-- | Ribbons (also called border strips, skew hooks, skew rim hooks, etc...).
--
-- Ribbons are skew partitions that are 1) connected, 2) do not contain
-- 2x2 blocks. Intuitively, they are 1-box wide continuous strips on
-- the boundary.
--
-- An alternative definition that they are skew partitions whose projection
-- to the diagonal line is a continuous segment of width 1.

{-# LANGUAGE BangPatterns, ScopedTypeVariables #-}
module Math.Combinat.Partitions.Skew.Ribbon where

--------------------------------------------------------------------------------

import Data.Array
import Data.List
import Data.Maybe

import qualified Data.Map as Map

import Math.Combinat.Sets
import Math.Combinat.Partitions.Integer
import Math.Combinat.Partitions.Integer.IntList ( _diffSequence )
import Math.Combinat.Partitions.Skew
import Math.Combinat.Tableaux
import Math.Combinat.Tableaux.LittlewoodRichardson
import Math.Combinat.Tableaux.GelfandTsetlin
import Math.Combinat.Helper

--------------------------------------------------------------------------------
-- * Corners (TODO: move to Partitions - but we also want to refactor that)

-- | The coordinates of the outer corners 
outerCorners :: Partition -> [(Int,Int)]
outerCorners :: Partition -> [(Int, Int)]
outerCorners = Partition -> [(Int, Int)]
outerCornerBoxes

-- | The coordinates of the inner corners, including the two on the two coordinate
-- axes. For the partition @[5,4,1]@ the result should be @[(0,5),(1,4),(2,1),(3,0)]@
extendedInnerCorners:: Partition -> [(Int,Int)]
extendedInnerCorners :: Partition -> [(Int, Int)]
extendedInnerCorners (Partition_ [Int]
ps) = (Int
0, forall a. [a] -> a
head [Int]
ps') forall a. a -> [a] -> [a]
: forall a. [Maybe a] -> [a]
catMaybes [Maybe (Int, Int)]
mbCorners where
  ps' :: [Int]
ps' = [Int]
ps forall a. [a] -> [a] -> [a]
++ [Int
0]
  mbCorners :: [Maybe (Int, Int)]
mbCorners = forall a b c d. (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWith3 forall {a} {a} {b}. (Ord a, Num a) => a -> b -> a -> Maybe (a, b)
f [Int
1..] (forall a. [a] -> [a]
tail [Int]
ps') ([Int] -> [Int]
_diffSequence [Int]
ps') 
  f :: a -> b -> a -> Maybe (a, b)
f !a
y !b
x !a
k = if a
k forall a. Ord a => a -> a -> Bool
> a
0 then forall a. a -> Maybe a
Just (a
y,b
x) else forall a. Maybe a
Nothing

-- | Sequence of all the (extended) corners
extendedCornerSequence :: Partition -> [(Int,Int)]
extendedCornerSequence :: Partition -> [(Int, Int)]
extendedCornerSequence (Partition_ [Int]
ps) = {- if null ps then [(0,0)] else -} forall a. [a] -> [a] -> [a]
interleave [(Int, Int)]
inner [(Int, Int)]
outer where
  inner :: [(Int, Int)]
inner = (Int
0, forall a. [a] -> a
head [Int]
ps') forall a. a -> [a] -> [a]
: [ (Int
y,Int
x) | (Int
y,Int
x,Int
k) <- forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [Int
1..] (forall a. [a] -> [a]
tail [Int]
ps') [Int]
diff , Int
kforall a. Ord a => a -> a -> Bool
>Int
0 ]
  outer :: [(Int, Int)]
outer =                 [ (Int
y,Int
x) | (Int
y,Int
x,Int
k) <- forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [Int
1..] [Int]
ps'        [Int]
diff , Int
kforall a. Ord a => a -> a -> Bool
>Int
0 ]
  diff :: [Int]
diff = [Int] -> [Int]
_diffSequence [Int]
ps'
  ps' :: [Int]
ps' = [Int]
ps forall a. [a] -> [a] -> [a]
++ [Int
0]

