Safe Haskell | Safe |
---|---|
Language | Haskell2010 |
Synopsis
- data Pipe l i o u m r
- await :: Pipe l i o u m (Maybe i)
- awaitE :: Pipe l i o u m (Either u i)
- awaitForever :: Monad m => (i -> Pipe l i o r m r') -> Pipe l i o r m r
- yield :: Monad m => o -> Pipe l i o u m ()
- yieldM :: Monad m => m o -> Pipe l i o u m ()
- leftover :: l -> Pipe l i o u m ()
- unconsM :: Monad m => Pipe Void () o () m () -> m (Maybe (o, Pipe Void () o () m ()))
- unconsEitherM :: Monad m => Pipe Void () o () m r -> m (Either r (o, Pipe Void () o () m r))
- bracketP :: MonadResource m => IO a -> (a -> IO ()) -> (a -> Pipe l i o u m r) -> Pipe l i o u m r
- idP :: Monad m => Pipe l a a r m r
- pipe :: Monad m => Pipe l a b r0 m r1 -> Pipe Void b c r1 m r2 -> Pipe l a c r0 m r2
- pipeL :: Monad m => Pipe l a b r0 m r1 -> Pipe b b c r1 m r2 -> Pipe l a c r0 m r2
- runPipe :: Monad m => Pipe Void () Void () m r -> m r
- injectLeftovers :: Monad m => Pipe i i o u m r -> Pipe l i o u m r
- (>+>) :: Monad m => Pipe l a b r0 m r1 -> Pipe Void b c r1 m r2 -> Pipe l a c r0 m r2
- (<+<) :: Monad m => Pipe Void b c r1 m r2 -> Pipe l a b r0 m r1 -> Pipe l a c r0 m r2
- catchP :: (MonadUnliftIO m, Exception e) => Pipe l i o u m r -> (e -> Pipe l i o u m r) -> Pipe l i o u m r
- handleP :: (MonadUnliftIO m, Exception e) => (e -> Pipe l i o u m r) -> Pipe l i o u m r -> Pipe l i o u m r
- tryP :: (MonadUnliftIO m, Exception e) => Pipe l i o u m r -> Pipe l i o u m (Either e r)
- transPipe :: Monad m => (forall a. m a -> n a) -> Pipe l i o u m r -> Pipe l i o u n r
- mapOutput :: Monad m => (o1 -> o2) -> Pipe l i o1 u m r -> Pipe l i o2 u m r
- mapOutputMaybe :: Monad m => (o1 -> Maybe o2) -> Pipe l i o1 u m r -> Pipe l i o2 u m r
- mapInput :: Monad m => (i1 -> i2) -> (l2 -> Maybe l1) -> Pipe l2 i2 o u m r -> Pipe l1 i1 o u m r
- sourceList :: Monad m => [a] -> Pipe l i a u m ()
- withUpstream :: Monad m => Pipe l i o u m r -> Pipe l i o u m (u, r)
- enumFromTo :: (Enum o, Eq o, Monad m) => o -> o -> Pipe l i o u m ()
- generalizeUpstream :: Monad m => Pipe l i o () m r -> Pipe l i o u m r
- newtype ZipConduit i o m r = ZipConduit {
- getZipConduit :: ConduitT i o m r
- newtype ZipSink i m r = ZipSink {
- getZipSink :: ConduitT i Void m r
- newtype ZipSource m o = ZipSource {
- getZipSource :: ConduitT () o m ()
- data Flush a
- type Conduit i m o = ConduitT i o m ()
- type Consumer i m r = forall o. ConduitT i o m r
- type Sink i = ConduitT i Void
- type Producer m o = forall i. ConduitT i o m ()
- type Source m o = ConduitT () o m ()
- type ConduitM = ConduitT
- newtype SealedConduitT i o m r = SealedConduitT (Pipe i i o () m r)
- newtype ConduitT i o m r = ConduitT {
- unConduitT :: forall b. (r -> Pipe i i o () m b) -> Pipe i i o () m b
- sealConduitT :: ConduitT i o m r -> SealedConduitT i o m r
- unsealConduitT :: Monad m => SealedConduitT i o m r -> ConduitT i o m r
- connectResume :: Monad m => SealedConduitT () a m () -> ConduitT a Void m r -> m (SealedConduitT () a m (), r)
- sourceToPipe :: Monad m => ConduitT () o m () -> Pipe l i o u m ()
- sinkToPipe :: Monad m => ConduitT i Void m r -> Pipe l i o u m r
- conduitToPipe :: Monad m => ConduitT i o m () -> Pipe l i o u m ()
- toProducer :: Monad m => ConduitT () a m () -> ConduitT i a m ()
- toConsumer :: Monad m => ConduitT a Void m b -> ConduitT a o m b
- catchC :: (MonadUnliftIO m, Exception e) => ConduitT i o m r -> (e -> ConduitT i o m r) -> ConduitT i o m r
- handleC :: (MonadUnliftIO m, Exception e) => (e -> ConduitT i o m r) -> ConduitT i o m r -> ConduitT i o m r
