-- |
-- Module      :  Cryptol.Parser.ParserUtils
-- Copyright   :  (c) 2013-2016 Galois, Inc.
-- License     :  BSD3
-- Maintainer  :  cryptol@galois.com
-- Stability   :  provisional
-- Portability :  portable

{-# LANGUAGE Safe #-}

{-# LANGUAGE CPP #-}
{-# LANGUAGE DeriveAnyClass #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE PatternGuards #-}
{-# LANGUAGE OverloadedStrings #-}
module Cryptol.Parser.ParserUtils where

import Data.Maybe(fromMaybe)
import Data.Bits(testBit,setBit)
import Control.Monad(liftM,ap,unless,guard)
import qualified Control.Monad.Fail as Fail
import           Data.Text(Text)
import qualified Data.Text as T
import qualified Data.Map as Map

import GHC.Generics (Generic)
import Control.DeepSeq

import Prelude ()
import Prelude.Compat


import Cryptol.Parser.AST
import Cryptol.Parser.Lexer
import Cryptol.Parser.Position
import Cryptol.Parser.Utils (translateExprToNumT,widthIdent)
import Cryptol.Utils.Ident(packModName)
import Cryptol.Utils.PP
import Cryptol.Utils.Panic
import Cryptol.Utils.RecordMap


parseString :: Config -> ParseM a -> String -> Either ParseError a
parseString cfg p cs = parse cfg p (T.pack cs)

parse :: Config -> ParseM a -> Text -> Either ParseError a
parse cfg p cs    = case unP p cfg eofPos S { sPrevTok = Nothing
                                            , sTokens = toks
                                            , sNextTyParamNum = 0
                                            } of
                      Left err    -> Left err
                      Right (a,_) -> Right a
  where (toks,eofPos) = lexer cfg cs


{- The parser is parameterized by the pozition of the final token. -}
newtype ParseM a =
  P { unP :: Config -> Position -> S -> Either ParseError (a,S) }


lexerP :: (Located Token -> ParseM a) -> ParseM a
lexerP k = P $ \cfg p s ->
  case sTokens s of
    t : _ | Err e <- tokenType it ->
      Left $ HappyErrorMsg (srcRange t) $
         case e of
           UnterminatedComment -> "unterminated comment"
           UnterminatedString  -> "unterminated string"
           UnterminatedChar    -> "unterminated character"
           InvalidString       -> "invalid string literal:" ++
                                    T.unpack (tokenText it)
           InvalidChar         -> "invalid character literal:" ++
                                    T.unpack (tokenText it)
           LexicalError        -> "unrecognized character:" ++
                                    T.unpack (tokenText it)
      where it = thing t

    t : more -> unP (k t) cfg p s { sPrevTok = Just t, sTokens = more }
    [] -> Left (HappyOutOfTokens (cfgSource cfg) p)

data ParseError = HappyError FilePath         {- Name of source file -}
                             (Located Token)  {- Offending token -}
                | HappyErrorMsg Range String
                | HappyUnexpected FilePath (Maybe (Located Token)) String
                | HappyOutOfTokens FilePath Position
                  deriving (Show, Generic, NFData)

data S = S { sPrevTok :: Maybe (Located Token)
           , sTokens :: [Located Token]
           , sNextTyParamNum :: !Int
             -- ^ Keep track of the type parameters as they appear in the input
           }

ppError :: ParseError -> Doc

ppError (HappyError path ltok)
  | Err _ <- tokenType tok =
    text "Parse error at" <+>
    text path <.> char ':' <.> pp pos <.> comma <+>
    pp tok

  | White DocStr <- tokenType tok =
    "Unexpected documentation (/**) comment at" <+>
    text path <.> char ':' <.> pp pos <.> colon $$
    nest 2
      "Documentation comments need to be followed by something to document."

