: InvalidDecoder s a -> String # showList :: [InvalidDecoder s a] -> ShowS # | |
(Pretty s, Typeable s, Pretty a, Typeable a) => Exception (InvalidDecoder s a) Source # | |
Defined in Dhall toException :: InvalidDecoder s a -> SomeException # fromException :: SomeException -> Maybe (InvalidDecoder s a) # displayException :: InvalidDecoder s a -> String # |
newtype ExtractErrors s a Source #
One or more errors returned from extracting a Dhall expression to a Haskell expression
Instances
(Pretty s, Pretty a, Typeable s, Typeable a) => Show (ExtractErrors s a) Source # | |
Defined in Dhall showsPrec :: Int -> ExtractErrors s a -> ShowS # show :: ExtractErrors s a -> String # showList :: [ExtractErrors s a] -> ShowS # | |
Semigroup (ExtractErrors s a) Source # | |
Defined in Dhall (<>) :: ExtractErrors s a -> ExtractErrors s a -> ExtractErrors s a # sconcat :: NonEmpty (ExtractErrors s a) -> ExtractErrors s a # stimes :: Integral b => b -> ExtractErrors s a -> ExtractErrors s a # | |
(Pretty s, Pretty a, Typeable s, Typeable a) => Exception (ExtractErrors s a) Source # | |
Defined in Dhall toException :: ExtractErrors s a -> SomeException # fromException :: SomeException -> Maybe (ExtractErrors s a) # displayException :: ExtractErrors s a -> String # |
type Extractor s a = Validation (ExtractErrors s a) Source #
Useful synonym for the Validation
type used when marshalling Dhall
expressions
type MonadicExtractor s a = Either (ExtractErrors s a) Source #
Useful synonym for the equivalent Either
type used when marshalling Dhall
code
typeError :: Expr s a -> Expr s a -> Extractor s a b Source #
Generate a type error during extraction by specifying the expected type and the actual type
toMonadic :: Extractor s a b -> MonadicExtractor s a b Source #
Switches from an Applicative
extraction result, able to accumulate errors,
to a Monad
extraction result, able to chain sequential operations
fromMonadic :: MonadicExtractor s a b -> Extractor s a b Source #
Switches from a Monad
extraction result, able to chain sequential errors,
to an Applicative
extraction result, able to accumulate errors
auto :: FromDhall a => Decoder a Source #
Use the default options for interpreting a configuration file
auto = autoWith defaultInterpretOptions
genericAuto :: (Generic a, GenericFromDhall (Rep a)) => Decoder a Source #
genericAuto
is the default implementation for auto
if you derive
FromDhall
. The difference is that you can use genericAuto
without
having to explicitly provide a FromDhall
instance for a type as long as
the type derives Generic
data InterpretOptions Source #
Use these options to tweak how Dhall derives a generic implementation of
FromDhall
InterpretOptions | |
|
data SingletonConstructors Source #
This type specifies how to model a Haskell constructor with 1 field in Dhall
For example, consider the following Haskell datatype definition:
data Example = Foo { x :: Double } | Bar Double
Depending on which option you pick, the corresponding Dhall type could be:
< Foo : Double | Bar : Double > -- Bare
< Foo : { x : Double } | Bar : { _1 : Double } > -- Wrapped
< Foo : { x : Double } | Bar : Double > -- Smart
defaultInterpretOptions :: InterpretOptions Source #
Default interpret options, which you can tweak or override, like this:
autoWith (defaultInterpretOptions { fieldModifier = Data.Text.Lazy.dropWhile (== '_') })
scientific :: Decoder Scientific Source #
Decode a Scientific
>>>
input scientific "1e100"
1.0e100
maybe :: Decoder a -> Decoder (Maybe a) Source #
Decode a Maybe
>>>
input (maybe natural) "Some 1"
Just 1
sequence :: Decoder a -> Decoder (Seq a) Source #
Decode a Seq
>>>
input (sequence natural) "[1, 2, 3]"
fromList [1,2,3]
vector :: Decoder a -> Decoder (Vector a) Source #
Decode a Vector
>>>
input (vector natural) "[1, 2, 3]"
[1,2,3]
function :: InterpretOptions -> Encoder a -> Decoder b -> Decoder (a -> b) Source #
Decode a Dhall function into a Haskell function
>>>
f <- input (function defaultInterpretOptions inject bool) "Natural/even" :: IO (Natural -> Bool)
>>>
f 0
True>>>
f 1
False
setFromDistinctList :: (Ord a, Show a) => Decoder a -> Decoder (Set a) Source #
Decode a Set
from a List
with distinct elements
>>>
input (setFromDistinctList natural) "[1, 2, 3]"
fromList [1,2,3]
An error is thrown if the list contains duplicates.
