-- | Partition functions working on lists of integers. -- -- It's not recommended to use this module directly. {-# LANGUAGE CPP, BangPatterns, ScopedTypeVariables #-} module Math.Combinat.Partitions.Integer.IntList where -------------------------------------------------------------------------------- import Data.List import Control.Monad ( liftM , replicateM ) import Math.Combinat.Numbers ( factorial , binomial , multinomial ) import Math.Combinat.Helper import Data.Array import System.Random import Math.Combinat.Partitions.Integer.Count ( countPartitions ) -------------------------------------------------------------------------------- -- * Type and basic stuff -- | Sorts the input, and cuts the nonpositive elements. _mkPartition :: [Int] -> [Int] _mkPartition xs = sortBy (reverseCompare) $ filter (>0) xs -- | This returns @True@ if the input is non-increasing sequence of -- /positive/ integers (possibly empty); @False@ otherwise. -- _isPartition :: [Int] -> Bool _isPartition [] = True _isPartition [x] = x > 0 _isPartition (x:xs@(y:_)) = (x >= y) && _isPartition xs _dualPartition :: [Int] -> [Int] _dualPartition [] = [] _dualPartition xs = go 0 (_diffSequence xs) [] where go !i (d:ds) acc = go (i+1) ds (d:acc) go n [] acc = finish n acc finish !j (k:ks) = replicate k j ++ finish (j-1) ks finish _ [] = [] -------------------------------------------------------------------------------- {- -- more variations: _dualPartition_b :: [Int] -> [Int] _dualPartition_b [] = [] _dualPartition_b xs = go 1 (diffSequence xs) [] where go !i (d:ds) acc = go (i+1) ds ((d,i):acc) go _ [] acc = concatMap (\(d,i) -> replicate d i) acc _dualPartition_c :: [Int] -> [Int] _dualPartition_c [] = [] _dualPartition_c xs = reverse $ concat $ zipWith f [1..] (diffSequence xs) where f _ 0 = [] f k d = replicate d k -} -- | A simpler, but bit slower (about twice?) implementation of dual partition _dualPartitionNaive :: [Int] -> [Int] _dualPartitionNaive [] = [] _dualPartitionNaive xs@(k:_) = [ length $ filter (>=i) xs | i <- [1..k] ] -- | From a sequence @[a1,a2,..,an]@ computes the sequence of differences -- @[a1-a2,a2-a3,...,an-0]@ _diffSequence :: [Int] -> [Int] _diffSequence = go where go (x:ys@(y:_)) = (x-y) : go ys go [x] = [x] go [] = [] -- | Example: -- -- > _elements [5,4,1] == -- > [ (1,1), (1,2), (1,3), (1,4), (1,5) -- > , (2,1), (2,2), (2,3), (2,4) -- > , (3,1) -- > ] -- _elements :: [Int] -> [(Int,Int)] _elements shape = [ (i,j) | (i,l) <- zip [1..] shape, j<-[1..l] ] --------------------------------------------------------------------------------- -- * Exponential form -- | We convert a partition to exponential form. -- @(i,e)@ mean @(i^e)@; for example @[(1,4),(2,3)]@ corresponds to @(1^4)(2^3) = [2,2,2,1,1,1,1]@. Another example: -- -- > toExponentialForm (Partition [5,5,3,2,2,2,2,1,1]) == [(1,2),(2,4),(3,1),(5,2)] -- _toExponentialForm :: [Int] -> [(Int,Int)] _toExponentialForm = reverse . map (\xs -> (head xs,length xs)) . group _fromExponentialForm :: [(Int,Int)] -> [Int] _fromExponentialForm = sortBy reverseCompare . go where go ((j,e):rest) = replicate e j ++ go rest go [] = [] --------------------------------------------------------------------------------- -- * Generating partitions -- | Partitions of @d@, as lists _partitions :: Int -> [[Int]] _partitions d = go d d where go _ 0 = [[]] go !h !n = [ a:as | a<-[1..min n h], as <- go a (n-a) ] -- | All integer partitions up to a given degree (that is, all integer partitions whose sum is less or equal to @d@) _allPartitions :: Int -> [[Int]] _allPartitions d = concat [ _partitions i | i <- [0..d] ] -- | All integer partitions up to a given degree (that is, all integer partitions whose sum is less or equal to @d@), -- grouped by weight _allPartitionsGrouped :: Int -> [[[Int]]] _allPartitionsGrouped d = [ _partitions i | i <- [0..d] ] --------------------------------------------------------------------------------- -- | Integer partitions of @d@, fitting into a given rectangle, as lists. _partitions' :: (Int,Int) -- ^ (height,width) -> Int -- ^ d -> [[Int]] _partitions' _ 0 = [[]] _partitions' ( 0 , _) d = if d==0 then [[]] else [] _partitions' ( _ , 0) d = if d==0 then [[]] else [] _partitions' (!h ,!w) d = [ i:xs | i <- [1..min d h] , xs <- _partitions' (i,w-1) (d-i) ] --------------------------------------------------------------------------------- -- * Random partitions -- | Uniformly random partition of the given weight. -- -- NOTE: This algorithm is effective for small @n@-s (say @n@ up to a few hundred \/ one thousand it should work nicely), -- and the first time it is executed may be slower (as it needs to build the table 'partitionCountList' first) -- -- Algorithm of Nijenhuis and Wilf (1975); see -- -- * Knuth Vol 4A, pre-fascicle 3B, exercise 47; -- -- * Nijenhuis and Wilf: Combinatorial Algorithms for Computers and Calculators, chapter 10 -- _randomPartition :: RandomGen g => Int -> g -> ([Int], g) _randomPartition n g = (p, g') where ([p], g') = _randomPartitions 1 n g -- | Generates several uniformly random partitions of @n@ at the same time. -- Should be a little bit faster then generating them individually. -- _randomPartitions :: forall g. RandomGen g => Int -- ^ number of partitions to generate -> Int -- ^ the weight of the partitions -> g -> ([[Int]], g) _randomPartitions howmany n = runRand $ replicateM howmany (worker n []) where cnt = countPartitions finish :: [(Int,Int)] -> [Int] finish = _mkPartition . concatMap f where f (j,d) = replicate j d fi :: Int -> Integer fi = fromIntegral find_jd :: Int -> Integer -> (Int,Int) find_jd m capm = go 0 [ (j,d) | j<-[1..n], d<-[1..div m j] ] where go :: Integer -> [(Int,Int)] -> (Int,Int) go !s [] = (1,1) -- ?? go !s [jd] = jd -- ?? go !s (jd@(j,d):rest) = if s' > capm then jd else go s' rest where s' = s + fi d * cnt (m - j*d) worker :: Int -> [(Int,Int)] -> Rand g [Int] worker 0 acc = return $ finish acc worker !m acc = do capm <- randChoose (0, (fi m) * cnt m - 1) let jd@(!j,!d) = find_jd m capm worker (m - j*d) (jd:acc) --------------------------------------------------------------------------------- -- * Dominance order -- | @q \`dominates\` p@ returns @True@ if @q >= p@ in the dominance order of partitions -- (this is partial ordering on the set of partitions of @n@). -- -- See <http://en.wikipedia.org/wiki/Dominance_order> -- _dominates :: [Int] -> [Int] -> Bool _dominates qs ps = and $ zipWith (>=) (sums (qs ++ repeat 0)) (sums ps) where sums = scanl (+) 0 -- | Lists all partitions of the same weight as @lambda@ and also dominated by @lambda@ -- (that is, all partial sums are less or equal): -- -- > dominatedPartitions lam == [ mu | mu <- partitions (weight lam), lam `dominates` mu ] -- _dominatedPartitions :: [Int] -> [[Int]] _dominatedPartitions [] = [[]] _dominatedPartitions lambda = go (head lambda) w dsums 0 where n = length lambda w = sum lambda dsums = scanl1 (+) (lambda ++ repeat 0) go _ 0 _ _ = [[]] go !h !w (!d:ds) !e | w > 0 = [ (a:as) | a <- [1..min h (d-e)] , as <- go a (w-a) ds (e+a) ] | w == 0 = [[]] | w < 0 = error "_dominatedPartitions: fatal error; shouldn't happen" -- | Lists all partitions of the sime weight as @mu@ and also dominating @mu@ -- (that is, all partial sums are greater or equal): -- -- > dominatingPartitions mu == [ lam | lam <- partitions (weight mu), lam `dominates` mu ] -- _dominatingPartitions :: [Int] -> [[Int]] _dominatingPartitions [] = [[]] _dominatingPartitions mu = go w w dsums 0 where n = length mu w = sum mu dsums = scanl1 (+) (mu ++ repeat 0) go _ 0 _ _ = [[]] go !h !w (!d:ds) !e | w > 0 = [ (a:as) | a <- [max 0 (d-e)..min h w] , as <- go a (w-a) ds (e+a) ] | w == 0 = [[]] | w < 0 = error "_dominatingPartitions: fatal error; shouldn't happen" -------------------------------------------------------------------------------- -- * Partitions with given number of parts -- | Lists partitions of @n@ into @k@ parts. -- -- > sort (partitionsWithKParts k n) == sort [ p | p <- partitions n , numberOfParts p == k ] -- -- Naive recursive algorithm. -- _partitionsWithKParts :: Int -- ^ @k@ = number of parts -> Int -- ^ @n@ = the integer we partition -> [[Int]] _partitionsWithKParts k n = go n k n where {- h = max height k = number of parts n = integer -} go !h !k !n | k < 0 = [] | k == 0 = if h>=0 && n==0 then [[] ] else [] | k == 1 = if h>=n && n>=1 then [[n]] else [] | otherwise = [ a:p | a <- [1..