  | otherwise =
    text "Parse error at" <+>
    text path <.> char ':' <.> pp pos <.> comma $$
    nest 2 (text "unexpected:" <+> pp tok)
  where
  pos = from (srcRange ltok)
  tok = thing ltok

ppError (HappyOutOfTokens path pos) =
  text "Unexpected end of file at:" <+>
    text path <.> char ':' <.> pp pos

ppError (HappyErrorMsg p x)  = text "Parse error at" <+> pp p $$ nest 2 (text x)

ppError (HappyUnexpected path ltok e) =
  text "Parse error at" <+>
   text path <.> char ':' <.> pp pos <.> comma $$
   nest 2 unexp $$
   nest 2 ("expected:" <+> text e)
  where
  (unexp,pos) =
    case ltok of
      Nothing -> (empty,start)
      Just t  -> ( "unexpected:" <+> text (T.unpack (tokenText (thing t)))
                 , from (srcRange t)
                 )

instance Functor ParseM where
  fmap = liftM

instance Applicative ParseM where
  pure  = return
  (<*>) = ap

instance Monad ParseM where
  return a  = P (\_ _ s -> Right (a,s))
  m >>= k   = P (\cfg p s1 -> case unP m cfg p s1 of
                            Left e       -> Left e
                            Right (a,s2) -> unP (k a) cfg p s2)

instance Fail.MonadFail ParseM where
  fail s    = panic "[Parser] fail" [s]

happyError :: ParseM a
happyError = P $ \cfg _ s ->
  case sPrevTok s of
    Just t  -> Left (HappyError (cfgSource cfg) t)
    Nothing ->
      Left (HappyErrorMsg emptyRange "Parse error at the beginning of the file")

errorMessage :: Range -> String -> ParseM a
errorMessage r x = P $ \_ _ _ -> Left (HappyErrorMsg r x)

customError :: String -> Located Token -> ParseM a
customError x t = P $ \_ _ _ -> Left (HappyErrorMsg (srcRange t) x)

expected :: String -> ParseM a
expected x = P $ \cfg _ s ->
                    Left (HappyUnexpected (cfgSource cfg) (sPrevTok s) x)









mkModName :: [Text] -> ModName
mkModName = packModName

-- Note that type variables are not resolved at this point: they are tcons.
mkSchema :: [TParam PName] -> [Prop PName] -> Type PName -> Schema PName
mkSchema xs ps t = Forall xs ps t Nothing

getName :: Located Token -> PName
getName l = case thing l of
              Token (Ident [] x) _ -> mkUnqual (mkIdent x)
              _ -> panic "[Parser] getName" ["not an Ident:", show l]

getNum :: Located Token -> Integer
getNum l = case thing l of
             Token (Num x _ _) _ -> x
             Token (ChrLit x) _  -> toInteger (fromEnum x)
             _ -> panic "[Parser] getNum" ["not a number:", show l]

getChr :: Located Token -> Char
getChr l = case thing l of
             Token (ChrLit x) _  -> x
             _ -> panic "[Parser] getChr" ["not a char:", show l]

getStr :: Located Token -> String
getStr l = case thing l of
             Token (StrLit x) _ -> x
             _ -> panic "[Parser] getStr" ["not a string:", show l]

numLit :: TokenT -> Expr PName
numLit (Num x base digs)
  | base == 2   = ELit $ ECNum x (BinLit digs)
  | base == 8   = ELit $ ECNum x (OctLit digs)
  | base == 10  = ELit $ ECNum x DecLit
  | base == 16  = ELit $ ECNum x (HexLit digs)

numLit x = panic "[Parser] numLit" ["invalid numeric literal", show x]

fracLit :: TokenT -> Expr PName
fracLit tok =
  case tok of
    Frac x base
      | base == 2   -> ELit $ ECFrac x BinFrac
      | base == 8   -> ELit $ ECFrac x OctFrac
      | base == 10  -> ELit $ ECFrac x DecFrac
      | base == 16  -> ELit $ ECFrac x HexFrac
    _ -> panic "[Parser] fracLit" [ "Invalid fraction", show tok ]