>>> input (setFromDistinctList natural) "[1, 1, 3]" *** Exception: Error: Failed extraction The expression type-checked successfully but the transformation to the target type failed with the following error: One duplicate element in the list: 1
>>> input (setFromDistinctList natural) "[1, 1, 3, 3]" *** Exception: Error: Failed extraction The expression type-checked successfully but the transformation to the target type failed with the following error: 2 duplicates were found in the list, including 1
setIgnoringDuplicates :: Ord a => Decoder a -> Decoder (Set a) Source #
Decode a Set
from a List
>>>
input (setIgnoringDuplicates natural) "[1, 2, 3]"
fromList [1,2,3]
Duplicate elements are ignored.
>>>
input (setIgnoringDuplicates natural) "[1, 1, 3]"
fromList [1,3]
hashSetFromDistinctList :: (Hashable a, Ord a, Show a) => Decoder a -> Decoder (HashSet a) Source #
Decode a HashSet
from a List
with distinct elements
>>>
input (hashSetFromDistinctList natural) "[1, 2, 3]"
fromList [1,2,3]
An error is thrown if the list contains duplicates.
>>> input (hashSetFromDistinctList natural) "[1, 1, 3]" *** Exception: Error: Failed extraction The expression type-checked successfully but the transformation to the target type failed with the following error: One duplicate element in the list: 1
>>> input (hashSetFromDistinctList natural) "[1, 1, 3, 3]" *** Exception: Error: Failed extraction The expression type-checked successfully but the transformation to the target type failed with the following error: 2 duplicates were found in the list, including 1
hashSetIgnoringDuplicates :: (Hashable a, Ord a) => Decoder a -> Decoder (HashSet a) Source #
Decode a HashSet
from a List
>>>
input (hashSetIgnoringDuplicates natural) "[1, 2, 3]"
fromList [1,2,3]
Duplicate elements are ignored.
>>>
input (hashSetIgnoringDuplicates natural) "[1, 1, 3]"
fromList [1,3]
map :: Ord k => Decoder k -> Decoder v -> Decoder (Map k v) Source #
Decode a Map
from a toMap
expression or generally a Prelude.Map.Type
>>>
input (Dhall.map strictText bool) "toMap { a = True, b = False }"
fromList [("a",True),("b",False)]>>>
input (Dhall.map strictText bool) "[ { mapKey = \"foo\", mapValue = True } ]"
fromList [("foo",True)]
If there are duplicate mapKey
s, later mapValue
s take precedence:
>>>
let expr = "[ { mapKey = 1, mapValue = True }, { mapKey = 1, mapValue = False } ]"
>>>
input (Dhall.map natural bool) expr
fromList [(1,False)]
hashMap :: (Eq k, Hashable k) => Decoder k -> Decoder v -> Decoder (HashMap k v) Source #
Decode a HashMap
from a toMap
expression or generally a Prelude.Map.Type
>>>
input (Dhall.hashMap strictText bool) "toMap { a = True, b = False }"
fromList [("a",True),("b",False)]>>>
input (Dhall.hashMap strictText bool) "[ { mapKey = \"foo\", mapValue = True } ]"
fromList [("foo",True)]
If there are duplicate mapKey
s, later mapValue
s take precedence:
>>>
let expr = "[ { mapKey = 1, mapValue = True }, { mapKey = 1, mapValue = False } ]"
>>>
input (Dhall.hashMap natural bool) expr
fromList [(1,False)]
pairFromMapEntry :: Decoder k -> Decoder v -> Decoder (k, v) Source #
Decode a tuple from a Prelude.Map.Entry
record
>>>
input (pairFromMapEntry strictText natural) "{ mapKey = \"foo\", mapValue = 3 }"
("foo",3)
Decode ()
from an empty record.