- tryC :: (MonadUnliftIO m, Exception e) => ConduitT i o m r -> ConduitT i o m (Either e r)
- zipSinks :: Monad m => ConduitT i Void m r -> ConduitT i Void m r' -> ConduitT i Void m (r, r')
- zipSources :: Monad m => ConduitT () a m () -> ConduitT () b m () -> ConduitT () (a, b) m ()
- zipSourcesApp :: Monad m => ConduitT () (a -> b) m () -> ConduitT () a m () -> ConduitT () b m ()
- zipConduitApp :: Monad m => ConduitT i o m (x -> y) -> ConduitT i o m x -> ConduitT i o m y
- fuseReturnLeftovers :: Monad m => ConduitT a b m () -> ConduitT b c m r -> ConduitT a c m (r, [b])
- fuseLeftovers :: Monad m => ([b] -> [a]) -> ConduitT a b m () -> ConduitT b c m r -> ConduitT a c m r
- connectResumeConduit :: Monad m => SealedConduitT i o m () -> ConduitT o Void m r -> ConduitT i Void m (SealedConduitT i o m (), r)
- mergeSource :: Monad m => ConduitT () i m () -> ConduitT a (i, a) m ()
- passthroughSink :: Monad m => ConduitT i Void m r -> (r -> m ()) -> ConduitT i i m ()
- sourceToList :: Monad m => ConduitT () a m () -> m [a]
- connect :: Monad m => ConduitT () a m () -> ConduitT a Void m r -> m r
- fuse :: Monad m => ConduitT a b m () -> ConduitT b c m r -> ConduitT a c m r
- (.|) :: Monad m => ConduitT a b m () -> ConduitT b c m r -> ConduitT a c m r
- ($$) :: Monad m => Source m a -> Sink a m b -> m b
- ($=) :: Monad m => Conduit a m b -> ConduitT b c m r -> ConduitT a c m r
- (=$) :: Monad m => Conduit a m b -> ConduitT b c m r -> ConduitT a c m r
- (=$=) :: Monad m => Conduit a m b -> ConduitT b c m r -> ConduitT a c m r
- runConduit :: Monad m => ConduitT () Void m r -> m r
- ($$+) :: Monad m => ConduitT () a m () -> ConduitT a Void m b -> m (SealedConduitT () a m (), b)
- ($$++) :: Monad m => SealedConduitT () a m () -> ConduitT a Void m b -> m (SealedConduitT () a m (), b)
- ($$+-) :: Monad m => SealedConduitT () a m () -> ConduitT a Void m b -> m b
- ($=+) :: Monad m => SealedConduitT () a m () -> ConduitT a b m () -> SealedConduitT () b m ()
- sequenceSources :: (Traversable f, Monad m) => f (ConduitT () o m ()) -> ConduitT () (f o) m ()
- sequenceSinks :: (Traversable f, Monad m) => f (ConduitT i Void m r) -> ConduitT i Void m (f r)
- (=$$+) :: Monad m => ConduitT a b m () -> ConduitT b Void m r -> ConduitT a Void m (SealedConduitT a b m (), r)
- (=$$++) :: Monad m => SealedConduitT i o m () -> ConduitT o Void m r -> ConduitT i Void m (SealedConduitT i o m (), r)
- (=$$+-) :: Monad m => SealedConduitT i o m () -> ConduitT o Void m r -> ConduitT i Void m r
- sequenceConduits :: (Traversable f, Monad m) => f (ConduitT i o m r) -> ConduitT i o m (f r)
- fuseBoth :: Monad m => ConduitT a b m r1 -> ConduitT b c m r2 -> ConduitT a c m (r1, r2)
- fuseBothMaybe :: Monad m => ConduitT a b m r1 -> ConduitT b c m r2 -> ConduitT a c m (Maybe r1, r2)
- fuseUpstream :: Monad m => ConduitT a b m r -> ConduitT b c m () -> ConduitT a c m r
- runConduitPure :: ConduitT () Void Identity r -> r
- runConduitRes :: MonadUnliftIO m => ConduitT () Void (ResourceT m) r -> m r
- module Data.Conduit.Internal.Fusion
Pipe
Types
data Pipe l i o u m r Source #
The underlying datatype for all the types in this package. In has six type parameters:
- l is the type of values that may be left over from this
Pipe
. APipe
with no leftovers would useVoid
here, and one with leftovers would use the same type as the i parameter. Leftovers are automatically provided to the nextPipe
in the monadic chain. - i is the type of values for this
Pipe
's input stream. - o is the type of values for this
Pipe
's output stream. - u is the result type from the upstream
Pipe
. - m is the underlying monad.