intVal :: Located Token -> ParseM Integer
intVal tok =
  case tokenType (thing tok) of
    Num x _ _ -> return x
    _         -> errorMessage (srcRange tok) "Expected an integer"

mkFixity :: Assoc -> Located Token -> [LPName] -> ParseM (Decl PName)
mkFixity assoc tok qns =
  do l <- intVal tok
     unless (l >= 1 && l <= 100)
          (errorMessage (srcRange tok) "Fixity levels must be between 1 and 100")
     return (DFixity (Fixity assoc (fromInteger l)) qns)

mkTupleSel :: Range -> Integer -> ParseM (Located Selector)
mkTupleSel pos n
  | n < 0 = errorMessage pos
             (show n ++ " is not a valid tuple selector (they start from 0).")
  | toInteger asInt /= n  = errorMessage pos "Tuple selector is too large."
  | otherwise             = return $ Located pos $ TupleSel asInt Nothing
  where asInt = fromInteger n

fromStrLit :: Located Token -> ParseM (Located String)
fromStrLit loc = case tokenType (thing loc) of
  StrLit str -> return loc { thing = str }
  _          -> errorMessage (srcRange loc) "Expected a string literal"


validDemotedType :: Range -> Type PName -> ParseM (Type PName)
validDemotedType rng ty =
  case ty of
    TLocated t r -> validDemotedType r t
    TRecord {}   -> bad "Record types"
    TTyApp {}    -> bad "Explicit type application"
    TTuple {}    -> bad "Tuple types"
    TFun {}      -> bad "Function types"
    TSeq {}      -> bad "Sequence types"
    TBit         -> bad "Type bit"
    TNum {}      -> ok
    TChar {}     -> ok
    TWild        -> bad "Wildcard types"
    TUser {}     -> ok

    TParens t    -> validDemotedType rng t
    TInfix{}     -> ok

  where bad x = errorMessage rng (x ++ " cannot be demoted.")
        ok    = return $ at rng ty

-- | Input fields are reversed!
mkRecord :: AddLoc b => Range -> (RecordMap Ident (Range, a) -> b) -> [Named a] -> ParseM b
mkRecord rng f xs =
   case res of
     Left (nm,(nmRng,_)) -> errorMessage nmRng ("Record has repeated field: " ++ show (pp nm))
     Right r -> pure $ at rng (f r)

  where
  res = recordFromFieldsErr ys
  ys = map (\ (Named (Located r nm) x) -> (nm,(r,x))) (reverse xs)


-- | Input expression are reversed
mkEApp :: [Expr PName] -> Expr PName
mkEApp es@(eLast : _) = at (eFirst,eLast) $ foldl EApp f xs
  where
  eFirst : rest = reverse es
  f : xs        = cvtTypeParams eFirst rest

  {- Type applications are parsed as `ETypeVal (TTyApp fs)` expressions.
     Here we associate them with their corresponding functions,
     converting them into `EAppT` constructs.  For example:

     [ f, x, `{ a = 2 }, y ]
     becomes
     [ f, x ` { a = 2 }, y ]
  -}
  cvtTypeParams e [] = [e]
  cvtTypeParams e (p : ps) =
    case toTypeParam p of
      Just fs -> cvtTypeParams (EAppT e fs) ps
      Nothing -> e : cvtTypeParams p ps

  toTypeParam e =
    case dropLoc e of
      ETypeVal t -> case dropLoc t of
                      TTyApp fs -> Just (map mkTypeInst fs)
                      _         -> Nothing
      _          ->  Nothing

mkEApp es        = panic "[Parser] mkEApp" ["Unexpected:", show es]


unOp :: Expr PName -> Expr PName -> Expr PName
unOp f x = at (f,x) $ EApp f x

-- Use defaultFixity as a placeholder, it will be fixed during renaming.
binOp :: Expr PName -> Located PName -> Expr PName -> Expr PName
binOp x f y = at (x,y) $ EInfix x f defaultFixity y