>>>
input unit "{=}" -- GHC doesn't print the result if it is ()
pair :: Decoder a -> Decoder b -> Decoder (a, b) Source #
Given a pair of Decoder
s, decode a tuple-record into their pairing.
>>>
input (pair natural bool) "{ _1 = 42, _2 = False }"
(42,False)
record :: RecordDecoder a -> Decoder a Source #
Run a RecordDecoder
to build a Decoder
.
union :: UnionDecoder a -> Decoder a Source #
Run a UnionDecoder
to build a Decoder
.
constructor :: Text -> Decoder a -> UnionDecoder a Source #
Parse a single constructor of a union
class GenericFromDhall f where Source #
This is the underlying class that powers the FromDhall
class's support
for automatically deriving a generic implementation
genericAutoWith :: InterpretOptions -> State Int (Decoder (f a)) Source #
Instances
class GenericToDhall f where Source #
This is the underlying class that powers the FromDhall
class's support
for automatically deriving a generic implementation
genericToDhallWith :: InterpretOptions -> State Int (Encoder (f a)) Source #
Instances
class ToDhall a where Source #
This class is used by FromDhall
instance for functions:
instance (ToDhall a, FromDhall b) => FromDhall (a -> b)
You can convert Dhall functions with "simple" inputs (i.e. instances of this class) into Haskell functions. This works by:
- Marshaling the input to the Haskell function into a Dhall expression (i.e.
x :: Expr Src Void
) - Applying the Dhall function (i.e.
f :: Expr Src Void
) to the Dhall input (i.e.App f x
) - Normalizing the syntax tree (i.e.
normalize (App f x)
) - Marshaling the resulting Dhall expression back into a Haskell value
Nothing
injectWith :: InterpretOptions -> Encoder a Source #
injectWith :: (Generic a, GenericToDhall (Rep a)) => InterpretOptions -> Encoder a Source #
Instances
ToDhall Bool Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder Bool Source # | |
ToDhall Double Source # | |
Defined in Dhall | |
ToDhall Int Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder Int Source # | |
ToDhall Integer Source # | |
Defined in Dhall | |
ToDhall Natural Source # | |
Defined in Dhall | |
ToDhall Word Source # |
|
Defined in Dhall injectWith :: InterpretOptions -> Encoder Word Source # | |
ToDhall Word8 Source # |
|
Defined in Dhall | |
ToDhall Word16 Source # |
|
Defined in Dhall | |
ToDhall Word32 Source # |
|
Defined in Dhall | |
ToDhall Word64 Source # |
|
Defined in Dhall | |
ToDhall () Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder () Source # | |
ToDhall Scientific Source # | |
Defined in Dhall | |
ToDhall Text Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder Text Source # | |
ToDhall String Source # | |
Defined in Dhall | |
ToDhall Text Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder Text Source # | |
ToDhall Void Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder Void Source # | |
ToDhall a => ToDhall [a] Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder [a] Source # | |
ToDhall a => ToDhall (Maybe a) Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder (Maybe a) Source # | |
ToDhall a => ToDhall (Seq a) Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder (Seq a) Source # | |
ToDhall a => ToDhall (Set a) Source # | Note that the ouput list will be sorted
|
Defined in Dhall injectWith :: InterpretOptions -> Encoder (Set a) Source # | |
ToDhall a => ToDhall (HashSet a) Source # | Note that the ouput list may not be sorted
|
Defined in Dhall injectWith :: InterpretOptions -> Encoder (HashSet a) Source # | |
ToDhall a => ToDhall (Vector a) Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder (Vector a) Source # | |
(ToDhall a, ToDhall b) => ToDhall (a, b) Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder (a, b) Source # | |
(ToDhall k, ToDhall v) => ToDhall (HashMap k v) Source # | Embed a
|
Defined in Dhall injectWith :: InterpretOptions -> Encoder (HashMap k v) Source # | |
(ToDhall k, ToDhall v) => ToDhall (Map k v) Source # | Embed a
|
Defined in Dhall injectWith :: InterpretOptions -> Encoder (Map k v) Source # |
inject :: ToDhall a => Encoder a Source #
Use the default options for injecting a value
inject = injectWith defaultInterpretOptions
genericToDhall :: (Generic a, GenericToDhall (Rep a)) => Encoder a Source #
Use the default options for injecting a value, whose structure is determined generically.
