{-# LANGUAGE NoImplicitPrelude, UnicodeSyntax #-}

{-|
Module     : Data.Set.Unicode
Copyright  : 2009–2012 Roel van Dijk
License    : BSD3 (see the file LICENSE)
Maintainer : Roel van Dijk <vandijk.roel@gmail.com>
-}

module Data.Set.Unicode
    ( (), (), (), ()
    , ()
    , (), (), (), ()
    , (), (), (), ()
    , (), (), (), ()
    ) where


-------------------------------------------------------------------------------
-- Imports
-------------------------------------------------------------------------------

-- from base:
import Data.Bool     ( Bool, not )
import Data.Function ( flip )
import Data.Ord      ( Ord )

-- from base-unicode-symbols:
import Data.Eq.Unicode   ( () )
import Data.Bool.Unicode ( () )

-- from containers:
import Data.Set ( Set
                , member, notMember
                , empty
                , union, difference, intersection
                , isSubsetOf, isProperSubsetOf
                )


-------------------------------------------------------------------------------
-- Fixities
-------------------------------------------------------------------------------

infix  4 
infix  4 
infix  4 
infix  4 
infix  4 
infix  4 
infix  4 
infix  4 
infix  4 
infix  4 
infix  4 
infix  4 
infixl 6 
infixr 6 
infixl 9 
infixl 9 


-------------------------------------------------------------------------------
-- Symbols
-------------------------------------------------------------------------------

{-|
(&#x2208;) = 'member'

U+2208, ELEMENT OF
-}
()  Ord α  α  Set α  Bool
() = member
{-# INLINE () #-}

{-|
(&#x220B;) = 'flip' (&#x2208;)

U+220B, CONTAINS AS MEMBER
-}
()  Ord α  Set α  α  Bool
() = flip ()
{-# INLINE () #-}

{-|
(&#x2209;) = 'notMember'

U+2209, NOT AN ELEMENT OF
-}
()  Ord α  α  Set α  Bool
() = notMember
{-# INLINE () #-}

{-|
(&#x220C;) = 'flip' (&#x2209;)

U+220C, DOES NOT CONTAIN AS MEMBER
-}
()  Ord α  Set α  α  Bool
() = flip ()
{-# INLINE () #-}

{-|
(&#x2205;) = 'empty'

U+2205, EMPTY SET
-}
()  Set α
() = empty
{-# INLINE () #-}

{-|
(&#x222A;) = 'union'

U+222A, UNION
-}
()  Ord α  Set α  Set α  Set α
() = union
{-# INLINE () #-}

{-|
(&#x2216;) = 'difference'

U+2216, SET MINUS
-}
()  Ord α  Set α  Set α  Set α
() = difference
{-# INLINE () #-}

{-|
Symmetric difference

a &#x2206; b = (a &#x2216; b) &#x222A; (b &#x2216; a)

U+2206, INCREMENT
-}
()  Ord α  Set α  Set α  Set α
a  b = (a  b)  (b  a)
{-# INLINE () #-}

{-|
(&#x2229;) = 'intersection'

U+2229, INTERSECTION
-}
()  Ord α  Set α  Set α  Set α
() = intersection
{-# INLINE () #-}

{-|
(&#x2286;) = 'isSubsetOf'

U+2286, SUBSET OF OR EQUAL TO
-}
()  Ord α  Set α  Set α  Bool
() = isSubsetOf
{-# INLINE () #-}

{-|
(&#x2287;) = 'flip' (&#x2286;)

U+2287, SUPERSET OF OR EQUAL TO
-}
()  Ord α  Set α  Set α  Bool
() = flip ()
{-# INLINE () #-}

{-|
a &#x2288; b = (a &#x2262; b) &#x2227; (a &#x2284; b)

U+2288, NEITHER A SUBSET OF NOR EQUAL TO
-}
()  Ord α  Set α  Set α  Bool
a  b = (a  b)  (a  b)
{-# INLINE () #-}

{-|
a &#x2289; b = (a &#x2262; b) &#x2227; (a &#x2285; b)

U+2289, NEITHER A SUPERSET OF NOR EQUAL TO
-}
()  Ord α  Set α  Set α  Bool
a  b = (a  b)  (a  b)
{-# INLINE () #-}

{-|
(&#x2282;) = 'isProperSubsetOf'

U+2282, SUBSET OF
-}
()  Ord α  Set α  Set α  Bool
() = isProperSubsetOf
{-# INLINE () #-}

{-|
(&#x2283;) = 'flip' (&#x2282;)

U+2283, SUPERSET OF
-}
()  Ord α  Set α  Set α  Bool
() = flip ()
{-# INLINE () #-}

{-|
a &#x2284; b = 'not' (a &#x2282; b)

U+2284, NOT A SUBSET OF
-}
()  Ord α  Set α  Set α  Bool
a  b = not (a  b)
{-# INLINE () #-}

{-|
a &#x2285; b = 'not' (a &#x2283; b)

U+2285, NOT A SUPERSET OF
-}
()  Ord α  Set α  Set α  Bool
a  b = not (a  b)
{-# INLINE () #-}