-- An element type ascription is allowed to appear on one of the arguments.
eFromTo :: Range -> Expr PName -> Maybe (Expr PName) -> Expr PName -> ParseM (Expr PName)
eFromTo r e1 e2 e3 =
  case (asETyped e1, asETyped =<< e2, asETyped e3) of
    (Just (e1', t), Nothing, Nothing) -> eFromToType r e1' e2 e3 (Just t)
    (Nothing, Just (e2', t), Nothing) -> eFromToType r e1 (Just e2') e3 (Just t)
    (Nothing, Nothing, Just (e3', t)) -> eFromToType r e1 e2 e3' (Just t)
    (Nothing, Nothing, Nothing) -> eFromToType r e1 e2 e3 Nothing
    _ -> errorMessage r "A sequence enumeration may have at most one element type annotation."
  where
    asETyped (ELocated e _) = asETyped e
    asETyped (ETyped e t) = Just (e, t)
    asETyped _ = Nothing

eFromToType ::
  Range -> Expr PName -> Maybe (Expr PName) -> Expr PName -> Maybe (Type PName) -> ParseM (Expr PName)
eFromToType r e1 e2 e3 t =
  EFromTo <$> exprToNumT r e1
          <*> mapM (exprToNumT r) e2
          <*> exprToNumT r e3
          <*> pure t

exprToNumT :: Range -> Expr PName -> ParseM (Type PName)
exprToNumT r expr =
  case translateExprToNumT expr of
    Just t -> return t
    Nothing -> bad
  where
  bad = errorMessage (fromMaybe r (getLoc expr)) $ unlines
        [ "The boundaries of .. sequences should be valid numeric types."
        , "The expression `" ++ show expr ++ "` is not."
        ]


-- | WARNING: This is a bit of a hack.
-- It is used to represent anonymous type applications.
anonTyApp :: Maybe Range -> [Type PName] -> Type PName
anonTyApp ~(Just r) ts = TTyApp (map toField ts)
  where noName    = Located { srcRange = r, thing = mkIdent (T.pack "") }
        toField t = Named { name = noName, value = t }

exportDecl :: Maybe (Located String) -> ExportType -> Decl PName -> TopDecl PName
exportDecl mbDoc e d = Decl TopLevel { tlExport = e
                                     , tlDoc    = mbDoc
                                     , tlValue  = d }

exportNewtype :: ExportType -> Maybe (Located String) -> Newtype PName ->
                                                            TopDecl PName
exportNewtype e d n = TDNewtype TopLevel { tlExport = e
                                         , tlDoc    = d
                                         , tlValue  = n }

mkParFun :: Maybe (Located String) ->
            Located PName ->
            Schema PName ->
            TopDecl PName
mkParFun mbDoc n s = DParameterFun ParameterFun { pfName = n
                                                , pfSchema = s
                                                , pfDoc = thing <$> mbDoc
                                                , pfFixity = Nothing
                                                }

mkParType :: Maybe (Located String) ->
             Located PName ->
             Located Kind ->
             ParseM (TopDecl PName)
mkParType mbDoc n k =
  do num <- P $ \_ _ s -> let nu = sNextTyParamNum s
                          in Right (nu, s { sNextTyParamNum = nu + 1 })
     return (DParameterType
             ParameterType { ptName    = n
                           , ptKind    = thing k
                           , ptDoc     = thing <$> mbDoc
                           , ptFixity  = Nothing
                           , ptNumber  = num
                           })

changeExport :: ExportType -> [TopDecl PName] -> [TopDecl PName]
changeExport e = map change
  where
  change (Decl d)      = Decl      d { tlExport = e }
  change (DPrimType t) = DPrimType t { tlExport = e }
  change (TDNewtype n) = TDNewtype n { tlExport = e }
  change td@Include{}  = td
  change (DParameterType {}) = panic "changeExport" ["private type parameter?"]
  change (DParameterFun {})  = panic "changeExport" ["private value parameter?"]
  change (DParameterConstraint {}) =
    panic "changeExport" ["private type constraint parameter?"]

