crucible-llvm-0.6: Support for translating and executing LLVM code in Crucible
Copyright(c) Galois Inc 2015-2016
LicenseBSD3
MaintainerRob Dockins <rdockins@galois.com>
Stabilityprovisional
Safe HaskellSafe-Inferred
LanguageHaskell2010

Lang.Crucible.LLVM.Intrinsics.LLVM

Description

 
Synopsis

Declarations

llvmLifetimeStartOverride :: (IsSymInterface sym, HasPtrWidth wptr) => LLVMOverride p sym ((EmptyCtx ::> BVType 64) ::> LLVMPointerType wptr) UnitType Source #

This intrinsic is currently a no-op.

We might want to support this in the future to catch undefined memory accesses.

LLVM docs

llvmLifetimeOverrideOverload Source #

Arguments

:: forall width sym wptr p. (1 <= width, KnownNat width, IsSymInterface sym, HasPtrWidth wptr) 
=> String

"start" or "end"

-> NatRepr width 
-> LLVMOverride p sym ((EmptyCtx ::> BVType 64) ::> LLVMPointerType wptr) UnitType 

This is a no-op.

The language reference doesn't mention the use of this intrinsic.

llvmLifetimeOverrideOverload_opaque Source #

Arguments

:: forall sym wptr p. (IsSymInterface sym, HasPtrWidth wptr) 
=> String

"start" or "end"

-> LLVMOverride p sym ((EmptyCtx ::> BVType 64) ::> LLVMPointerType wptr) UnitType 

Like llvmLifetimeOverrideOverload, but with an opaque pointer type.

llvmInvariantStartOverride :: (IsSymInterface sym, HasPtrWidth wptr) => NatRepr width -> LLVMOverride p sym ((EmptyCtx ::> BVType 64) ::> LLVMPointerType wptr) (LLVMPointerType wptr) Source #

This intrinsic is currently a no-op.

We might want to support this in the future to catch undefined memory writes.

LLVM docs

llvmExpectOverride :: (IsSymInterface sym, 1 <= width) => NatRepr width -> LLVMOverride p sym ((EmptyCtx ::> BVType width) ::> BVType width) (BVType width) Source #

This instruction is a hint to optimizers, it isn't really useful for us.

Its runtime behavior of that of Haskell's const: just ignore the second argument.

llvmAssumeOverride :: IsSymInterface sym => LLVMOverride p sym (EmptyCtx ::> BVType 1) UnitType Source #

This intrinsic asserts that its argument is equal to 1.

We could have this generate a verification condition, but that would catch clang compiler bugs (or Crucible bugs) more than user code bugs.

llvmTrapOverride :: IsSymInterface sym => LLVMOverride p sym EmptyCtx UnitType Source #

This intrinsic is sometimes inserted by clang, and we interpret it as an assertion failure, similar to calling abort().

llvmUBSanTrapOverride :: IsSymInterface sym => LLVMOverride p sym (EmptyCtx ::> BVType 8) UnitType Source #

This is like llvm.trap(), but with an argument indicating which sort of undefined behavior was trapped. The argument acts as an index into this list. Ideally, we would do something intelligent with this argument—see #368.

llvmPrefetchOverride :: (IsSymInterface sym, HasPtrWidth wptr) => LLVMOverride p sym ((((EmptyCtx ::> LLVMPointerType wptr) ::> BVType 32) ::> BVType 32) ::> BVType 32) UnitType Source #

This instruction is a hint to code generators, which means that it is a no-op for us.

LLVM docs

llvmPrefetchOverride_preLLVM10 :: (IsSymInterface sym, HasPtrWidth wptr) => LLVMOverride p sym ((((EmptyCtx ::> LLVMPointerType wptr) ::> BVType 32) ::> BVType 32) ::> BVType 32) UnitType Source #

This instruction is a hint to code generators, which means that it is a no-op for us.

See also llvmPrefetchOverride. This version exists for compatibility with pre-10 versions of LLVM, where llvm.prefetch always assumed that the first argument resides in address space 0.