(min h (n-k+1))] , p <- go a (k-1) (n-a) ] -------------------------------------------------------------------------------- -- * Partitions with only odd\/distinct parts -- | Partitions of @n@ with only odd parts _partitionsWithOddParts :: Int -> [[Int]] _partitionsWithOddParts d = (go d d) where go _ 0 = [[]] go !h !n = [ a:as | a<-[1,3..min n h], as <- go a (n-a) ] {- -- | Partitions of @n@ with only even parts -- -- Note: this is not very interesting, it's just @(map.map) (2*) $ _partitions (div n 2)@ -- _partitionsWithEvenParts :: Int -> [[Int]] _partitionsWithEvenParts d = (go d d) where go _ 0 = [[]] go !h !n = [ a:as | a<-[2,4..min n h], as <- go a (n-a) ] -} -- | Partitions of @n@ with distinct parts. -- -- Note: -- -- > length (partitionsWithDistinctParts d) == length (partitionsWithOddParts d) -- _partitionsWithDistinctParts :: Int -> [[Int]] _partitionsWithDistinctParts d = (go d d) where go _ 0 = [[]] go !h !n = [ a:as | a<-[1..min n h], as <- go (a-1) (n-a) ] -------------------------------------------------------------------------------- -- * Sub- and super-partitions of a given partition -- | Returns @True@ of the first partition is a subpartition (that is, fit inside) of the second. -- This includes equality _isSubPartitionOf :: [Int] -> [Int] -> Bool _isSubPartitionOf ps qs = and $ zipWith (<=) ps (qs ++ repeat 0) -- | This is provided for convenience\/completeness only, as: -- -- > isSuperPartitionOf q p == isSubPartitionOf p q -- _isSuperPartitionOf :: [Int] -> [Int] -> Bool _isSuperPartitionOf qs ps = and $ zipWith (<=) ps (qs ++ repeat 0) -- | Sub-partitions of a given partition with the given weight: -- -- > sort (subPartitions d q) == sort [ p | p <- partitions d, isSubPartitionOf p q ] -- _subPartitions :: Int -> [Int] -> [[Int]] _subPartitions d big | null big = if d==0 then [[]] else [] | d > sum' big = [] | d < 0 = [] | otherwise = go d (head big) big where go :: Int -> Int -> [Int] -> [[Int]] go !k !h [] = if k==0 then [[]] else [] go !k !h (b:bs) | k<0 || h<0 = [] | k==0 = [[]] | h==0 = [] | otherwise = [ this:rest | this <- [1..min h b] , rest <- go (k-this) this bs ] ---------------------------------------- -- | All sub-partitions of a given partition _allSubPartitions :: [Int] -> [[Int]] _allSubPartitions big | null big = [[]] | otherwise = go (head big) big where go _ [] = [[]] go !h (b:bs) | h==0 = [] | otherwise = [] : [ this:rest | this <- [1..min h b] , rest <- go this bs ] ---------------------------------------- -- | Super-partitions of a given partition with the given weight: -- -- > sort (superPartitions d p) == sort [ q | q <- partitions d, isSubPartitionOf p q ] -- _superPartitions :: Int -> [Int] -> [[Int]] _superPartitions dd small | dd < w0 = [] | null small = _partitions dd | otherwise = go dd w1 dd (small ++ repeat 0) where w0 = sum' small w1 = w0 - head small -- d = remaining weight of the outer partition we are constructing -- w = remaining weight of the inner partition (we need to reserve at least this amount) -- h = max height (decreasing) go !d !w !h (!a:as@(b:_)) | d < 0 = [] | d == 0 = if a == 0 then [[]] else [] | otherwise = [ this:rest | this <- [max 1 a .. min h (d-w)] , rest <- go (d-this) (w-b) this as ] -------------------------------------------------------------------------------- -- * The Pieri rule -- | The Pieri rule computes @s[lambda]*h[n]@ as a sum of @s[mu]@-s (each with coefficient 1). -- -- See for example <http://en.wikipedia.org/wiki/Pieri's_formula> -- -- | We assume here that @lambda@ is a partition (non-increasing sequence of /positive/ integers)! _pieriRule :: [Int] -> Int -> [[Int]] _pieriRule lambda n | n == 0 = [lambda] | n < 0 = [] | otherwise = go n diffs dsums (lambda++[0]) where diffs = n : _diffSequence lambda -- maximum we can add to a given row dsums = reverse $ scanl1 (+) (reverse diffs) -- partial sums of remaining total we can add go !k (d:ds) (p:ps@(q:_)) (l:ls) | k > p = [] | otherwise = [ h:tl | a <- [ max 0 (k-q) .. min d k ] , let h = l+a , tl <- go (k-a) ds ps ls ] go !k [d] _ [l] = if k <= d then if l+k>0 then [[l+k]] else [[]] else [] go !k [] _ _ = if k==0 then [[]] else [] -- | The dual Pieri rule computes @s[lambda]*e[n]@ as a sum of @s[mu]@-s (each with coefficient 1) _dualPieriRule :: [Int] -> Int -> [[Int]] _dualPieriRule lam n = map _dualPartition $ _pieriRule (_dualPartition lam) n --------------------------------------------------------------------------------