This can be used when you want to use ToDhall
on types that you don't
want to define orphan instances for.
newtype RecordEncoder a Source #
Intermediate type used for building a ToDhall
instance for a record
RecordEncoder (Map Text (Encoder a)) |
Instances
Contravariant RecordEncoder Source # | |
Defined in Dhall contramap :: (a -> b) -> RecordEncoder b -> RecordEncoder a # (>$) :: b -> RecordEncoder b -> RecordEncoder a # | |
Divisible RecordEncoder Source # | |
Defined in Dhall divide :: (a -> (b, c)) -> RecordEncoder b -> RecordEncoder c -> RecordEncoder a # conquer :: RecordEncoder a # |
encodeFieldWith :: Text -> Encoder a -> RecordEncoder a Source #
Specify how to encode one field of a record by supplying an explicit
Encoder
for that field
encodeField :: ToDhall a => Text -> RecordEncoder a Source #
Specify how to encode one field of a record using the default ToDhall
instance for that type
recordEncoder :: RecordEncoder a -> Encoder a Source #
Convert a RecordEncoder
into the equivalent Encoder
newtype UnionEncoder a Source #
UnionEncoder
allows you to build an Encoder
for a Dhall record.
For example, let's take the following Haskell data type:
>>>
:{
data Status = Queued Natural | Result Text | Errored Text :}
And assume that we have the following Dhall union that we would like to
parse as a Status
:
< Result : Text | Queued : Natural | Errored : Text >.Result "Finish successfully"
Our encoder has type Encoder
Status
, but we can't build that out of any
smaller encoders, as Encoder
s cannot be combined.
However, we can use an UnionEncoder
to build an Encoder
for Status
:
>>>
:{
injectStatus :: Encoder Status injectStatus = adapt >$< unionEncoder ( encodeConstructorWith "Queued" inject >|< encodeConstructorWith "Result" inject >|< encodeConstructorWith "Errored" inject ) where adapt (Queued n) = Left n adapt (Result t) = Right (Left t) adapt (Errored e) = Right (Right e) :}
Or, since we are simply using the ToDhall
instance to inject each branch, we could write
>>>
:{
injectStatus :: Encoder Status injectStatus = adapt >$< unionEncoder ( encodeConstructor "Queued" >|< encodeConstructor "Result" >|< encodeConstructor "Errored" ) where adapt (Queued n) = Left n adapt (Result t) = Right (Left t) adapt (Errored e) = Right (Right e) :}
Instances
Contravariant UnionEncoder Source # | |
Defined in Dhall contramap :: (a -> b) -> UnionEncoder b -> UnionEncoder a # (>$) :: b -> UnionEncoder b -> UnionEncoder a # |
encodeConstructorWith :: Text -> Encoder a -> UnionEncoder a Source #
Specify how to encode an alternative by providing an explicit Encoder
for that alternative
encodeConstructor :: ToDhall a => Text -> UnionEncoder a Source #
Specify how to encode an alternative by using the default ToDhall
instance
for that type
unionEncoder :: UnionEncoder a -> Encoder a Source #
Convert a UnionEncoder
into the equivalent Encoder
(>|<) :: UnionEncoder a -> UnionEncoder b -> UnionEncoder (Either a b) infixr 5 Source #
Combines two UnionEncoder
values. See UnionEncoder
for usage
notes.
Ideally, this matches chosen
;
however, this allows UnionEncoder
to not need a Divisible
instance
itself (since no instance is possible).
