{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE ExistentialQuantification #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE Safe #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE UndecidableSuperClasses #-}
module Data.Dependent.Sum where
import Control.Applicative
import Data.Constraint.Extras
import Data.Type.Equality ((:~:) (..))
import Data.GADT.Show
import Data.GADT.Compare
import Data.Maybe (fromMaybe)
import Text.Read
data DSum tag f = forall a. !(tag a) :=> f a
infixr 1 :=>, ==>
(==>) :: Applicative f => tag a -> a -> DSum tag f
k :: tag a
k ==> :: tag a -> a -> DSum tag f
==> v :: a
v = tag a
k tag a -> f a -> DSum tag f
forall k (tag :: k -> *) (f :: k -> *) (a :: k).
tag a -> f a -> DSum tag f
:=> a -> f a
forall (f :: * -> *) a. Applicative f => a -> f a
pure a
v
instance forall tag f. (GShow tag, Has' Show tag f) => Show (DSum tag f) where
showsPrec :: Int -> DSum tag f -> ShowS
showsPrec p :: Int
p (tag :: tag a
tag :=> value :: f a
value) = Bool -> ShowS -> ShowS
showParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>= 10)
( Int -> tag a -> ShowS
forall k (t :: k -> *) (a :: k). GShow t => Int -> t a -> ShowS
gshowsPrec 0 tag a
tag
ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> ShowS
showString " :=> "
ShowS -> ShowS -> ShowS
forall b c a. (b -> c) -> (a -> b) -> a -> c
. tag a -> (Show (f a) => ShowS) -> ShowS
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Show @f tag a
tag (Int -> f a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec 1 f a
value)
)
instance forall tag f. (GRead tag, Has' Read tag f) => Read (DSum tag f) where
readsPrec :: Int -> ReadS (DSum tag f)
readsPrec p :: Int
p = Bool -> ReadS (DSum tag f) -> ReadS (DSum tag f)
forall a. Bool -> ReadS a -> ReadS a
readParen (Int
p Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> 1) (ReadS (DSum tag f) -> ReadS (DSum tag f))
-> ReadS (DSum tag f) -> ReadS (DSum tag f)
forall a b. (a -> b) -> a -> b
$ \s :: String
s ->
[[(DSum tag f, String)]] -> [(DSum tag f, String)]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat
[ Some tag
-> (forall (a :: k). tag a -> [(DSum tag f, String)])
-> [(DSum tag f, String)]
forall k (tag :: k -> *) b.
Some tag -> (forall (a :: k). tag a -> b) -> b
getGReadResult Some tag
withTag ((forall (a :: k). tag a -> [(DSum tag f, String)])
-> [(DSum tag f, String)])
-> (forall (a :: k). tag a -> [(DSum tag f, String)])
-> [(DSum tag f, String)]
forall a b. (a -> b) -> a -> b
$ \tag :: tag a
tag ->
[ (tag a
tag tag a -> f a -> DSum tag f
forall k (tag :: k -> *) (f :: k -> *) (a :: k).
tag a -> f a -> DSum tag f
:=> f a
val, String
rest'')
| (val :: f a
val, rest'' :: String
rest'') <- tag a -> (Read (f a) => [(f a, String)]) -> [(f a, String)]
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Read @f tag a
tag (Int -> ReadS (f a)
forall a. Read a => Int -> ReadS a
readsPrec 1 String
rest')
]
| (withTag :: Some tag
withTag, rest :: String
rest) <- Int -> GReadS tag
forall k (t :: k -> *). GRead t => Int -> GReadS t
greadsPrec Int
p String
s
, let (con :: String
con, rest' :: String
rest') = Int -> String -> (String, String)
forall a. Int -> [a] -> ([a], [a])
splitAt 5 String
rest
, String
con String -> String -> Bool
forall a. Eq a => a -> a -> Bool
== " :=> "
]
instance forall tag f. (GEq tag, Has' Eq tag f) => Eq (DSum tag f) where
(t1 :: tag a
t1 :=> x1 :: f a
x1) == :: DSum tag f -> DSum tag f -> Bool
== (t2 :: tag a
t2 :=> x2 :: f a
x2) = Bool -> Maybe Bool -> Bool
forall a. a -> Maybe a -> a
fromMaybe Bool
False (Maybe Bool -> Bool) -> Maybe Bool -> Bool
forall a b. (a -> b) -> a -> b
$ do
a :~: a
Refl <- tag a -> tag a -> Maybe (a :~: a)
forall k (f :: k -> *) (a :: k) (b :: k).