- r is the result type.
A basic intuition is that every Pipe
produces a stream of output values
(o), and eventually indicates that this stream is terminated by sending a
result (r). On the receiving end of a Pipe
, these become the i and u
parameters.
Since 0.5.0
HaveOutput (Pipe l i o u m r) o | Provide new output to be sent downstream. This constructor has two
fields: the next |
NeedInput (i -> Pipe l i o u m r) (u -> Pipe l i o u m r) | Request more input from upstream. The first field takes a new input
value and provides a new |
Done r | Processing with this |
PipeM (m (Pipe l i o u m r)) | Require running of a monadic action to get the next |
Leftover (Pipe l i o u m r) l | Return leftover input, which should be provided to future operations. |
Instances
MonadRWS r w s m => MonadRWS r w s (Pipe l i o u m) Source # | |
Defined in Data.Conduit.Internal.Pipe | |
MonadError e m => MonadError e (Pipe l i o u m) Source # | |
Defined in Data.Conduit.Internal.Pipe throwError :: e -> Pipe l i o u m a # catchError :: Pipe l i o u m a -> (e -> Pipe l i o u m a) -> Pipe l i o u m a # | |
MonadReader r m => MonadReader r (Pipe l i o u m) Source # | |
MonadState s m => MonadState s (Pipe l i o u m) Source # | |
MonadWriter w m => MonadWriter w (Pipe l i o u m) Source # | |
MonadTrans (Pipe l i o u) Source # | |
Defined in Data.Conduit.Internal.Pipe | |
MonadIO m => MonadIO (Pipe l i o u m) Source # | |
Defined in Data.Conduit.Internal.Pipe | |
Monad m => Applicative (Pipe l i o u m) Source # | |
Defined in Data.Conduit.Internal.Pipe pure :: a -> Pipe l i o u m a # (<*>) :: Pipe l i o u m (a -> b) -> Pipe l i o u m a -> Pipe l i o u m b # liftA2 :: (a -> b -> c) -> Pipe l i o u m a -> Pipe l i o u m b -> Pipe l i o u m c # (*>) :: Pipe l i o u m a -> Pipe l i o u m b -> Pipe l i o u m b # (<*) :: Pipe l i o u m a -> Pipe l i o u m b -> Pipe l i o u m a # | |
Monad m => Functor (Pipe l i o u m) Source # | |
Monad m => Monad (Pipe l i o u m) Source # | |
MonadThrow m => MonadThrow (Pipe l i o u m) Source # | |
Defined in Data.Conduit.Internal.Pipe | |
PrimMonad m => PrimMonad (Pipe l i o u m) Source # | |
MonadResource m => MonadResource (Pipe l i o u m) Source # | |
Defined in Data.Conduit.Internal.Pipe liftResourceT :: ResourceT IO a -> Pipe l i o u m a # | |
Monad m => Monoid (Pipe l i o u m ()) Source # | |
Monad m => Semigroup (Pipe l i o u m ()) Source # | |
type PrimState (Pipe l i o u m) Source # | |
Defined in Data.Conduit.Internal.Pipe |
Primitives
awaitE :: Pipe l i o u m (Either u i) Source #
This is similar to await
, but will return the upstream result value as
Left
if available.