Miscellaneous
:: Alternative f | |
=> Decoder a | The decoder for the Dhall value |
-> Expr s Void | a closed form Dhall program, which evaluates to the expected type |
-> f a | The decoded value in Haskell |
Use this function to extract Haskell values directly from Dhall AST.
The intended use case is to allow easy extraction of Dhall values for
making the function normalizeWith
easier to use.
For other use cases, use input
from Dhall
module. It will give you
a much better user experience.
(>$<) :: Contravariant f => (a -> b) -> f b -> f a infixl 4 #
This is an infix alias for contramap
.
(>*<) :: Divisible f => f a -> f b -> f (a, b) infixr 5 Source #
The RecordEncoder
divisible (contravariant) functor allows you to build
an Encoder
for a Dhall record.
For example, let's take the following Haskell data type:
>>>
:{
data Project = Project { projectName :: Text , projectDescription :: Text , projectStars :: Natural } :}
And assume that we have the following Dhall record that we would like to
parse as a Project
:
{ name = "dhall-haskell" , description = "A configuration language guaranteed to terminate" , stars = 289 }
Our encoder has type Encoder
Project
, but we can't build that out of any
smaller encoders, as Encoder
s cannot be combined (they are only Contravariant
s).
However, we can use an RecordEncoder
to build an Encoder
for Project
:
>>>
:{
injectProject :: Encoder Project injectProject = recordEncoder ( adapt >$< encodeFieldWith "name" inject >*< encodeFieldWith "description" inject >*< encodeFieldWith "stars" inject ) where adapt (Project{..}) = (projectName, (projectDescription, projectStars)) :}
Or, since we are simply using the ToDhall
instance to inject each field, we could write
>>>
:{
injectProject :: Encoder Project injectProject = recordEncoder ( adapt >$< encodeField "name" >*< encodeField "description" >*< encodeField "stars" ) where adapt (Project{..}) = (projectName, (projectDescription, projectStars)) :}
Infix divided
Re-exports
Type representing arbitrary-precision non-negative integers.
>>>
2^100 :: Natural
1267650600228229401496703205376
Operations whose result would be negative
,throw
(Underflow
:: ArithException
)
>>>
-1 :: Natural
*** Exception: arithmetic underflow
Since: base-4.8.0.0
Instances
Enum Natural | Since: base-4.8.0.0 |
Eq Natural | Since: base-4.8.0.0 |
Integral Natural | Since: base-4.8.0.0 |
Defined in GHC.Real | |
Data Natural | Since: base-4.8.0.0 |
Defined in Data.Data gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Natural -> c Natural # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c Natural # toConstr :: Natural -> Constr # dataTypeOf :: Natural -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c Natural) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Natural) # gmapT :: (forall b. Data b => b -> b) -> Natural -> Natural # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Natural -> r # gmapQ :: (forall d. Data d => d -> u) -> Natural -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Natural -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Natural -> m Natural # | |
Num Natural | Note that Since: base-4.8.0.0 |
Ord Natural | Since: base-4.8.0.0 |
Read Natural | Since: base-4.8.0.0 |
Real Natural | Since: base-4.8.0.0 |
Defined in GHC.Real toRational :: Natural -> Rational # | |
Show Natural | Since: base-4.8.0.0 |
Ix Natural | Since: base-4.8.0.0 |
Lift Natural | |
Hashable Natural | |
Defined in Data.Hashable.Class | |
ToJSON Natural | |
Defined in Data.Aeson.Types.ToJSON | |
ToJSONKey Natural | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON Natural | |
FromJSONKey Natural | |
PrintfArg Natural | Since: base-4.8.0.0 |
Defined in Text.Printf formatArg :: Natural -> FieldFormatter # parseFormat :: Natural -> ModifierParser # | |
Bits Natural | Since: base-4.8.0 |
Defined in Data.Bits (.&.) :: Natural -> Natural -> Natural # (.|.) :: Natural -> Natural -> Natural # xor :: Natural -> Natural -> Natural # complement :: Natural -> Natural # shift :: Natural -> Int -> Natural # rotate :: Natural -> Int -> Natural # setBit :: Natural -> Int -> Natural # clearBit :: Natural -> Int -> Natural # complementBit :: Natural -> Int -> Natural # testBit :: Natural -> Int -> Bool # bitSizeMaybe :: Natural -> Maybe Int # shiftL :: Natural -> Int -> Natural # unsafeShiftL :: Natural -> Int -> Natural # shiftR :: Natural -> Int -> Natural # unsafeShiftR :: Natural -> Int -> Natural # rotateL :: Natural -> Int -> Natural # | |
Subtractive Natural | |
Defined in Basement.Numerical.Subtractive type Difference Natural :: Type # | |
NFData Natural | Since: deepseq-1.4.0.0 |
Defined in Control.DeepSeq | |
Pretty Natural | |
Defined in Data.Text.Prettyprint.Doc.Internal | |
Serialise Natural | Since: serialise-0.2.0.0 |
ToDhall Natural Source # | |
Defined in Dhall | |
FromDhall Natural Source # | |
type Difference Natural | |
Defined in Basement.Numerical.Subtractive |
General-purpose finite sequences.
