{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE ConstraintKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE CPP #-}
module Data.Constraint.Symbol
( type AppendSymbol
, type (++)
, type Take
, type Drop
, type Length
, appendSymbol
, appendUnit1
, appendUnit2
, appendAssociates
, takeSymbol
, dropSymbol
, takeAppendDrop
, lengthSymbol
, takeLength
, take0
, takeEmpty
, dropLength
, drop0
, dropEmpty
, lengthTake
, lengthDrop
, dropDrop
, takeTake
) where
import Data.Constraint
import Data.Constraint.Nat
import Data.Constraint.Unsafe
import Data.Proxy
import GHC.TypeLits
#if MIN_VERSION_base(4,18,0)
import qualified GHC.TypeNats as TN
#else
import Unsafe.Coerce
#endif
type (m :: Symbol) ++ (n :: Symbol) = AppendSymbol m n
infixr 5 ++
type family Take :: Nat -> Symbol -> Symbol where
type family Drop :: Nat -> Symbol -> Symbol where
type family Length :: Symbol -> Nat where
#if !MIN_VERSION_base(4,18,0)
newtype Magic n = Magic (KnownSymbol n => Dict (KnownSymbol n))
#endif
magicNSS :: forall n m o. (Int -> String -> String) -> (KnownNat n, KnownSymbol m) :- KnownSymbol o
#if MIN_VERSION_base(4,18,0)
magicNSS f = Sub $ withKnownSymbol (unsafeSSymbol @o (fromIntegral (natVal (Proxy @n)) `f` symbolVal (Proxy @m))) Dict
#else
magicNSS :: forall (n :: Nat) (m :: Symbol) (o :: Symbol).
(Int -> String -> String)
-> (KnownNat n, KnownSymbol m) :- KnownSymbol o
magicNSS Int -> String -> String
f = forall (a :: Constraint) (b :: Constraint). (a => Dict b) -> a :- b
Sub forall a b. (a -> b) -> a -> b
$ forall a b. a -> b
unsafeCoerce (forall (n :: Symbol).
(KnownSymbol n => Dict (KnownSymbol n)) -> Magic n
Magic forall (a :: Constraint). a => Dict a
Dict) (forall a b. (Integral a, Num b) => a -> b
fromIntegral (forall (n :: Nat) (proxy :: Nat -> *).
KnownNat n =>
proxy n -> Integer
natVal (forall {k} (t :: k). Proxy t
Proxy :: Proxy n)) Int -> String -> String
`f` forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
symbolVal (forall {k} (t :: k). Proxy t
Proxy :: Proxy m))
#endif
magicSSS :: forall n m o. (String -> String -> String) -> (KnownSymbol n, KnownSymbol m) :- KnownSymbol o
#if MIN_VERSION_base(4,18,0)
magicSSS f = Sub $ withKnownSymbol (unsafeSSymbol @o (symbolVal (Proxy @n) `f` symbolVal (Proxy @m))) Dict
#else
magicSSS :: forall (n :: Symbol) (m :: Symbol) (o :: Symbol).
(String -> String -> String)
-> (KnownSymbol n, KnownSymbol m) :- KnownSymbol o
magicSSS String -> String -> String
f = forall (a :: Constraint) (b :: Constraint). (a => Dict b) -> a :- b
Sub forall a b. (a -> b) -> a -> b
$ forall a b. a -> b
unsafeCoerce (forall (n :: Symbol).
(KnownSymbol n => Dict (KnownSymbol n)) -> Magic n
Magic forall (a :: Constraint). a => Dict a
Dict) (forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
symbolVal (forall {k} (t :: k). Proxy t
Proxy :: Proxy n) String -> String -> String
`f` forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
symbolVal (forall {k} (t :: k). Proxy t
Proxy :: Proxy m))
#endif
magicSN :: forall a n. (String -> Int) -> KnownSymbol a :- KnownNat n
#if MIN_VERSION_base(4,18,0)
magicSN f = Sub $ TN.withKnownNat (unsafeSNat @n (fromIntegral (f (symbolVal (Proxy :: Proxy a))))) Dict
#else
magicSN :: forall (a :: Symbol) (n :: Nat).
(String -> Int) -> KnownSymbol a :- KnownNat n
magicSN String -> Int
f = forall (a :: Constraint) (b :: Constraint). (a => Dict b) -> a :- b
Sub forall a b. (a -> b) -> a -> b
$ forall a b. a -> b
unsafeCoerce (forall (n :: Symbol).
(KnownSymbol n => Dict (KnownSymbol n)) -> Magic n
Magic forall (a :: Constraint). a => Dict a
Dict) (forall a. Integral a => a -> Integer
toInteger (String -> Int
f (forall (n :: Symbol) (proxy :: Symbol -> *).
KnownSymbol n =>
proxy n -> String
symbolVal (forall {k} (t :: k). Proxy t
Proxy :: Proxy a))))
#endif
appendSymbol :: (KnownSymbol a, KnownSymbol b) :- KnownSymbol (AppendSymbol a b)
appendSymbol :: forall (a :: Symbol) (b :: Symbol).
(KnownSymbol a, KnownSymbol b) :- KnownSymbol (AppendSymbol a b)
appendSymbol = forall (n :: Symbol) (m :: Symbol) (o :: Symbol).