Since 0.5.0
awaitForever :: Monad m => (i -> Pipe l i o r m r') -> Pipe l i o r m r Source #
Wait for input forever, calling the given inner Pipe
for each piece of
new input. Returns the upstream result type.
Since 0.5.0
Send a single output value downstream. If the downstream Pipe
terminates, this Pipe
will terminate as well.
Since 0.5.0
leftover :: l -> Pipe l i o u m () Source #
Provide a single piece of leftover input to be consumed by the next pipe in the current monadic binding.
Note: it is highly encouraged to only return leftover values from input already consumed from upstream.
Since 0.5.0
unconsM :: Monad m => Pipe Void () o () m () -> m (Maybe (o, Pipe Void () o () m ())) Source #
Split a pipe into head and tail.
Since 1.3.3
unconsEitherM :: Monad m => Pipe Void () o () m r -> m (Either r (o, Pipe Void () o () m r)) Source #
Split a pipe into head and tail or return its result if it is done.
Since 1.3.3
Finalization
:: MonadResource m | |
=> IO a | computation to run first ("acquire resource") |
-> (a -> IO ()) | computation to run last ("release resource") |
-> (a -> Pipe l i o u m r) | computation to run in-between |
-> Pipe l i o u m r |
Bracket a pipe computation between allocation and release of a resource.
We guarantee, via the MonadResource
context, that the resource
finalization is exception safe. However, it will not necessarily be
prompt, in that running a finalizer may wait until the ResourceT
block
exits.
Since 0.5.0
Composition
pipe :: Monad m => Pipe l a b r0 m r1 -> Pipe Void b c r1 m r2 -> Pipe l a c r0 m r2 Source #
Compose a left and right pipe together into a complete pipe.
Since 0.5.0
pipeL :: Monad m => Pipe l a b r0 m r1 -> Pipe b b c r1 m r2 -> Pipe l a c r0 m r2 Source #
Same as pipe
, but automatically applies injectLeftovers
to the right Pipe
.
Since 0.5.0
runPipe :: Monad m => Pipe Void () Void () m r -> m r Source #
Run a pipeline until processing completes.
Since 0.5.0
injectLeftovers :: Monad m => Pipe i i o u m r -> Pipe l i o u m r Source #
Transforms a Pipe
that provides leftovers to one which does not,
allowing it to be composed.
This function will provide any leftover values within this Pipe
to any
calls to await
. If there are more leftover values than are demanded, the
remainder are discarded.
Since 0.5.0
(>+>) :: Monad m => Pipe l a b r0 m r1 -> Pipe Void b c r1 m r2 -> Pipe l a c r0 m r2 infixl 9 Source #
Fuse together two Pipe
s, connecting the output from the left to the
input of the right.
Notice that the leftover parameter for the Pipe
s must be Void
. This
ensures that there is no accidental data loss of leftovers during fusion. If
you have a Pipe
with leftovers, you must first call injectLeftovers
.
Since 0.5.0
(<+<) :: Monad m => Pipe Void b c r1 m r2 -> Pipe l a b r0 m r1 -> Pipe l a c r0 m r2 infixr 9 Source #
Same as >+>
, but reverse the order of the arguments.
Since 0.5.0
Exceptions
catchP :: (MonadUnliftIO m, Exception e) => Pipe l i o u m r -> (e -> Pipe l i o u m r) -> Pipe l i o u m r Source #
See catchC
for more details.
Since 1.0.11
handleP :: (MonadUnliftIO m, Exception e) => (e -> Pipe l i o u m r) -> Pipe l i o u m r -> Pipe l i o u m r Source #
The same as flip catchP
.
Since 1.0.11
tryP :: (MonadUnliftIO m, Exception e) => Pipe l i o u m r -> Pipe l i o u m (Either e r) Source #
See tryC
for more details.
Since 1.0.11
Utilities
transPipe :: Monad m => (forall a. m a -> n a) -> Pipe l i o u m r -> Pipe l i o u n r Source #
Transform the monad that a Pipe
lives in.
Note that the monad transforming function will be run multiple times, resulting in unintuitive behavior in some cases. For a fuller treatment, please see:
https://github.com/snoyberg/conduit/wiki/Dealing-with-monad-transformers
This function is just a synonym for hoist
.
Since 0.4.0
mapOutput :: Monad m => (o1 -> o2) -> Pipe l i o1 u m r -> Pipe l i o2 u m r Source #
Apply a function to all the output values of a Pipe
.