Instances
Monad Seq | |
Functor Seq | |
MonadFix Seq | Since: containers-0.5.11 |
Defined in Data.Sequence.Internal | |
Applicative Seq | Since: containers-0.5.4 |
Foldable Seq | |
Defined in Data.Sequence.Internal fold :: Monoid m => Seq m -> m # foldMap :: Monoid m => (a -> m) -> Seq a -> m # foldr :: (a -> b -> b) -> b -> Seq a -> b # foldr' :: (a -> b -> b) -> b -> Seq a -> b # foldl :: (b -> a -> b) -> b -> Seq a -> b # foldl' :: (b -> a -> b) -> b -> Seq a -> b # foldr1 :: (a -> a -> a) -> Seq a -> a # foldl1 :: (a -> a -> a) -> Seq a -> a # elem :: Eq a => a -> Seq a -> Bool # maximum :: Ord a => Seq a -> a # | |
Traversable Seq | |
ToJSON1 Seq | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON1 Seq | |
Alternative Seq | Since: containers-0.5.4 |
MonadPlus Seq | |
Eq1 Seq | Since: containers-0.5.9 |
Ord1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Read1 Seq | Since: containers-0.5.9 |
Defined in Data.Sequence.Internal | |
Show1 Seq | Since: containers-0.5.9 |
MonadZip Seq |
|
UnzipWith Seq | |
Defined in Data.Sequence.Internal unzipWith' :: (x -> (a, b)) -> Seq x -> (Seq a, Seq b) | |
IsList (Seq a) | |
Eq a => Eq (Seq a) | |
Data a => Data (Seq a) | |
Defined in Data.Sequence.Internal gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Seq a -> c (Seq a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Seq a) # dataTypeOf :: Seq a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Seq a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Seq a)) # gmapT :: (forall b. Data b => b -> b) -> Seq a -> Seq a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Seq a -> r # gmapQ :: (forall d. Data d => d -> u) -> Seq a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Seq a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Seq a -> m (Seq a) # | |
Ord a => Ord (Seq a) | |
Read a => Read (Seq a) | |
Show a => Show (Seq a) | |
a ~ Char => IsString (Seq a) | Since: containers-0.5.7 |
Defined in Data.Sequence.Internal fromString :: String -> Seq a # | |
Semigroup (Seq a) | Since: containers-0.5.7 |
Monoid (Seq a) | |
ToJSON a => ToJSON (Seq a) | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON a => FromJSON (Seq a) | |
NFData a => NFData (Seq a) | |
Defined in Data.Sequence.Internal | |
Serialise a => Serialise (Seq a) | Since: serialise-0.2.0.0 |
ToDhall a => ToDhall (Seq a) Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder (Seq a) Source # | |
FromDhall a => FromDhall (Seq a) Source # | |
type Item (Seq a) | |
Defined in Data.Sequence.Internal |
A space efficient, packed, unboxed Unicode text type.