-- | The inner corner /boxes/ of the partition. Coordinates are counted from 1
-- (cf.the 'elements' function), and the first coordinate is the row, the second
-- the column (in English notation).
--
-- For the partition @[5,4,1]@ the result should be @[(1,4),(2,1)]@
--
-- > innerCornerBoxes lambda == (tail $ init $ extendedInnerCorners lambda)
--
innerCornerBoxes :: Partition -> [(Int,Int)]
innerCornerBoxes :: Partition -> [(Int, Int)]
innerCornerBoxes (Partition_ [Int]
ps) = 
  case [Int]
ps of
    []  -> []
    [Int]
_   -> forall a. [Maybe a] -> [a]
catMaybes [Maybe (Int, Int)]
mbCorners 
  where
    mbCorners :: [Maybe (Int, Int)]
mbCorners = forall a b c d. (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWith3 forall {a} {a} {b}. (Ord a, Num a) => a -> b -> a -> Maybe (a, b)
f [Int
1..] (forall a. [a] -> [a]
tail [Int]
ps) ([Int] -> [Int]
_diffSequence [Int]
ps) 
    f :: a -> b -> a -> Maybe (a, b)
f !a
y !b
x !a
k = if a
k forall a. Ord a => a -> a -> Bool
> a
0 then forall a. a -> Maybe a
Just (a
y,b
x) else forall a. Maybe a
Nothing

-- | The outer corner /boxes/ of the partition. Coordinates are counted from 1
-- (cf.the 'elements' function), and the first coordinate is the row, the second
-- the column (in English notation).
--
-- For the partition @[5,4,1]@ the result should be @[(1,5),(2,4),(3,1)]@
outerCornerBoxes :: Partition -> [(Int,Int)]
outerCornerBoxes :: Partition -> [(Int, Int)]
outerCornerBoxes (Partition_ [Int]
ps) = forall a. [Maybe a] -> [a]
catMaybes [Maybe (Int, Int)]
mbCorners where
  mbCorners :: [Maybe (Int, Int)]
mbCorners = forall a b c d. (a -> b -> c -> d) -> [a] -> [b] -> [c] -> [d]
zipWith3 forall {a} {a} {b}. (Ord a, Num a) => a -> b -> a -> Maybe (a, b)
f [Int
1..] [Int]
ps ([Int] -> [Int]
_diffSequence [Int]
ps) 
  f :: a -> b -> a -> Maybe (a, b)
f !a
y !b
x !a
k = if a
k forall a. Ord a => a -> a -> Bool
> a
0 then forall a. a -> Maybe a
Just (a
y,b
x) else forall a. Maybe a
Nothing

-- | The outer and inner corner boxes interleaved, so together they form 
-- the turning points of the full border strip
cornerBoxSequence :: Partition -> [(Int,Int)]
cornerBoxSequence :: Partition -> [(Int, Int)]
cornerBoxSequence (Partition_ [Int]
ps) = if forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Int]
ps then [] else forall a. [a] -> [a] -> [a]
interleave [(Int, Int)]
outer [(Int, Int)]
inner where
  inner :: [(Int, Int)]
inner = [ (Int
y,Int
x) | (Int
y,Int
x,Int
k) <- forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [Int
1..] [Int]
tailps [Int]
diff , Int
kforall a. Ord a => a -> a -> Bool
>Int
0 ]
  outer :: [(Int, Int)]
outer = [ (Int
y,Int
x) | (Int
y,Int
x,Int
k) <- forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [Int
1..] [Int]
ps     [Int]
diff , Int
kforall a. Ord a => a -> a -> Bool
>Int
0 ]
  diff :: [Int]
diff = [Int] -> [Int]
_diffSequence [Int]
ps
  tailps :: [Int]
tailps = case [Int]
ps of { [] -> [] ; [Int]
_-> forall a. [a] -> [a]
tail [Int]
ps }