This mimics the behavior of fmap
for a Source
and Conduit
in pre-0.4
days.
Since 0.4.1
mapOutputMaybe :: Monad m => (o1 -> Maybe o2) -> Pipe l i o1 u m r -> Pipe l i o2 u m r Source #
Same as mapOutput
, but use a function that returns Maybe
values.
Since 0.5.0
:: Monad m | |
=> (i1 -> i2) | map initial input to new input |
-> (l2 -> Maybe l1) | map new leftovers to initial leftovers |
-> Pipe l2 i2 o u m r | |
-> Pipe l1 i1 o u m r |
Apply a function to all the input values of a Pipe
.
Since 0.5.0
sourceList :: Monad m => [a] -> Pipe l i a u m () Source #
Convert a list into a source.
Since 0.3.0
withUpstream :: Monad m => Pipe l i o u m r -> Pipe l i o u m (u, r) Source #
Returns a tuple of the upstream and downstream results. Note that this will force consumption of the entire input stream.
Since 0.5.0
generalizeUpstream :: Monad m => Pipe l i o () m r -> Pipe l i o u m r Source #
Generalize the upstream return value for a Pipe
from unit to any type.
Since 1.1.5
Conduit
newtype ZipConduit i o m r Source #
Provides an alternative Applicative
instance for ConduitT
. In this instance,
every incoming value is provided to all ConduitT
s, and output is coalesced together.
Leftovers from individual ConduitT
s will be used within that component, and then discarded
at the end of their computation. Output and finalizers will both be handled in a left-biased manner.
As an example, take the following program:
main :: IO () main = do let src = mapM_ yield [1..3 :: Int] conduit1 = CL.map (+1) conduit2 = CL.concatMap (replicate 2) conduit = getZipConduit $ ZipConduit conduit1 <* ZipConduit conduit2 sink = CL.mapM_ print src $$ conduit =$ sink
It will produce the output: 2, 1, 1, 3, 2, 2, 4, 3, 3
Since 1.0.17
ZipConduit | |
|
Instances
Monad m => Applicative (ZipConduit i o m) Source # | |
Defined in Data.Conduit.Internal.Conduit pure :: a -> ZipConduit i o m a # (<*>) :: ZipConduit i o m (a -> b) -> ZipConduit i o m a -> ZipConduit i o m b # liftA2 :: (a -> b -> c) -> ZipConduit i o m a -> ZipConduit i o m b -> ZipConduit i o m c # (*>) :: ZipConduit i o m a -> ZipConduit i o m b -> ZipConduit i o m b # (<*) :: ZipConduit i o m a -> ZipConduit i o m b -> ZipConduit i o m a # | |
Functor (ZipConduit i o m) Source # | |
Defined in Data.Conduit.Internal.Conduit fmap :: (a -> b) -> ZipConduit i o m a -> ZipConduit i o m b # (<$) :: a -> ZipConduit i o m b -> ZipConduit i o m a # |
newtype ZipSink i m r Source #
A wrapper for defining an Applicative
instance for Sink
s which allows
to combine sinks together, generalizing zipSinks
. A combined sink
distributes the input to all its participants and when all finish, produces
the result. This allows to define functions like
sequenceSinks :: (Monad m) => [ConduitT i Void m r] -> ConduitT i Void m [r] sequenceSinks = getZipSink . sequenceA . fmap ZipSink
Note that the standard Applicative
instance for conduits works
differently. It feeds one sink with input until it finishes, then switches
to another, etc., and at the end combines their results.
This newtype is in fact a type constrained version of ZipConduit
, and has
the same behavior. It's presented as a separate type since (1) it
historically predates ZipConduit
, and (2) the type constraining can make
your code clearer (and thereby make your error messages more easily
understood).
Since 1.0.13
ZipSink | |
|
newtype ZipSource m o Source #
A wrapper for defining an Applicative
instance for Source
s which allows
to combine sources together, generalizing zipSources
. A combined source
will take input yielded from each of its Source
s until any of them stop
producing output.
Since 1.0.13
ZipSource | |
|
Provide for a stream of data that can be flushed.
A number of Conduit
s (e.g., zlib compression) need the ability to flush
the stream at some point. This provides a single wrapper datatype to be used
in all such circumstances.