mkTypeInst :: Named (Type PName) -> TypeInst PName
mkTypeInst x | nullIdent (thing (name x)) = PosInst (value x)
             | otherwise                  = NamedInst x


mkTParam :: Located Ident -> Maybe Kind -> ParseM (TParam PName)
mkTParam Located { srcRange = rng, thing = n } k
  | n == widthIdent = errorMessage rng "`width` is not a valid type parameter name."
  | otherwise       = return (TParam (mkUnqual n) k (Just rng))

mkTySyn :: Located PName -> [TParam PName] -> Type PName -> ParseM (Decl PName)
mkTySyn ln ps b
  | getIdent (thing ln) == widthIdent =
    errorMessage (srcRange ln) "`width` is not a valid type synonym name."

  | otherwise =
    return $ DType $ TySyn ln Nothing ps b

mkPropSyn :: Located PName -> [TParam PName] -> Type PName -> ParseM (Decl PName)
mkPropSyn ln ps b
  | getIdent (thing ln) == widthIdent =
    errorMessage (srcRange ln) "`width` is not a valid constraint synonym name."

  | otherwise =
    DProp . PropSyn ln Nothing ps . thing <$> mkProp b

polyTerm :: Range -> Integer -> Integer -> ParseM (Bool, Integer)
polyTerm rng k p
  | k == 0          = return (False, p)
  | k == 1          = return (True, p)
  | otherwise       = errorMessage rng "Invalid polynomial coefficient"

mkPoly :: Range -> [ (Bool,Integer) ] -> ParseM (Expr PName)
mkPoly rng terms
  | w <= toInteger (maxBound :: Int) = mk 0 (map fromInteger bits)
  | otherwise = errorMessage rng ("Polynomial literal too large: " ++ show w)

  where
  w    = case terms of
           [] -> 0
           _  -> 1 + maximum (map snd terms)

  bits = [ n | (True,n) <- terms ]

  mk :: Integer -> [Int] -> ParseM (Expr PName)
  mk res [] = return $ ELit $ ECNum res (PolyLit (fromInteger w :: Int))

  mk res (n : ns)
    | testBit res n = errorMessage rng
                       ("Polynomial contains multiple terms with exponent "
                                                                    ++ show n)
    | otherwise     = mk (setBit res n) ns


-- NOTE: The list of patterns is reversed!
mkProperty :: LPName -> [Pattern PName] -> Expr PName -> Decl PName
mkProperty f ps e = DBind Bind { bName       = f
                               , bParams     = reverse ps
                               , bDef        = at e (Located emptyRange (DExpr e))
                               , bSignature  = Nothing
                               , bPragmas    = [PragmaProperty]
                               , bMono       = False
                               , bInfix      = False
                               , bFixity     = Nothing
                               , bDoc        = Nothing
                               }

-- NOTE: The lists of patterns are reversed!
mkIndexedDecl ::
  LPName -> ([Pattern PName], [Pattern PName]) -> Expr PName -> Decl PName
mkIndexedDecl f (ps, ixs) e =
  DBind Bind { bName       = f
             , bParams     = reverse ps
             , bDef        = at e (Located emptyRange (DExpr rhs))
             , bSignature  = Nothing
             , bPragmas    = []
             , bMono       = False
             , bInfix      = False
             , bFixity     = Nothing
             , bDoc        = Nothing
             }
  where
    rhs :: Expr PName
    rhs = mkGenerate (reverse ixs) e

-- NOTE: The lists of patterns are reversed!
mkIndexedExpr :: ([Pattern PName], [Pattern PName]) -> Expr PName -> Expr PName
mkIndexedExpr (ps, ixs) body
  | null ps = mkGenerate (reverse ixs) body
  | otherwise = EFun (reverse ps) (mkGenerate (reverse ixs) body)

mkGenerate :: [Pattern PName] -> Expr PName -> Expr PName
mkGenerate pats body =
  foldr (\pat e -> EGenerate (EFun [pat] e)) body pats

mkIf :: [(Expr PName, Expr PName)] -> Expr PName -> Expr PName
mkIf ifThens theElse = foldr addIfThen theElse ifThens
    where
    addIfThen (cond, doexpr) elseExpr = EIf cond doexpr elseExpr