--------------------------------------------------------------------------------

-- | Naive (and very slow) implementation of @innerCornerBoxes@, for testing purposes
innerCornerBoxesNaive :: Partition -> [(Int,Int)]
innerCornerBoxesNaive :: Partition -> [(Int, Int)]
innerCornerBoxesNaive Partition
part = forall a. (a -> Bool) -> [a] -> [a]
filter (Int, Int) -> Bool
f [(Int, Int)]
boxes where
  boxes :: [(Int, Int)]
boxes = Partition -> [(Int, Int)]
elements Partition
part
  f :: (Int, Int) -> Bool
f (Int
y,Int
x) =       forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
elem (Int
yforall a. Num a => a -> a -> a
+Int
1,Int
x  ) [(Int, Int)]
boxes
          Bool -> Bool -> Bool
&&      forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
elem (Int
y  ,Int
xforall a. Num a => a -> a -> a
+Int
1) [(Int, Int)]
boxes
          Bool -> Bool -> Bool
&& Bool -> Bool
not (forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
elem (Int
yforall a. Num a => a -> a -> a
+Int
1,Int
xforall a. Num a => a -> a -> a
+Int
1) [(Int, Int)]
boxes)

-- | Naive (and very slow) implementation of @outerCornerBoxes@, for testing purposes
outerCornerBoxesNaive :: Partition -> [(Int,Int)]
outerCornerBoxesNaive :: Partition -> [(Int, Int)]
outerCornerBoxesNaive Partition
part = forall a. (a -> Bool) -> [a] -> [a]
filter (Int, Int) -> Bool
f [(Int, Int)]
boxes where
  boxes :: [(Int, Int)]
boxes = Partition -> [(Int, Int)]
elements Partition
part
  f :: (Int, Int) -> Bool
f (Int
y,Int
x) =  Bool -> Bool
not (forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
elem (Int
yforall a. Num a => a -> a -> a
+Int
1,Int
x  ) [(Int, Int)]
boxes)
          Bool -> Bool -> Bool
&& Bool -> Bool
not (forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
elem (Int
y  ,Int
xforall a. Num a => a -> a -> a
+Int
1) [(Int, Int)]
boxes)
          Bool -> Bool -> Bool
&& Bool -> Bool
not (forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
elem (Int
yforall a. Num a => a -> a -> a
+Int
1,Int
xforall a. Num a => a -> a -> a
+Int
1) [(Int, Int)]
boxes)

--------------------------------------------------------------------------------
-- * Ribbon

-- | A skew partition is a a ribbon (or border strip) if and only if projected
-- to the diagonals the result is an interval.
isRibbon :: SkewPartition -> Bool
isRibbon :: SkewPartition -> Bool
isRibbon SkewPartition
skewp = forall {a} {a}.
(Eq a, Eq a, Num a, Num a) =>
Maybe a -> [(a, a)] -> Bool
go forall a. Maybe a
Nothing [(Int, Integer)]
proj where
  proj :: [(Int, Integer)]
proj = forall k a. Map k a -> [(k, a)]
Map.toList 
       forall a b. (a -> b) -> a -> b
$ forall k a. Ord k => (a -> a -> a) -> [(k, a)] -> Map k a
Map.fromListWith forall a. Num a => a -> a -> a
(+) [ (Int
xforall a. Num a => a -> a -> a
-Int
y , Integer
1) | (Int
y,Int
x) <- SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skewp ]
  go :: Maybe a -> [(a, a)] -> Bool
go Maybe a
Nothing   []            = Bool
False
  go (Just a
_)  []            = Bool
True
  go Maybe a
Nothing   ((a
a,a
h):[(a, a)]
rest)  = (a
h forall a. Eq a => a -> a -> Bool
== a
1) Bool -> Bool -> Bool
&&               Maybe a -> [(a, a)] -> Bool
go (forall a. a -> Maybe a
Just a
a) [(a, a)]
rest  
  go (Just a
b)  ((a
a,a
h):[(a, a)]
rest)  = (a
h forall a. Eq a => a -> a -> Bool
== a
1) Bool -> Bool -> Bool
&& (a
a forall a. Eq a => a -> a -> Bool
== a
bforall a. Num a => a -> a -> a
+a
1) Bool -> Bool -> Bool
&& Maybe a -> [(a, a)] -> Bool
go (forall a. a -> Maybe a
Just a
a) [(a, a)]
rest

