module DeferredFolds.Defs.Unfoldr
where
import DeferredFolds.Prelude hiding (fold, reverse)
import DeferredFolds.Types
import qualified Data.Map.Strict as Map
import qualified Data.IntMap.Strict as IntMap
import qualified Data.ByteString as ByteString
import qualified Data.ByteString.Short.Internal as ShortByteString
deriving instance Functor Unfoldr
instance Applicative Unfoldr where
pure x = Unfoldr (\ step -> step x)
(<*>) = ap
instance Alternative Unfoldr where
empty = Unfoldr (const id)
{-# INLINE (<|>) #-}
(<|>) (Unfoldr left) (Unfoldr right) = Unfoldr (\ step init -> left step (right step init))
instance Monad Unfoldr where
return = pure
{-# INLINE (>>=) #-}
(>>=) (Unfoldr left) rightK =
Unfoldr $ \ step -> left $ \ input -> case rightK input of Unfoldr right -> right step
instance MonadPlus Unfoldr where
mzero = empty
mplus = (<|>)
instance Semigroup (Unfoldr a) where
(<>) = (<|>)
instance Monoid (Unfoldr a) where
mempty = empty
mappend = (<>)
instance Foldable Unfoldr where
{-# INLINE foldMap #-}
foldMap fn (Unfoldr unfoldr) = unfoldr (mappend . fn) mempty
{-# INLINE foldr #-}
foldr step state (Unfoldr run) = run step state
foldl = foldl'
{-# INLINE foldl' #-}
foldl' leftStep state (Unfoldr unfoldr) = unfoldr rightStep id state where
rightStep element k state = k $! leftStep state element
instance Eq a => Eq (Unfoldr a) where
(==) left right = toList left == toList right
instance Show a => Show (Unfoldr a) where
show = show . toList
{-# INLINE fold #-}
fold :: Fold input output -> Unfoldr input -> output
fold (Fold step init extract) = extract . foldl' step init
{-# INLINE foldable #-}
foldable :: Foldable foldable => foldable a -> Unfoldr a
foldable foldable = Unfoldr (\ step init -> foldr step init foldable)
{-# INLINE filter #-}
filter :: (a -> Bool) -> Unfoldr a -> Unfoldr a
filter test (Unfoldr run) = Unfoldr (\ step -> run (\ element state -> if test element then step element state else state))
{-# INLINE intsFrom #-}
intsFrom :: Int -> Unfoldr Int
intsFrom from = Unfoldr $ \ step init -> let
loop int = step int (loop (succ int))
in loop from
{-# INLINE intsInRange #-}
intsInRange :: Int -> Int -> Unfoldr Int
intsInRange from to =
Unfoldr $ \ step init ->
let
loop int =
if int <= to
then step int (loop (succ int))
else init
in loop from
{-# INLINE mapAssocs #-}
mapAssocs :: Map key value -> Unfoldr (key, value)
mapAssocs map =
Unfoldr (\ step init -> Map.foldrWithKey (\ key value state -> step (key, value) state) init map)
{-# INLINE intMapAssocs #-}
intMapAssocs :: IntMap value -> Unfoldr (Int, value)
intMapAssocs intMap =
Unfoldr (\ step init -> IntMap.foldrWithKey (\ key value state -> step (key, value) state) init intMap)
{-# INLINE byteStringBytes #-}
byteStringBytes :: ByteString -> Unfoldr Word8
byteStringBytes bs = Unfoldr (\ step init -> ByteString.foldr step init bs)
{-# INLINE shortByteStringBytes #-}
shortByteStringBytes :: ShortByteString -> Unfoldr Word8
shortByteStringBytes (ShortByteString.SBS ba#) = primArray (PrimArray ba#)
{-# INLINE primArray #-}
primArray :: (Prim prim) => PrimArray prim -> Unfoldr prim
primArray ba = Unfoldr $ \ f z -> foldrPrimArray f z ba
{-# INLINE primArrayWithIndices #-}
primArrayWithIndices :: (Prim prim) => PrimArray prim -> Unfoldr (Int, prim)
primArrayWithIndices pa = Unfoldr $ \ step state -> let
!size = sizeofPrimArray pa
loop index = if index < size
then step (index, indexPrimArray pa index) (loop (succ index))
else state
in loop 0
decimalDigits :: Integral a => a -> Unfoldr a
decimalDigits = reverse . reverseDecimalDigits
reverseDecimalDigits :: Integral a => a -> Unfoldr a
reverseDecimalDigits = reverseDigits 10
hexadecimalDigits :: Integral a => a -> Unfoldr a
hexadecimalDigits = reverse . reverseHexadecimalDigits
reverseHexadecimalDigits :: Integral a => a -> Unfoldr a
reverseHexadecimalDigits = reverseDigits 16
reverseDigits :: Integral a => a -> a -> Unfoldr a
reverseDigits radix x = Unfoldr $ \ step init -> let
loop x = case divMod x radix of
(next, digit) -> step digit (if next <= 0 then init else loop next)
in loop x
reverse :: Unfoldr a -> Unfoldr a
reverse (Unfoldr unfoldr) = Unfoldr $ \ step -> unfoldr (\ a f -> f . step a) id
zipWithReverseIndex :: Unfoldr a -> Unfoldr (Int, a)
zipWithReverseIndex (Unfoldr unfoldr) = Unfoldr $ \ step init -> snd $ unfoldr
(\ a (index, state) -> (succ index, step (index, a) state))
(0, init)