Since 0.3.0
type Conduit i m o = ConduitT i o m () Source #
Deprecated: Use ConduitT directly
Consumes a stream of input values and produces a stream of output values, without producing a final result.
Since 0.5.0
type Consumer i m r = forall o. ConduitT i o m r Source #
Deprecated: Use ConduitT directly
A component which consumes a stream of input values and produces a final
result, regardless of the output stream. A Consumer
is a generalization of
a Sink
, and can be used as either a Sink
or a Conduit
.
Since 1.0.0
type Sink i = ConduitT i Void Source #
Deprecated: Use ConduitT directly
Consumes a stream of input values and produces a final result, without producing any output.
type Sink i m r = ConduitT i Void m r
Since 0.5.0
type Producer m o = forall i. ConduitT i o m () Source #
Deprecated: Use ConduitT directly
A component which produces a stream of output values, regardless of the
input stream. A Producer
is a generalization of a Source
, and can be
used as either a Source
or a Conduit
.
Since 1.0.0
type Source m o = ConduitT () o m () Source #
Deprecated: Use ConduitT directly
Provides a stream of output values, without consuming any input or producing a final result.
Since 0.5.0
newtype SealedConduitT i o m r Source #
In order to provide for efficient monadic composition, the
ConduitT
type is implemented internally using a technique known
as the codensity transform. This allows for cheap appending, but
makes one case much more expensive: partially running a ConduitT
and that capturing the new state.
This data type is the same as ConduitT
, but does not use the
codensity transform technique.
Since: 1.3.0
SealedConduitT (Pipe i i o () m r) |
newtype ConduitT i o m r Source #
Core datatype of the conduit package. This type represents a general
component which can consume a stream of input values i
, produce a stream
of output values o
, perform actions in the m
monad, and produce a final
result r
. The type synonyms provided here are simply wrappers around this
type.
Since 1.3.0
ConduitT | |
|
Instances
sealConduitT :: ConduitT i o m r -> SealedConduitT i o m r Source #
unsealConduitT :: Monad m => SealedConduitT i o m r -> ConduitT i o m r Source #
connectResume :: Monad m => SealedConduitT () a m () -> ConduitT a Void m r -> m (SealedConduitT () a m (), r) Source #
Connect a Source
to a Sink
until the latter closes. Returns both the
most recent state of the Source
and the result of the Sink
.
Since 0.5.0
catchC :: (MonadUnliftIO m, Exception e) => ConduitT i o m r -> (e -> ConduitT i o m r) -> ConduitT i o m r Source #
Catch all exceptions thrown by the current component of the pipeline.
Note: this will not catch exceptions thrown by other components! For
example, if an exception is thrown in a Source
feeding to a Sink
, and
the Sink
uses catchC
, the exception will not be caught.
Due to this behavior (as well as lack of async exception safety), you
should not try to implement combinators such as onException
in terms of this
primitive function.
Note also that the exception handling will not be applied to any finalizers generated by this conduit.
Since 1.0.11
handleC :: (MonadUnliftIO m, Exception e) => (e -> ConduitT i o m r) -> ConduitT i o m r -> ConduitT i o m r Source #
The same as flip catchC
.
Since 1.0.11
tryC :: (MonadUnliftIO m, Exception e) => ConduitT i o m r -> ConduitT i o m (Either e r) Source #
A version of try
for use within a pipeline. See the comments in catchC
for more details.
Since 1.0.11
zipSinks :: Monad m => ConduitT i Void m r -> ConduitT i Void m r' -> ConduitT i Void m (r, r') Source #
Combines two sinks. The new sink will complete when both input sinks have completed.
Any leftovers are discarded.
Since 0.4.1
zipSources :: Monad m => ConduitT () a m () -> ConduitT () b m () -> ConduitT () (a, b) m () Source #
Combines two sources. The new source will stop producing once either source has been exhausted.
Since 1.0.13
zipSourcesApp :: Monad m => ConduitT () (a -> b) m () -> ConduitT () a m () -> ConduitT () b m () Source #
Combines two sources. The new source will stop producing once either source has been exhausted.
Since 1.0.13
zipConduitApp :: Monad m => ConduitT i o m (x -> y) -> ConduitT i o m x -> ConduitT i o m y Source #
Since 1.0.17
fuseReturnLeftovers :: Monad m => ConduitT a b m () -> ConduitT b c m r -> ConduitT a c m (r, [b]) Source #
Same as normal fusion (e.g. =$=
), except instead of discarding leftovers
from the downstream component, return them.