{-
-- | Naive (and slow) reference implementation of "isRibbon"
isRibbonNaive :: SkewPartition -> Bool
isRibbonNaive skewp = isConnectedSkewPartition skewp && no2x2 where
  boxes = skewPartitionElements skewp
  no2x2 = and 
    [ not ( elem (y+1,x  ) boxes &&             
            elem (y  ,x+1) boxes &&  
            elem (y+1,x+1) boxes )        -- no 2x2 blocks 
    | (y,x) <- boxes 
    ]
-}

toRibbon :: SkewPartition -> Maybe Ribbon
toRibbon :: SkewPartition -> Maybe Ribbon
toRibbon SkewPartition
skew = 
  if Bool -> Bool
not (SkewPartition -> Bool
isRibbon SkewPartition
skew)
    then forall a. Maybe a
Nothing
    else forall a. a -> Maybe a
Just Ribbon
ribbon 
  where
    ribbon :: Ribbon
ribbon =  Ribbon
      { rbShape :: SkewPartition
rbShape  = SkewPartition
skew
      , rbLength :: Int
rbLength = SkewPartition -> Int
skewPartitionWeight SkewPartition
skew
      , rbHeight :: Int
rbHeight = Int
height
      , rbWidth :: Int
rbWidth  = Int
width
      }
    elems :: [(Int, Int)]
elems  = SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew
    height :: Int
height = (forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Eq a => [a] -> [[a]]
group forall a b. (a -> b) -> a -> b
$ forall a. Ord a => [a] -> [a]
sort forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst [(Int, Int)]
elems) forall a. Num a => a -> a -> a
- Int
1    -- TODO: optimize these
    width :: Int
width  = (forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Eq a => [a] -> [[a]]
group forall a b. (a -> b) -> a -> b
$ forall a. Ord a => [a] -> [a]
sort forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd [(Int, Int)]
elems) forall a. Num a => a -> a -> a
- Int
1

-- | Border strips (or ribbons) are defined to be skew partitions which are 
-- connected and do not contain 2x2 blocks.
-- 
-- The /length/ of a border strip is the number of boxes it contains,
-- and its /height/ is defined to be one less than the number of rows
-- (in English notation) it occupies. The /width/ is defined symmetrically to 
-- be one less than the number of columns it occupies.
--
data Ribbon = Ribbon
  { Ribbon -> SkewPartition
rbShape  :: SkewPartition
  , Ribbon -> Int
rbLength :: Int
  , Ribbon -> Int
rbHeight :: Int
  , Ribbon -> Int
rbWidth  :: Int
  }
  deriving (Ribbon -> Ribbon -> Bool
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Ribbon -> Ribbon -> Bool
$c/= :: Ribbon -> Ribbon -> Bool
== :: Ribbon -> Ribbon -> Bool
$c== :: Ribbon -> Ribbon -> Bool
Eq,Eq Ribbon
Ribbon -> Ribbon -> Bool
Ribbon -> Ribbon -> Ordering
Ribbon -> Ribbon -> Ribbon
forall a.
Eq a
-> (a -> a -> Ordering)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> Bool)
-> (a -> a -> a)
-> (a -> a -> a)
-> Ord a
min :: Ribbon -> Ribbon -> Ribbon
$cmin :: Ribbon -> Ribbon -> Ribbon
max :: Ribbon -> Ribbon -> Ribbon
$cmax :: Ribbon -> Ribbon -> Ribbon
>= :: Ribbon -> Ribbon -> Bool
$c>= :: Ribbon -> Ribbon -> Bool
> :: Ribbon -> Ribbon -> Bool
$c> :: Ribbon -> Ribbon -> Bool
<= :: Ribbon -> Ribbon -> Bool
$c<= :: Ribbon -> Ribbon -> Bool
< :: Ribbon -> Ribbon -> Bool
$c< :: Ribbon -> Ribbon -> Bool
compare :: Ribbon -> Ribbon -> Ordering
$ccompare :: Ribbon -> Ribbon -> Ordering
Ord,Int -> Ribbon -> ShowS
[Ribbon] -> ShowS
Ribbon -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Ribbon] -> ShowS
$cshowList :: [Ribbon] -> ShowS
show :: Ribbon -> String
$cshow :: Ribbon -> String
showsPrec :: Int -> Ribbon -> ShowS
$cshowsPrec :: Int -> Ribbon -> ShowS
Show)

