data-fix-0.2.1: Fixpoint data types

Safe HaskellSafe
LanguageHaskell2010

Data.Fix

Contents

Description

Fix-point type. It allows to define generic recursion schemes.

Fix f = f (Fix f)

Type f should be a Functor if you want to use simple recursion schemes or Traversable if you want to use monadic recursion schemes. This style allows you to express recursive functions in non-recursive manner. You can imagine that a non-recursive function holds values of the previous iteration.

Little example:

type List a = Fix (L a)

data L a b = Nil | Cons a b

instance Functor (L a) where
   fmap f x = case x of
       Nil      -> Nil
       Cons a b -> Cons a (f b)

length :: List a -> Int
length = cata $ \x -> case x of
   Nil      -> 0
   Cons _ n -> n + 1

sum :: Num a => List a -> a
sum = cata $ \x -> case x of
   Nil      -> 0
   Cons a s -> a + s
Synopsis

Documentation

newtype Fix f Source #

A fix-point type.

Constructors

Fix 

Fields

Instances
Eq (f (Fix f)) => Eq (Fix f) Source # 
Instance details

Defined in Data.Fix

Methods

(==) :: Fix f -> Fix f -> Bool #

(/=) :: Fix f -> Fix f -> Bool #

(Typeable f, Data (f (Fix f))) => Data (Fix f) Source # 
Instance details

Defined in Data.Fix

Methods

gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b) -> (forall g. g -> c g) -> Fix f -> c (Fix f) #

gunfold :: (forall b r. Data b => c (b -> r) -> c r) -> (forall r. r -> c r) -> Constr -> c (Fix f) #

toConstr :: Fix f -> Constr #

dataTypeOf :: Fix f -> DataType #

dataCast1 :: Typeable t => (forall d. Data d => c (t d)) -> Maybe (c (Fix f)) #

dataCast2 :: Typeable t => (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c (Fix f)) #

gmapT :: (forall b. Data b => b -> b) -> Fix f -> Fix f #

gmapQl :: (r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> Fix f -> r #

gmapQr :: (r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> Fix f -> r #

gmapQ :: (forall d. Data d => d -> u) -> Fix f -> [u] #

gmapQi :: Int -> (forall d. Data d => d -> u) -> Fix f -> u #

gmapM :: Monad m => (forall d. Data d => d -> m d) -> Fix f -> m (Fix f) #

gmapMp :: MonadPlus m => (forall d. Data d => d -> m d) -> Fix f -> m (Fix f) #

gmapMo :: MonadPlus m => (forall d. Data d => d -> m d) -> Fix f -> m (Fix f) #

Ord (f (Fix f)) => Ord (Fix f) Source # 
Instance details

Defined in Data.Fix

Methods

compare :: Fix f -> Fix f -> Ordering #

(<) :: Fix f -> Fix f -> Bool #

(<=) :: Fix f -> Fix f -> Bool #

(>) :: Fix f -> Fix f -> Bool #

(>=) :: Fix f -> Fix f -> Bool #

max :: Fix f -> Fix f -> Fix f #

min :: Fix f -> Fix f -> Fix f #

Read (f (Fix f)) => Read (Fix f) Source # 
Instance details

Defined in Data.Fix

Show (f (Fix f)) => Show (Fix f) Source # 
Instance details

Defined in Data.Fix

Methods

showsPrec :: Int -> Fix f -> ShowS #

show :: Fix f -> String #

showList :: [Fix f] -> ShowS #

Generic (Fix f) Source # 
Instance details

Defined in Data.Fix

Associated Types

type Rep (Fix f) :: Type -> Type #

Methods

from :: Fix f -> Rep (Fix f) x #

to :: Rep (Fix f) x -> Fix f #

type Rep (Fix f) Source # 
Instance details

Defined in Data.Fix

type Rep (Fix f) = D1 (MetaData "Fix" "Data.Fix" "data-fix-0.2.1-DMgQ7LCHzUM8GYJtw0mzwV" True) (C1 (MetaCons "Fix" PrefixI True) (S1 (MetaSel (Just "unFix") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (f (Fix f)))))

Simple recursion

Type f should be a Functor. They transform non-recursive functions to recursive ones.

cata :: Functor f => (f a -> a) -> Fix f -> a Source #

Catamorphism or generic function fold.

ana :: Functor f => (a -> f a) -> a -> Fix f Source #

Anamorphism or generic function unfold.

hylo :: Functor f => (f b -> b) -> (a -> f a) -> a -> b Source #

Hylomorphism is anamorphism followed by catamorphism.

(~>) :: Functor f => (a -> f a) -> (f b -> b) -> a -> b Source #

Infix version of hylo.

Monadic recursion

Type f should be a Traversable.

cataM :: (Applicative m, Monad m, Traversable t) => (t a -> m a) -> Fix t -> m a Source #

Monadic catamorphism.

anaM :: (Applicative m, Monad m, Traversable t) => (a -> m (t a)) -> a -> m (Fix t) Source #

Monadic anamorphism.

hyloM :: (Applicative m, Monad m, Traversable t) => (t b -> m b) -> (a -> m (t a)) -> a -> m b Source #

Monadic hylomorphism.