(String -> String -> String)
-> (KnownSymbol n, KnownSymbol m) :- KnownSymbol o
magicSSS forall a. [a] -> [a] -> [a]
(++)
appendUnit1 :: forall a. Dict (AppendSymbol "" a ~ a)
appendUnit1 :: forall (a :: Symbol). Dict (AppendSymbol "" a ~ a)
appendUnit1 = forall (a :: Constraint). a => Dict a
Dict
appendUnit2 :: forall a. Dict (AppendSymbol a "" ~ a)
appendUnit2 :: forall (a :: Symbol). Dict (AppendSymbol a "" ~ a)
appendUnit2 = forall (a :: Constraint). a => Dict a
Dict
appendAssociates :: forall a b c. Dict (AppendSymbol (AppendSymbol a b) c ~ AppendSymbol a (AppendSymbol b c))
appendAssociates :: forall (a :: Symbol) (b :: Symbol) (c :: Symbol).
Dict
(AppendSymbol (AppendSymbol a b) c
~ AppendSymbol a (AppendSymbol b c))
appendAssociates = forall (c :: Constraint). Dict c
unsafeAxiom
takeSymbol :: forall n a. (KnownNat n, KnownSymbol a) :- KnownSymbol (Take n a)
takeSymbol :: forall (n :: Nat) (a :: Symbol).
(KnownNat n, KnownSymbol a) :- KnownSymbol (Take n a)
takeSymbol = forall (n :: Nat) (m :: Symbol) (o :: Symbol).
(Int -> String -> String)
-> (KnownNat n, KnownSymbol m) :- KnownSymbol o
magicNSS forall a. Int -> [a] -> [a]
take
dropSymbol :: forall n a. (KnownNat n, KnownSymbol a) :- KnownSymbol (Drop n a)
dropSymbol :: forall (n :: Nat) (a :: Symbol).
(KnownNat n, KnownSymbol a) :- KnownSymbol (Drop n a)
dropSymbol = forall (n :: Nat) (m :: Symbol) (o :: Symbol).
(Int -> String -> String)
-> (KnownNat n, KnownSymbol m) :- KnownSymbol o
magicNSS forall a. Int -> [a] -> [a]
drop
takeAppendDrop :: forall n a. Dict (AppendSymbol (Take n a) (Drop n a) ~ a)
takeAppendDrop :: forall (n :: Nat) (a :: Symbol).
Dict (AppendSymbol (Take n a) (Drop n a) ~ a)
takeAppendDrop = forall (c :: Constraint). Dict c
unsafeAxiom
lengthSymbol :: forall a. KnownSymbol a :- KnownNat (Length a)
lengthSymbol :: forall (a :: Symbol). KnownSymbol a :- KnownNat (Length a)
lengthSymbol = forall (a :: Symbol) (n :: Nat).
(String -> Int) -> KnownSymbol a :- KnownNat n
magicSN forall (t :: * -> *) a. Foldable t => t a -> Int
length
takeLength :: forall n a. (Length a <= n) :- (Take n a ~ a)
takeLength :: forall (n :: Nat) (a :: Symbol). (Length a <= n) :- (Take n a ~ a)
takeLength = forall (a :: Constraint) (b :: Constraint). (a => Dict b) -> a :- b
Sub forall (c :: Constraint). Dict c
unsafeAxiom
take0 :: forall a. Dict (Take 0 a ~ "")
take0 :: forall (a :: Symbol). Dict (Take 0 a ~ "")
take0 = forall (c :: Constraint). Dict c
unsafeAxiom
takeEmpty :: forall n. Dict (Take n "" ~ "")
takeEmpty :: forall (n :: Nat). Dict (Take n "" ~ "")
takeEmpty = forall (c :: Constraint). Dict c
unsafeAxiom
dropLength :: forall n a. (Length a <= n) :- (Drop n a ~ "")
dropLength :: forall (n :: Nat) (a :: Symbol). (Length a <= n) :- (Drop n a ~ "")
dropLength = forall (a :: Constraint) (b :: Constraint). (a => Dict b) -> a :- b
Sub forall (c :: Constraint). Dict c
unsafeAxiom
drop0 :: forall a. Dict (Drop 0 a ~ a)
drop0 :: forall (a :: Symbol). Dict (Drop 0 a ~ a)
drop0 = forall (c :: Constraint). Dict c
unsafeAxiom
dropEmpty :: forall n. Dict (Drop n "" ~ "")
dropEmpty :: forall (n :: Nat). Dict (Drop n "" ~ "")
dropEmpty = forall (c :: Constraint). Dict c
unsafeAxiom
lengthTake :: forall n a. Dict (Length (Take n a) <= n)
lengthTake :: forall (n :: Nat) (a :: Symbol). Dict (Length (Take n a) <= n)
lengthTake = forall (c :: Constraint). Dict c
unsafeAxiom
lengthDrop :: forall n a. Dict (Length a <= (Length (Drop n a) + n))
lengthDrop :: forall (n :: Nat) (a :: Symbol).
Dict (Length a <= (Length (Drop n a) + n))
lengthDrop = forall (c :: Constraint). Dict c
unsafeAxiom
dropDrop :: forall n m a. Dict (Drop n (Drop m a) ~ Drop (n + m) a)
dropDrop :: forall (n :: Nat) (m :: Nat) (a :: Symbol).
Dict (Drop n (Drop m a) ~ Drop (n + m) a)
dropDrop = forall (c :: Constraint). Dict c
unsafeAxiom
takeTake :: forall n m a. Dict (Take n (Take m a) ~ Take (Min n m) a)
takeTake :: forall (n :: Nat) (m :: Nat) (a :: Symbol).
Dict (Take n (Take m a) ~ Take (Min n m) a)
takeTake = forall (c :: Constraint). Dict c
unsafeAxiom