data-category-0.11: Category theory

Index - I

I1 
1 (Data Constructor)Data.Category.Coproduct
2 (Type/Class)Data.Category.Coproduct
I12Data.Category.Coproduct
I1AData.Category.Coproduct
I2 
1 (Data Constructor)Data.Category.Coproduct
2 (Type/Class)Data.Category.Coproduct
I2AData.Category.Coproduct
Id 
1 (Type/Class)Data.Category.Functor
2 (Data Constructor)Data.Category.Functor
3 (Type/Class)Data.Category.Enriched.Functor
4 (Data Constructor)Data.Category.Enriched.Functor
idData.Category.Enriched
idAdjData.Category.Adjunction
IdArrow 
1 (Type/Class)Data.Category.Comma
2 (Data Constructor)Data.Category.Comma
idComonadData.Category.Monoidal
idMonadData.Category.Monoidal
idPostcompData.Category.NaturalTransformation
idPostcompInvData.Category.NaturalTransformation
idPrecompData.Category.NaturalTransformation
idPrecompInvData.Category.NaturalTransformation
idSrcAdjData.Category.Comma
InHask 
1 (Type/Class)Data.Category.Enriched
2 (Data Constructor)Data.Category.Enriched
InHaskF 
1 (Type/Class)Data.Category.Enriched.Functor
2 (Data Constructor)Data.Category.Enriched.Functor
InHaskToHask 
1 (Type/Class)Data.Category.Enriched.Functor
2 (Data Constructor)Data.Category.Enriched.Functor
InitialFAlgebraData.Category.Dialg
initializeData.Category.Limit
Initializer 
1 (Type/Class)Data.Category.Boolean
2 (Data Constructor)Data.Category.Boolean
initializerColimitAdjData.Category.Boolean
InitialObjectData.Category.Limit
initialObjectData.Category.Limit
initialPropAdjunctionData.Category.RepresentableFunctor
InitialUniversalData.Category.RepresentableFunctor
initialUniversalData.Category.RepresentableFunctor
initialUniversalCommaData.Category.Comma
Inj1 
1 (Type/Class)Data.Category.Coproduct
2 (Data Constructor)Data.Category.Coproduct
inj1Data.Category.Limit
Inj2 
1 (Type/Class)Data.Category.Coproduct
2 (Data Constructor)Data.Category.Coproduct
inj2Data.Category.Limit