Since 1.0.17
fuseLeftovers :: Monad m => ([b] -> [a]) -> ConduitT a b m () -> ConduitT b c m r -> ConduitT a c m r Source #
Similar to fuseReturnLeftovers
, but use the provided function to convert
downstream leftovers to upstream leftovers.
Since 1.0.17
connectResumeConduit :: Monad m => SealedConduitT i o m () -> ConduitT o Void m r -> ConduitT i Void m (SealedConduitT i o m (), r) Source #
mergeSource :: Monad m => ConduitT () i m () -> ConduitT a (i, a) m () Source #
Merge a Source
into a Conduit
.
The new conduit will stop processing once either source or upstream have been exhausted.
Turn a Sink
into a Conduit
in the following way:
- All input passed to the
Sink
is yielded downstream. - When the
Sink
finishes processing, the result is passed to the provided to the finalizer function.
Note that the Sink
will stop receiving input as soon as the downstream it
is connected to shuts down.
An example usage would be to write the result of a Sink
to some mutable
variable while allowing other processing to continue.
Since 1.1.0
sourceToList :: Monad m => ConduitT () a m () -> m [a] Source #
Convert a Source
into a list. The basic functionality can be explained as:
sourceToList src = src $$ Data.Conduit.List.consume
However, sourceToList
is able to produce its results lazily, which cannot
be done when running a conduit pipeline in general. Unlike the
Data.Conduit.Lazy
module (in conduit-extra), this function performs no
unsafe I/O operations, and therefore can only be as lazy as the
underlying monad.
Since 1.2.6
connect :: Monad m => ConduitT () a m () -> ConduitT a Void m r -> m r Source #
Equivalent to using runConduit
and .|
together.
Since 1.2.3
Combine two Conduit
s together into a new Conduit
(aka fuse
).
Output from the upstream (left) conduit will be fed into the
downstream (right) conduit. Processing will terminate when
downstream (right) returns.
Leftover data returned from the right Conduit
will be discarded.
Equivalent to fuse
and =$=
, however the latter is deprecated and will
be removed in a future version.
Note that, while this operator looks like categorical composition (from Control.Category), there are a few reasons it's different:
- The position of the type parameters to
ConduitT
do not match. We would need to changeConduitT i o m r
toConduitT r m i o
, which would preclude aMonad
orMonadTrans
instance. - The result value from upstream and downstream are allowed to
differ between upstream and downstream. In other words, we would
need the type signature here to look like
ConduitT a b m r -> ConduitT b c m r -> ConduitT a c m r
. - Due to leftovers, we do not have a left identity in Conduit. This
can be achieved with the underlying
Pipe
datatype, but this is not generally recommended. See https://stackoverflow.com/a/15263700.
Since: 1.2.8
($$) :: Monad m => Source m a -> Sink a m b -> m b infixr 0 Source #
Deprecated: Use runConduit and .|
The connect operator, which pulls data from a source and pushes to a sink.
If you would like to keep the Source
open to be used for other
operations, use the connect-and-resume operator $$+
.
Since 0.4.0
(=$=) :: Monad m => Conduit a m b -> ConduitT b c m r -> ConduitT a c m r infixr 2 Source #
Deprecated: Use .|
Deprecated fusion operator.
Since 0.4.0
runConduit :: Monad m => ConduitT () Void m r -> m r Source #
Run a pipeline until processing completes.
Since 1.2.1
($$+) :: Monad m => ConduitT () a m () -> ConduitT a Void m b -> m (SealedConduitT () a m (), b) infixr 0 Source #
The connect-and-resume operator. This does not close the Source
, but
instead returns it to be used again. This allows a Source
to be used
incrementally in a large program, without forcing the entire program to live
in the Sink
monad.
Mnemonic: connect + do more.
Since 0.5.0
($$++) :: Monad m => SealedConduitT () a m () -> ConduitT a Void m b -> m (SealedConduitT () a m (), b) infixr 0 Source #
Continue processing after usage of $$+
.
Since 0.5.0
($$+-) :: Monad m => SealedConduitT () a m () -> ConduitT a Void m b -> m b infixr 0 Source #
Same as $$++
and connectResume
, but doesn't include the
updated SealedConduitT
.