--------------------------------------------------------------------------------
-- * Inner border strips

-- | Ribbons (or border strips) are defined to be skew partitions which are 
-- connected and do not contain 2x2 blocks. This function returns the
-- border strips whose outer partition is the given one.
innerRibbons :: Partition -> [Ribbon]
innerRibbons :: Partition -> [Ribbon]
innerRibbons part :: Partition
part@(Partition [Int]
ps) = if forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Int]
ps then [] else [Ribbon]
strips where

  strips :: [Ribbon]
strips  = [ Int -> Int -> Ribbon
mkStrip Int
i Int
j 
            | Int
i<-[Int
1..Int
n] , BorderBox -> Bool
_canStartStrip (Array Int BorderBox
annArrforall i e. Ix i => Array i e -> i -> e
!Int
i)
            , Int
j<-[Int
i..Int
n] , BorderBox -> Bool
_canEndStrip   (Array Int BorderBox
annArrforall i e. Ix i => Array i e -> i -> e
!Int
j)
            ]

  n :: Int
n       = forall (t :: * -> *) a. Foldable t => t a -> Int
length [BorderBox]
annList
  annList :: [BorderBox]
annList = Partition -> [BorderBox]
annotatedInnerBorderStrip Partition
part
  annArr :: Array Int BorderBox
annArr  = forall i e. Ix i => (i, i) -> [e] -> Array i e
listArray (Int
1,Int
n) [BorderBox]
annList

  mkStrip :: Int -> Int -> Ribbon
mkStrip !Int
i1 !Int
i2 = SkewPartition -> Int -> Int -> Int -> Ribbon
Ribbon SkewPartition
shape Int
len Int
height Int
width where
    ps' :: [Int]
ps'   = [Int]
ps forall a. [a] -> [a] -> [a]
++ [Int
0]
    shape :: SkewPartition
shape = [(Int, Int)] -> SkewPartition
SkewPartition [ (Int
pforall a. Num a => a -> a -> a
-Int
k,Int
k) | (Int
i,Int
p,Int
q) <- forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [Int
1..] [Int]
ps (forall a. [a] -> [a]
tail [Int]
ps') , let k :: Int
k = Int -> Int -> Int -> Int
indent Int
i Int
p Int
q ] 
    indent :: Int -> Int -> Int -> Int
indent !Int
i !Int
p !Int
q 
      | Int
i forall a. Ord a => a -> a -> Bool
<  Int
y1    = Int
0
      | Int
i forall a. Ord a => a -> a -> Bool
>  Int
y2    = Int
0
      | Int
i forall a. Eq a => a -> a -> Bool
== Int
y2    = Int
p forall a. Num a => a -> a -> a
- Int
x2 forall a. Num a => a -> a -> a
+ Int
1     -- the order is important here !!!
      | Bool
otherwise  = Int
p forall a. Num a => a -> a -> a
- Int
q  forall a. Num a => a -> a -> a
+ Int
1     -- because of the case y1 == y2 == i

    len :: Int
len    = Int
i2 forall a. Num a => a -> a -> a
- Int
i1 forall a. Num a => a -> a -> a
+ Int
1
    height :: Int
height = Int
y2 forall a. Num a => a -> a -> a
- Int
y1
    width :: Int
width  = Int
x1 forall a. Num a => a -> a -> a
- Int
x2
    BorderBox Bool
_ Bool
_ Int
y1 Int
x1 = Array Int BorderBox
annArr forall i e. Ix i => Array i e -> i -> e
! Int
i1
    BorderBox Bool
_ Bool
_ Int
y2 Int
x2 = Array Int BorderBox
annArr forall i e. Ix i => Array i e -> i -> e
! Int
i2