Instances
Boxed vectors, supporting efficient slicing.
Instances
Monad Vector | |
Functor Vector | |
MonadFail Vector | |
Defined in Data.Vector | |
Applicative Vector | |
Foldable Vector | |
Defined in Data.Vector fold :: Monoid m => Vector m -> m # foldMap :: Monoid m => (a -> m) -> Vector a -> m # foldr :: (a -> b -> b) -> b -> Vector a -> b # foldr' :: (a -> b -> b) -> b -> Vector a -> b # foldl :: (b -> a -> b) -> b -> Vector a -> b # foldl' :: (b -> a -> b) -> b -> Vector a -> b # foldr1 :: (a -> a -> a) -> Vector a -> a # foldl1 :: (a -> a -> a) -> Vector a -> a # elem :: Eq a => a -> Vector a -> Bool # maximum :: Ord a => Vector a -> a # minimum :: Ord a => Vector a -> a # | |
Traversable Vector | |
ToJSON1 Vector | |
Defined in Data.Aeson.Types.ToJSON liftToJSON :: (a -> Value) -> ([a] -> Value) -> Vector a -> Value # liftToJSONList :: (a -> Value) -> ([a] -> Value) -> [Vector a] -> Value # liftToEncoding :: (a -> Encoding) -> ([a] -> Encoding) -> Vector a -> Encoding # liftToEncodingList :: (a -> Encoding) -> ([a] -> Encoding) -> [Vector a] -> Encoding # | |
FromJSON1 Vector | |
Alternative Vector | |
MonadPlus Vector | |
Eq1 Vector | |
Ord1 Vector | |
Defined in Data.Vector | |
Read1 Vector | |
Defined in Data.Vector | |
Show1 Vector | |
MonadZip Vector | |
Vector Vector a | |
Defined in Data.Vector basicUnsafeFreeze :: PrimMonad m => Mutable Vector (PrimState m) a -> m (Vector a) # basicUnsafeThaw :: PrimMonad m => Vector a -> m (Mutable Vector (PrimState m) a) # basicLength :: Vector a -> Int # basicUnsafeSlice :: Int -> Int -> Vector a -> Vector a # basicUnsafeIndexM :: Monad m => Vector a -> Int -> m a # basicUnsafeCopy :: PrimMonad m => Mutable Vector (PrimState m) a -> Vector a -> m () # | |
IsList (Vector a) | |
Eq a => Eq (Vector a) | |
Data a => Data (Vector a) | |
Defined in Data.Vector gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Vector a -> c (Vector a) # gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Vector a) # toConstr :: Vector a -> Constr # dataTypeOf :: Vector a -> DataType # dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Vector a)) # dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Vector a)) # gmapT :: (forall b. Data b => b -> b) -> Vector a -> Vector a # gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Vector a -> r # gmapQ :: (forall d. Data d => d -> u) -> Vector a -> [u] # gmapQi :: Int -> (forall d. Data d => d -> u) -> Vector a -> u # gmapM :: Monad m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Vector a -> m (Vector a) # | |
Ord a => Ord (Vector a) | |
Defined in Data.Vector | |
Read a => Read (Vector a) | |
Show a => Show (Vector a) | |
Semigroup (Vector a) | |
Monoid (Vector a) | |
ToJSON a => ToJSON (Vector a) | |
Defined in Data.Aeson.Types.ToJSON | |
FromJSON a => FromJSON (Vector a) | |
NFData a => NFData (Vector a) | |
Defined in Data.Vector | |
Serialise a => Serialise (Vector a) | Since: serialise-0.2.0.0 |
ToDhall a => ToDhall (Vector a) Source # | |
Defined in Dhall injectWith :: InterpretOptions -> Encoder (Vector a) Source # | |
FromDhall a => FromDhall (Vector a) Source # | |
type Mutable Vector | |
Defined in Data.Vector | |
type Item (Vector a) | |
Defined in Data.Vector |
Representable types of kind *
.
This class is derivable in GHC with the DeriveGeneric
flag on.
A Generic
instance must satisfy the following laws:
from
.to
≡id
to
.from
≡id