NOTE In previous versions, this would cause finalizers to run. Since version 1.3.0, there are no finalizers in conduit.
Since 0.5.0
($=+) :: Monad m => SealedConduitT () a m () -> ConduitT a b m () -> SealedConduitT () b m () infixl 1 Source #
Left fusion for a sealed source.
Since 1.0.16
sequenceSources :: (Traversable f, Monad m) => f (ConduitT () o m ()) -> ConduitT () (f o) m () Source #
Coalesce all values yielded by all of the Source
s.
Implemented on top of ZipSource
and as such, it exhibits the same
short-circuiting behavior as ZipSource
. See that data type for more
details. If you want to create a source that yields *all* values from
multiple sources, use sequence_
.
Since 1.0.13
sequenceSinks :: (Traversable f, Monad m) => f (ConduitT i Void m r) -> ConduitT i Void m (f r) Source #
Send incoming values to all of the Sink
providing, and ultimately
coalesce together all return values.
Implemented on top of ZipSink
, see that data type for more details.
Since 1.0.13
(=$$+) :: Monad m => ConduitT a b m () -> ConduitT b Void m r -> ConduitT a Void m (SealedConduitT a b m (), r) infixr 0 Source #
The connect-and-resume operator. This does not close the Conduit
, but
instead returns it to be used again. This allows a Conduit
to be used
incrementally in a large program, without forcing the entire program to live
in the Sink
monad.
Leftover data returned from the Sink
will be discarded.
Mnemonic: connect + do more.
Since 1.0.17
(=$$++) :: Monad m => SealedConduitT i o m () -> ConduitT o Void m r -> ConduitT i Void m (SealedConduitT i o m (), r) infixr 0 Source #
Continue processing after usage of =$$+
. Connect a SealedConduitT
to
a sink and return the output of the sink together with a new
SealedConduitT
.
Since 1.0.17
(=$$+-) :: Monad m => SealedConduitT i o m () -> ConduitT o Void m r -> ConduitT i Void m r infixr 0 Source #
Same as =$$++
, but doesn't include the updated
SealedConduitT
.
NOTE In previous versions, this would cause finalizers to run. Since version 1.3.0, there are no finalizers in conduit.
Since 1.0.17
sequenceConduits :: (Traversable f, Monad m) => f (ConduitT i o m r) -> ConduitT i o m (f r) Source #
Provide identical input to all of the Conduit
s and combine their outputs
into a single stream.
Implemented on top of ZipConduit
, see that data type for more details.
Since 1.0.17
fuseBoth :: Monad m => ConduitT a b m r1 -> ConduitT b c m r2 -> ConduitT a c m (r1, r2) Source #
Fuse two ConduitT
s together, and provide the return value of both. Note
that this will force the entire upstream ConduitT
to be run to produce the
result value, even if the downstream terminates early.
Since 1.1.5
fuseBothMaybe :: Monad m => ConduitT a b m r1 -> ConduitT b c m r2 -> ConduitT a c m (Maybe r1, r2) Source #
Like fuseBoth
, but does not force consumption of the Producer
.
In the case that the Producer
terminates, the result value is
provided as a Just
value. If it does not terminate, then a
Nothing
value is returned.
One thing to note here is that "termination" here only occurs if the
Producer
actually yields a Nothing
value. For example, with the
Producer
mapM_ yield [1..5]
, if five values are requested, the
Producer
has not yet terminated. Termination only occurs when the
sixth value is awaited for and the Producer
signals termination.
Since 1.2.4
fuseUpstream :: Monad m => ConduitT a b m r -> ConduitT b c m () -> ConduitT a c m r Source #
Same as fuseBoth
, but ignore the return value from the downstream
Conduit
. Same caveats of forced consumption apply.
Since 1.1.5
runConduitPure :: ConduitT () Void Identity r -> r Source #
Run a pure pipeline until processing completes, i.e. a pipeline
with Identity
as the base monad. This is equivalient to
runIdentity . runConduit
.
Since: 1.2.8
runConduitRes :: MonadUnliftIO m => ConduitT () Void (ResourceT m) r -> m r Source #
Run a pipeline which acquires resources with ResourceT
, and
then run the ResourceT
transformer. This is equivalent to
runResourceT . runConduit
.
Since: 1.2.8
Fusion (highly experimental!!!)
module Data.Conduit.Internal.Fusion