-- | Inner border strips (or ribbons) of the given length
innerRibbonsOfLength :: Partition -> Int -> [Ribbon]
innerRibbonsOfLength :: Partition -> Int -> [Ribbon]
innerRibbonsOfLength part :: Partition
part@(Partition [Int]
ps) Int
givenLength = if forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Int]
ps then [] else [Ribbon]
strips where

  strips :: [Ribbon]
strips  = [ Int -> Int -> Ribbon
mkStrip Int
i Int
j 
            | Int
i<-[Int
1..Int
n] , BorderBox -> Bool
_canStartStrip (Array Int BorderBox
annArrforall i e. Ix i => Array i e -> i -> e
!Int
i)
            , Int
j<-[Int
i..Int
n] , BorderBox -> Bool
_canEndStrip   (Array Int BorderBox
annArrforall i e. Ix i => Array i e -> i -> e
!Int
j)
            , Int
jforall a. Num a => a -> a -> a
-Int
iforall a. Num a => a -> a -> a
+Int
1 forall a. Eq a => a -> a -> Bool
== Int
givenLength
            ]

  n :: Int
n       = forall (t :: * -> *) a. Foldable t => t a -> Int
length [BorderBox]
annList
  annList :: [BorderBox]
annList = Partition -> [BorderBox]
annotatedInnerBorderStrip Partition
part
  annArr :: Array Int BorderBox
annArr  = forall i e. Ix i => (i, i) -> [e] -> Array i e
listArray (Int
1,Int
n) [BorderBox]
annList

  mkStrip :: Int -> Int -> Ribbon
mkStrip !Int
i1 !Int
i2 = SkewPartition -> Int -> Int -> Int -> Ribbon
Ribbon SkewPartition
shape Int
givenLength Int
height Int
width where
    ps' :: [Int]
ps'   = [Int]
ps forall a. [a] -> [a] -> [a]
++ [Int
0]
    shape :: SkewPartition
shape = [(Int, Int)] -> SkewPartition
SkewPartition [ (Int
pforall a. Num a => a -> a -> a
-Int
k,Int
k) | (Int
i,Int
p,Int
q) <- forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [Int
1..] [Int]
ps (forall a. [a] -> [a]
tail [Int]
ps') , let k :: Int
k = Int -> Int -> Int -> Int
indent Int
i Int
p Int
q ] 
    indent :: Int -> Int -> Int -> Int
indent !Int
i !Int
p !Int
q 
      | Int
i forall a. Ord a => a -> a -> Bool
<  Int
y1    = Int
0
      | Int
i forall a. Ord a => a -> a -> Bool
>  Int
y2    = Int
0
      | Int
i forall a. Eq a => a -> a -> Bool
== Int
y2    = Int
p forall a. Num a => a -> a -> a
- Int
x2 forall a. Num a => a -> a -> a
+ Int
1     -- the order is important here !!!
      | Bool
otherwise  = Int
p forall a. Num a => a -> a -> a
- Int
q  forall a. Num a => a -> a -> a
+ Int
1     -- because of the case y1 == y2 == i

    height :: Int
height = Int
y2 forall a. Num a => a -> a -> a
- Int
y1
    width :: Int
width  = Int
x1 forall a. Num a => a -> a -> a
- Int
x2
    BorderBox Bool
_ Bool
_ Int
y1 Int
x1 = Array Int BorderBox
annArr forall i e. Ix i => Array i e -> i -> e
! Int
i1
    BorderBox Bool
_ Bool
_ Int
y2 Int
x2 = Array Int BorderBox
annArr forall i e. Ix i => Array i e -> i -> e
! Int
i2


--------------------------------------------------------------------------------
-- * Outer border strips