-- | Generate a signature and a primitive binding.  The reason for generating
-- both instead of just adding the signature at this point is that it means the
-- primitive declarations don't need to be treated differently in the noPat
-- pass.  This is also the reason we add the doc to the TopLevel constructor,
-- instead of just place it on the binding directly.  A better solution might be
-- to just have a different constructor for primitives.
mkPrimDecl ::
  Maybe (Located String) -> LPName -> Schema PName -> [TopDecl PName]
mkPrimDecl mbDoc ln sig =
  [ exportDecl mbDoc Public
    $ DBind Bind { bName      = ln
                 , bParams    = []
                 , bDef       = at sig (Located emptyRange DPrim)
                 , bSignature = Nothing
                 , bPragmas   = []
                 , bMono      = False
                 , bInfix     = isInfixIdent (getIdent (thing ln))
                 , bFixity    = Nothing
                 , bDoc       = Nothing
                 }
  , exportDecl Nothing Public
    $ DSignature [ln] sig
  ]

mkPrimTypeDecl ::
  Maybe (Located String) ->
  Schema PName ->
  Located Kind ->
  ParseM [TopDecl PName]
mkPrimTypeDecl mbDoc (Forall as qs st ~(Just schema_rng)) finK =
  case splitT schema_rng st of
    Just (n,xs) ->
      do vs <- mapM tpK as
         unless (distinct (map fst vs)) $
            errorMessage schema_rng "Repeated parameters."
         let kindMap = Map.fromList vs
             lkp v = case Map.lookup (thing v) kindMap of
                       Just (k,tp)  -> pure (k,tp)
                       Nothing ->
                        errorMessage
                            (srcRange v)
                            ("Undefined parameter: " ++ show (pp (thing v)))
         (as',ins) <- unzip <$> mapM lkp xs
         unless (length vs == length xs) $
           errorMessage schema_rng "All parameters should appear in the type."

         let ki = finK { thing = foldr KFun (thing finK) ins }

         pure [ DPrimType TopLevel
                  { tlExport = Public
                  , tlDoc    = mbDoc
                  , tlValue  = PrimType { primTName   = n
                                        , primTKind   = ki
                                        , primTCts    = (as',qs)
                                        , primTFixity = Nothing
                                        }
                 }
              ]

    Nothing -> errorMessage schema_rng "Invalid primitive signature"

  where
  splitT r ty = case ty of
                  TLocated t r1 -> splitT r1 t
                  TUser n ts -> mkT r Located { srcRange = r, thing = n } ts
                  TInfix t1 n _ t2  -> mkT r n [t1,t2]
                  _ -> Nothing

  mkT r n ts = do ts1 <- mapM (isVar r) ts
                  guard (distinct (map thing ts1))
                  pure (n,ts1)

  isVar r ty = case ty of
                 TLocated t r1  -> isVar r1 t
                 TUser n []     -> Just Located { srcRange = r, thing = n }
                 _              -> Nothing

  -- inefficient, but the lists should be small
  distinct xs = case xs of
                  [] -> True
                  x : ys -> not (x `elem` ys) && distinct ys

  tpK tp = case tpKind tp of
             Just k  -> pure (tpName tp, (tp,k))
             Nothing ->
              case tpRange tp of
                Just r -> errorMessage r "Parameters need a kind annotation"
                Nothing -> panic "mkPrimTypeDecl"
                              [ "Missing range on schema parameter." ]