LLVM docs

llvmBSwapOverride :: forall width sym p. (1 <= width, IsSymInterface sym) => NatRepr width -> LLVMOverride p sym (EmptyCtx ::> BVType (width * 8)) (BVType (width * 8)) Source #

Implementations

callX86_pclmulqdq :: forall p sym bak ext wptr r args ret. (IsSymBackend sym bak, HasPtrWidth wptr) => bak -> GlobalVar Mem -> RegEntry sym (VectorType (BVType 64)) -> RegEntry sym (VectorType (BVType 64)) -> RegEntry sym (BVType 8) -> OverrideSim p sym ext r args ret (RegValue sym (VectorType (BVType 64))) Source #

callStoreudq :: (IsSymBackend sym bak, HasLLVMAnn sym, HasPtrWidth wptr, ?memOpts :: MemOptions) => bak -> GlobalVar Mem -> RegEntry sym (LLVMPointerType wptr) -> RegEntry sym (VectorType (BVType 8)) -> OverrideSim p sym ext r args ret () Source #

callObjectsize :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> NatRepr w -> RegEntry sym (LLVMPointerType wptr) -> RegEntry sym (BVType 1) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callObjectsize_null :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> NatRepr w -> RegEntry sym (LLVMPointerType wptr) -> RegEntry sym (BVType 1) -> RegEntry sym (BVType 1) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callObjectsize_null_dynamic :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> NatRepr w -> RegEntry sym (LLVMPointerType wptr) -> RegEntry sym (BVType 1) -> RegEntry sym (BVType 1) -> RegEntry sym (BVType 1) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callCtlz :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType 1) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callFshl :: (1 <= w, IsSymBackend sym bak) => bak -> NatRepr w -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callFshr :: (1 <= w, IsSymBackend sym bak) => bak -> NatRepr w -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callSaddWithOverflow :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (StructType ((EmptyCtx ::> BVType w) ::> BVType 1))) Source #

callUaddWithOverflow :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (StructType ((EmptyCtx ::> BVType w) ::> BVType 1))) Source #

callUsubWithOverflow :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (StructType ((EmptyCtx ::> BVType w) ::> BVType 1))) Source #

callSsubWithOverflow :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (StructType ((EmptyCtx ::> BVType w) ::> BVType 1))) Source #

callSmulWithOverflow :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (StructType ((EmptyCtx ::> BVType w) ::> BVType 1))) Source #

callUmulWithOverflow :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (StructType ((EmptyCtx ::> BVType w) ::> BVType 1))) Source #

callUmax :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callUmin :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callSmax :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callSmin :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callCttz :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> RegEntry sym (BVType 1) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callCtpop :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callBitreverse :: (1 <= w, IsSymBackend sym bak) => bak -> GlobalVar Mem -> RegEntry sym (BVType w) -> OverrideSim p sym ext r args ret (RegValue sym (BVType w)) Source #

callCopysign :: forall fi p sym bak ext r args ret. IsSymBackend sym bak => bak -> RegEntry sym (FloatType fi) -> RegEntry sym (FloatType fi) -> OverrideSim p sym ext r args ret (RegValue sym (FloatType fi)) Source #

Strictly speaking, this doesn't quite conform to the C99 description of copysign, since copysign(NaN, -1.0) should return NaN with a negative sign bit. libBF does not provide a way to distinguish between NaN values with different sign bits, however, so copysign will always turn a NaN argument into a positive, "quiet" NaN.

callIsFpclass :: forall fi p sym bak ext r args ret. IsSymBackend sym bak => bak -> RegEntry sym (FloatType fi) -> RegEntry sym (BVType 32) -> OverrideSim p sym ext r args ret (RegValue sym (BVType 1)) Source #

An implementation of the llvm.is.fpclass intrinsic. This essentially combines several different floating-point checks (checking for NaN, infinity, zero, etc.) into a single function. The second argument is a bitmask that controls which properties to check of the first argument. The different checks in the bitmask are described by the table here: https://llvm.org/docs/LangRef.html#id1566

The specification requires being able to distinguish between signaling NaNs (bit 0 of the bitmask) and quit NaNs (bit 1 of the bitmask), but crucible-llvm does not have the ability to do this. As a result, both NaN checks will always return true in this implementation, regardless of whether they are signaling or quiet NaNs.