-- | Hooks of length @n@ (TODO: move to the partition module)
listHooks :: Int -> [Partition]
listHooks :: Int -> [Partition]
listHooks Int
0 = []
listHooks Int
1 = [ [Int] -> Partition
Partition [Int
1] ]
listHooks Int
n = [ [Int] -> Partition
Partition (Int
k forall a. a -> [a] -> [a]
: forall a. Int -> a -> [a]
replicate (Int
nforall a. Num a => a -> a -> a
-Int
k) Int
1) | Int
k<-[Int
1..Int
n] ]

-- | Outer border strips (or ribbons) of the given length
outerRibbonsOfLength :: Partition -> Int -> [Ribbon]
outerRibbonsOfLength :: Partition -> Int -> [Ribbon]
outerRibbonsOfLength part :: Partition
part@(Partition [Int]
ps) Int
givenLength = [Ribbon]
result where

  result :: [Ribbon]
result = if forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Int]
ps 
    then [ SkewPartition -> Int -> Int -> Int -> Ribbon
Ribbon SkewPartition
shape Int
givenLength Int
ht Int
wd
         | Partition
p <- Int -> [Partition]
listHooks Int
givenLength
         , let shape :: SkewPartition
shape = (Partition, Partition) -> SkewPartition
mkSkewPartition (Partition
p,Partition
part)
         , let ht :: Int
ht = Partition -> Int
partitionWidth  Partition
p forall a. Num a => a -> a -> a
- Int
1        -- pretty inconsistent names here :(((
         , let wd :: Int
wd = Partition -> Int
partitionHeight Partition
p forall a. Num a => a -> a -> a
- Int
1
         ]
    else [Ribbon]
strips 

  strips :: [Ribbon]
strips  = [ Int -> Int -> Ribbon
mkStrip Int
i Int
j 
            | Int
i<-[Int
1..Int
n] , BorderBox -> Bool
_canStartStrip (Array Int BorderBox
annArrforall i e. Ix i => Array i e -> i -> e
!Int
i)
            , Int
j<-[Int
i..Int
n] , BorderBox -> Bool
_canEndStrip   (Array Int BorderBox
annArrforall i e. Ix i => Array i e -> i -> e
!Int
j)
            , Int
jforall a. Num a => a -> a -> a
-Int
iforall a. Num a => a -> a -> a
+Int
1 forall a. Eq a => a -> a -> Bool
== Int
givenLength
            ]
 
  ysize :: Int
ysize = Partition -> Int
partitionWidth  Partition
part
  xsize :: Int
xsize = Partition -> Int
partitionHeight Partition
part
 
  annList :: [BorderBox]
annList  =  [ Bool -> Bool -> Int -> Int -> BorderBox
BorderBox Bool
True Bool
False Int
1 Int
x | Int
x <- forall a. [a] -> [a]
reverse [Int
xsizeforall a. Num a => a -> a -> a
+Int
2 .. Int
xsizeforall a. Num a => a -> a -> a
+Int
givenLength ] ]
           forall a. [a] -> [a] -> [a]
++ [BorderBox]
annList0 
           forall a. [a] -> [a] -> [a]
++ [ Bool -> Bool -> Int -> Int -> BorderBox
BorderBox Bool
False Bool
True Int
y Int
1 | Int
y <-         [Int
ysizeforall a. Num a => a -> a -> a
+Int
2 .. Int
ysizeforall a. Num a => a -> a -> a
+Int
givenLength ] ]
 
  n :: Int
n        = forall (t :: * -> *) a. Foldable t => t a -> Int
length [BorderBox]
annList
  annList0 :: [BorderBox]
annList0 = Partition -> [BorderBox]
annotatedOuterBorderStrip Partition
part
  annArr :: Array Int BorderBox
annArr   = forall i e. Ix i => (i, i) -> [e] -> Array i e
listArray (Int
1,Int
n) [BorderBox]
annList