-- | Fix-up the documentation strings by removing the comment delimiters on each
-- end, and stripping out common prefixes on all the remaining lines.
mkDoc :: Located Text -> Located String
mkDoc ltxt = ltxt { thing = docStr }
  where

  docStr = unlines
         $ map T.unpack
         $ dropPrefix
         $ trimFront
         $ T.lines
         $ T.dropWhileEnd commentChar
         $ thing ltxt

  commentChar :: Char -> Bool
  commentChar x = x `elem` ("/* \r\n\t" :: String)

  prefixDroppable x = x `elem` ("* \r\n\t" :: String)

  whitespaceChar :: Char -> Bool
  whitespaceChar x = x `elem` (" \r\n\t" :: String)

  trimFront []                     = []
  trimFront (l:ls)
    | T.all commentChar l = ls
    | otherwise           = T.dropWhile commentChar l : ls

  dropPrefix []        = []
  dropPrefix [t]       = [T.dropWhile commentChar t]
  dropPrefix ts@(l:ls) =
    case T.uncons l of
      Just (c,_) | prefixDroppable c &&
                   all (commonPrefix c) ls -> dropPrefix (map (T.drop 1) ts)
      _                                    -> ts

    where
    commonPrefix c t =
      case T.uncons t of
        Just (c',_) -> c == c'
        Nothing     -> whitespaceChar c -- end-of-line matches any whitespace


distrLoc :: Located [a] -> [Located a]
distrLoc x = [ Located { srcRange = r, thing = a } | a <- thing x ]
  where r = srcRange x


mkProp :: Type PName -> ParseM (Located [Prop PName])
mkProp ty =
  case ty of
    TLocated t r -> Located r `fmap` props r t
    _            -> panic "Parser" [ "Invalid type given to mkProp"
                                   , "expected a location"
                                   , show ty ]

  where

  props r t =
    case t of
      TInfix{}       -> return [CType t]
      TUser{}        -> return [CType t]
      TTuple ts      -> concat `fmap` mapM (props r) ts
      TParens t'     -> props r  t'
      TLocated t' r' -> props r' t'

      TFun{}    -> err
      TSeq{}    -> err
      TBit{}    -> err
      TNum{}    -> err
      TChar{}   -> err
      TWild     -> err
      TRecord{} -> err
      TTyApp{}  -> err

    where
    err = errorMessage r "Invalid constraint"

-- | Make an ordinary module
mkModule :: Located ModName ->
            ([Located Import], [TopDecl PName]) ->
            Module PName
mkModule nm (is,ds) = Module { mName = nm
                             , mInstance = Nothing
                             , mImports = is
                             , mDecls = ds
                             }

-- | Make an unnamed module---gets the name @Main@.
mkAnonymousModule :: ([Located Import], [TopDecl PName]) ->
                     Module PName
mkAnonymousModule = mkModule Located { srcRange = emptyRange
                                     , thing    = mkModName [T.pack "Main"]
                                     }

-- | Make a module which defines a functor instance.
mkModuleInstance :: Located ModName ->
                    Located ModName ->
                    ([Located Import], [TopDecl PName]) ->
                    Module PName
mkModuleInstance nm fun (is,ds) =
  Module { mName     = nm
         , mInstance = Just fun
         , mImports  = is
         , mDecls    = ds
         }

ufToNamed :: UpdField PName -> ParseM (Named (Expr PName))
ufToNamed (UpdField h ls e) =
  case (h,ls) of
    (UpdSet, [l]) | RecordSel i Nothing <- thing l ->
      pure Named { name = l { thing = i }, value = e }
    _ -> errorMessage (srcRange (head ls))
            "Invalid record field.  Perhaps you meant to update a record?"

selExprToSels :: Expr PName -> ParseM [Located Selector]
selExprToSels e0 = reverse <$> go noLoc e0
  where
  noLoc = panic "selExprToSels" ["Missing location?"]
  go loc expr =
    case expr of
      ELocated e1 r -> go r e1
      ESel e2 s ->
        do ls <- go loc e2
           let rng = loc { from = to (srcRange (head ls)) }
           pure (Located { thing = s, srcRange = rng } : ls)
      EVar (UnQual l) ->
        pure [ Located { thing = RecordSel l Nothing, srcRange = loc } ]
      ELit (ECNum n _) ->
        do ts <- mkTupleSel loc n
           pure [ ts ]
      _ -> errorMessage loc "Invalid label in record update."