GEq f =>
f a -> f b -> Maybe (a :~: b)
geq tag a
t1 tag a
t2
Bool -> Maybe Bool
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> Maybe Bool) -> Bool -> Maybe Bool
forall a b. (a -> b) -> a -> b
$ tag a -> (Eq (f a) => Bool) -> Bool
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Eq @f tag a
t1 (f a
x1 f a -> f a -> Bool
forall a. Eq a => a -> a -> Bool
== f a
f a
x2)
instance forall tag f. (GCompare tag, Has' Eq tag f, Has' Ord tag f) => Ord (DSum tag f) where
compare :: DSum tag f -> DSum tag f -> Ordering
compare (t1 :: tag a
t1 :=> x1 :: f a
x1) (t2 :: tag a
t2 :=> x2 :: f a
x2) = case tag a -> tag a -> GOrdering a a
forall k (f :: k -> *) (a :: k) (b :: k).
GCompare f =>
f a -> f b -> GOrdering a b
gcompare tag a
t1 tag a
t2 of
GLT -> Ordering
LT
GGT -> Ordering
GT
GEQ -> tag a -> (Eq (f a) => Ordering) -> Ordering
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Eq @f tag a
t1 ((Eq (f a) => Ordering) -> Ordering)
-> (Eq (f a) => Ordering) -> Ordering
forall a b. (a -> b) -> a -> b
$ tag a -> (Ord (f a) => Ordering) -> Ordering
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Ord @f tag a
t1 (f a
x1 f a -> f a -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` f a
f a
x2)
{-# DEPRECATED ShowTag "Instead of 'ShowTag tag f', use '(GShow tag, Has' Show tag f)'" #-}
type ShowTag tag f = (GShow tag, Has' Show tag f)
showTaggedPrec :: forall tag f a. (GShow tag, Has' Show tag f) => tag a -> Int -> f a -> ShowS
showTaggedPrec :: tag a -> Int -> f a -> ShowS
showTaggedPrec tag :: tag a
tag = tag a -> (Show (f a) => Int -> f a -> ShowS) -> Int -> f a -> ShowS
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Show @f tag a
tag Show (f a) => Int -> f a -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
{-# DEPRECATED ReadTag "Instead of 'ReadTag tag f', use '(GRead tag, Has' Read tag f)'" #-}
type ReadTag tag f = (GRead tag, Has' Read tag f)
readTaggedPrec :: forall tag f a. (GRead tag, Has' Read tag f) => tag a -> Int -> ReadS (f a)
readTaggedPrec :: tag a -> Int -> ReadS (f a)
readTaggedPrec tag :: tag a
tag = tag a -> (Read (f a) => Int -> ReadS (f a)) -> Int -> ReadS (f a)
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Read @f tag a
tag Read (f a) => Int -> ReadS (f a)
forall a. Read a => Int -> ReadS a
readsPrec
{-# DEPRECATED EqTag "Instead of 'EqTag tag f', use '(GEq tag, Has' Eq tag f)'" #-}
type EqTag tag f = (GEq tag, Has' Eq tag f)
eqTaggedPrec :: forall tag f a. (GEq tag, Has' Eq tag f) => tag a -> tag a -> f a -> f a -> Bool
eqTaggedPrec :: tag a -> tag a -> f a -> f a -> Bool
eqTaggedPrec tag1 :: tag a
tag1 tag2 :: tag a
tag2 f1 :: f a
f1 f2 :: f a
f2 = case tag a
tag1 tag a -> tag a -> Maybe (a :~: a)
forall k (f :: k -> *) (a :: k) (b :: k).
GEq f =>
f a -> f b -> Maybe (a :~: b)
`geq` tag a
tag2 of
Nothing -> Bool
False
Just Refl -> tag a -> (Eq (f a) => Bool) -> Bool
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Eq @f tag a
tag1 ((Eq (f a) => Bool) -> Bool) -> (Eq (f a) => Bool) -> Bool
forall a b. (a -> b) -> a -> b
$ f a
f1 f a -> f a -> Bool
forall a. Eq a => a -> a -> Bool
== f a
f2
eqTagged :: forall tag f a. EqTag tag f => tag a -> tag a -> f a -> f a -> Bool
eqTagged :: tag a -> tag a -> f a -> f a -> Bool
eqTagged k :: tag a
k _ x0 :: f a
x0 x1 :: f a
x1 = tag a -> (Eq (f a) => Bool) -> Bool
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Eq @f tag a
k (f a
x0 f a -> f a -> Bool
forall a. Eq a => a -> a -> Bool
== f a
x1)
{-# DEPRECATED OrdTag "Instead of 'OrdTag tag f', use '(GCompare tag, Has' Eq tag f, Has' Ord tag f)'" #-}
type OrdTag tag f = (GCompare tag, Has' Eq tag f, Has' Ord tag f)
compareTaggedPrec :: forall tag f a. (GCompare tag, Has' Eq tag f, Has' Ord tag f) => tag a -> tag a -> f a -> f a -> Ordering
compareTaggedPrec :: tag a -> tag a -> f a -> f a -> Ordering
compareTaggedPrec tag1 :: tag a
tag1 tag2 :: tag a
tag2 f1 :: f a
f1 f2 :: f a
f2 = case tag a
tag1 tag a -> tag a -> GOrdering a a
forall k (f :: k -> *) (a :: k) (b :: k).
GCompare f =>
f a -> f b -> GOrdering a b
`gcompare` tag a
tag2 of
GLT -> Ordering
LT
GEQ -> tag a -> (Eq (f a) => Ordering) -> Ordering
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Eq @f tag a
tag1 ((Eq (f a) => Ordering) -> Ordering)
-> (Eq (f a) => Ordering) -> Ordering
forall a b. (a -> b) -> a -> b
$ tag a -> (Ord (f a) => Ordering) -> Ordering
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Ord @f tag a
tag1 ((Ord (f a) => Ordering) -> Ordering)
-> (Ord (f a) => Ordering) -> Ordering
forall a b. (a -> b) -> a -> b
$ f a
f1 f a -> f a -> Ordering
forall a. Ord a => a -> a -> Ordering
`compare` f a
f2
GGT -> Ordering
GT
compareTagged :: forall tag f a. OrdTag tag f => tag a -> tag a -> f a -> f a -> Ordering
compareTagged :: tag a -> tag a -> f a -> f a -> Ordering
compareTagged k :: tag a
k _ x0 :: f a
x0 x1 :: f a
x1 = tag a -> (Eq (f a) => Ordering) -> Ordering
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Eq @f tag a
k ((Eq (f a) => Ordering) -> Ordering)
-> (Eq (f a) => Ordering) -> Ordering
forall a b. (a -> b) -> a -> b
$ tag a -> (Ord (f a) => Ordering) -> Ordering
forall k k' (c :: k -> Constraint) (g :: k' -> k) (f :: k' -> *)
(a :: k') r.
Has' c f g =>
f a -> (c (g a) => r) -> r
has' @Ord @f tag a
k (f a -> f a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare f a
x0 f a
x1)