  mkStrip :: Int -> Int -> Ribbon
mkStrip !Int
i1 !Int
i2 = SkewPartition -> Int -> Int -> Int -> Ribbon
Ribbon SkewPartition
shape Int
len Int
height Int
width where
    ps' :: [Int]
ps'   = (-Int
666) forall a. a -> [a] -> [a]
: [Int]
ps forall a. [a] -> [a] -> [a]
++ forall a. Int -> a -> [a]
replicate (Int
givenLength) Int
0
    shape :: SkewPartition
shape = [(Int, Int)] -> SkewPartition
SkewPartition [ (Int
p,Int
k) | (Int
i,Int
p,Int
q) <- forall a b c. [a] -> [b] -> [c] -> [(a, b, c)]
zip3 [Int
1..forall a. Ord a => a -> a -> a
max Int
ysize Int
y2] (forall a. [a] -> [a]
tail [Int]
ps') [Int]
ps' , let k :: Int
k = Int -> Int -> Int -> Int
indent Int
i Int
p Int
q ] 
    indent :: Int -> Int -> Int -> Int
indent !Int
i !Int
p !Int
q 
      | Int
i forall a. Ord a => a -> a -> Bool
<  Int
y1    = Int
0
      | Int
i forall a. Ord a => a -> a -> Bool
>  Int
y2    = Int
0
      | Int
i forall a. Eq a => a -> a -> Bool
== Int
y1    = Int
x1 forall a. Num a => a -> a -> a
- Int
p    -- the order is important here !!!
--      | i == y2    = x2 - p     
      | Bool
otherwise  = Int
q forall a. Num a => a -> a -> a
- Int
p  forall a. Num a => a -> a -> a
+ Int
1   

    len :: Int
len    = Int
i2 forall a. Num a => a -> a -> a
- Int
i1 forall a. Num a => a -> a -> a
+ Int
1
    height :: Int
height = Int
y2 forall a. Num a => a -> a -> a
- Int
y1
    width :: Int
width  = Int
x1 forall a. Num a => a -> a -> a
- Int
x2
    BorderBox Bool
_ Bool
_ Int
y1 Int
x1 = Array Int BorderBox
annArr forall i e. Ix i => Array i e -> i -> e
! Int
i1
    BorderBox Bool
_ Bool
_ Int
y2 Int
x2 = Array Int BorderBox
annArr forall i e. Ix i => Array i e -> i -> e
! Int
i2

--------------------------------------------------------------------------------
-- * Naive implementations (for testing)

-- | Naive (and slow) implementation listing all inner border strips
innerRibbonsNaive :: Partition -> [Ribbon]
innerRibbonsNaive :: Partition -> [Ribbon]
innerRibbonsNaive Partition
outer = [Ribbon]
list where
  list :: [Ribbon]
list = [ SkewPartition -> Int -> Int -> Int -> Ribbon
Ribbon SkewPartition
skew (SkewPartition -> Int
len SkewPartition
skew) (SkewPartition -> Int
ht SkewPartition
skew) (SkewPartition -> Int
wt SkewPartition
skew)
         | SkewPartition
skew <- Partition -> [SkewPartition]
allSkewPartitionsWithOuterShape Partition
outer
         , SkewPartition -> Bool
isRibbon SkewPartition
skew
         ]
  len :: SkewPartition -> Int
len SkewPartition
skew = forall (t :: * -> *) a. Foldable t => t a -> Int
length (SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew)
  ht :: SkewPartition -> Int
ht  SkewPartition
skew = (forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Eq a => [a] -> [[a]]
group forall a b. (a -> b) -> a -> b
$ forall a. Ord a => [a] -> [a]
sort forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew) forall a. Num a => a -> a -> a
- Int
1
  wt :: SkewPartition -> Int
wt  SkewPartition
skew = (forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Eq a => [a] -> [[a]]
group forall a b. (a -> b) -> a -> b
$ forall a. Ord a => [a] -> [a]
sort forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd forall a b. (a -> b) -> a -> b
$ SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew) forall a. Num a => a -> a -> a
- Int
1


-- | Naive (and slow) implementation listing all inner border strips of the given length
innerRibbonsOfLengthNaive :: Partition -> Int -> [Ribbon]
innerRibbonsOfLengthNaive :: Partition -> Int -> [Ribbon]
innerRibbonsOfLengthNaive Partition
outer Int
givenLength = [Ribbon]
list where
  pweight :: Int
pweight = Partition -> