conduit-extra-1.2.3.2: Batteries included conduit: adapters for common libraries.

Safe HaskellNone
LanguageHaskell98

Data.Conduit.Blaze

Contents

Description

Convert a stream of blaze-builder Builders into a stream of ByteStrings.

Adapted from blaze-builder-enumerator, written by myself and Simon Meier.

Note that the functions here can work in any monad built on top of IO or ST.

Since 1.1.7.0, the functions here call their counterparts in Data.Conduit.ByteString.Builder, which work with both Builder and blaze-builder 0.3's Builder.

Synopsis

Conduits from builders to bytestrings

builderToByteString :: (MonadBase base m, PrimMonad base) => Conduit Builder m ByteString Source #

Incrementally execute builders and pass on the filled chunks as bytestrings.

unsafeBuilderToByteString :: (MonadBase base m, PrimMonad base) => IO Buffer -> Conduit Builder m ByteString Source #

Incrementally execute builders on the given buffer and pass on the filled chunks as bytestrings. Note that, if the given buffer is too small for the execution of a build step, a larger one will be allocated.

WARNING: This conduit yields bytestrings that are NOT referentially transparent. Their content will be overwritten as soon as control is returned from the inner sink!

builderToByteStringWith :: (MonadBase base m, PrimMonad base) => BufferAllocStrategy -> Conduit Builder m ByteString Source #

A conduit that incrementally executes builders and passes on the filled chunks as bytestrings to an inner sink.

INV: All bytestrings passed to the inner sink are non-empty.

Flush

Buffers

data Buffer :: * #

A buffer Buffer fpbuf p0 op ope describes a buffer with the underlying byte array fpbuf..ope, the currently written slice p0..op and the free space op..ope.

Since 0.1.10.0

Status information

freeSize :: Buffer -> Int #

The size of the free space of the buffer.

Since 0.1.10.0

sliceSize :: Buffer -> Int #

The size of the written slice in the buffer.

Since 0.1.10.0

bufferSize :: Buffer -> Int #

The size of the whole byte array underlying the buffer.

Since 0.1.10.0

Creation and modification

allocBuffer :: Int -> IO Buffer #

allocBuffer size allocates a new buffer of size size.

Since 0.1.10.0

reuseBuffer :: Buffer -> Buffer #

Resets the beginning of the next slice and the next free byte such that the whole buffer can be filled again.

Since 0.1.10.0

nextSlice :: Int -> Buffer -> Maybe Buffer #

Move the beginning of the slice to the next free byte such that the remaining free space of the buffer can be filled further. This operation is safe and can be used to fill the remaining part of the buffer after a direct insertion of a bytestring or a flush.

Since 0.1.10.0

Conversion to bytestings

unsafeFreezeBuffer :: Buffer -> ByteString #

Convert the buffer to a bytestring. This operation is unsafe in the sense that created bytestring shares the underlying byte array with the buffer. Hence, depending on the later use of this buffer (e.g., if it gets reset and filled again) referential transparency may be lost.

Since 0.1.10.0

unsafeFreezeNonEmptyBuffer :: Buffer -> Maybe ByteString #

Convert a buffer to a non-empty bytestring. See unsafeFreezeBuffer for the explanation of why this operation may be unsafe.

Since 0.1.10.0

Buffer allocation strategies

type BufferAllocStrategy = (IO Buffer, Int -> Buffer -> IO (IO Buffer)) #

A buffer allocation strategy (buf0, nextBuf) specifies the initial buffer to use and how to compute a new buffer nextBuf minSize buf with at least size minSize from a filled buffer buf. The double nesting of the IO monad helps to ensure that the reference to the filled buffer buf is lost as soon as possible, but the new buffer doesn't have to be allocated too early.

Since 0.1.10.0

allNewBuffersStrategy :: Int -> BufferAllocStrategy #

The simplest buffer allocation strategy: whenever a buffer is requested, allocate a new one that is big enough for the next build step to execute.

NOTE that this allocation strategy may spill quite some memory upon direct insertion of a bytestring by the builder. Thats no problem for garbage collection, but it may lead to unreasonably high memory consumption in special circumstances.

Since 0.1.10.0

reuseBufferStrategy :: IO Buffer -> BufferAllocStrategy #

An unsafe, but possibly more efficient buffer allocation strategy: reuse the buffer, if it is big enough for the next build step to execute.

Since 0.1.10.0