Copyright | 2009–2012 Roel van Dijk |
---|---|
License | BSD3 (see the file LICENSE) |
Maintainer | Roel van Dijk <vandijk.roel@gmail.com> |
Safe Haskell | Safe |
Language | Haskell2010 |
Synopsis
- (∈) :: Ord α => α -> Set α -> Bool
- (∋) :: Ord α => Set α -> α -> Bool
- (∉) :: Ord α => α -> Set α -> Bool
- (∌) :: Ord α => Set α -> α -> Bool
- (∅) :: Set α
- (∪) :: Ord α => Set α -> Set α -> Set α
- (∖) :: Ord α => Set α -> Set α -> Set α
- (∆) :: Ord α => Set α -> Set α -> Set α
- (∩) :: Ord α => Set α -> Set α -> Set α
- (⊆) :: Ord α => Set α -> Set α -> Bool
- (⊇) :: Ord α => Set α -> Set α -> Bool
- (⊈) :: Ord α => Set α -> Set α -> Bool
- (⊉) :: Ord α => Set α -> Set α -> Bool
- (⊂) :: Ord α => Set α -> Set α -> Bool
- (⊃) :: Ord α => Set α -> Set α -> Bool
- (⊄) :: Ord α => Set α -> Set α -> Bool
- (⊅) :: Ord α => Set α -> Set α -> Bool
Documentation
(∆) :: Ord α => Set α -> Set α -> Set α infixl 9 Source #
Symmetric difference
a ∆ b = (a ∖ b) ∪ (b ∖ a)
U+2206, INCREMENT
(⊆) :: Ord α => Set α -> Set α -> Bool infix 4 Source #
(⊆) = isSubsetOf
U+2286, SUBSET OF OR EQUAL TO
(⊇) :: Ord α => Set α -> Set α -> Bool infix 4 Source #
(⊇) = flip
(⊆)
U+2287, SUPERSET OF OR EQUAL TO
(⊈) :: Ord α => Set α -> Set α -> Bool infix 4 Source #
a ⊈ b = (a ≢ b) ∧ (a ⊄ b)
U+2288, NEITHER A SUBSET OF NOR EQUAL TO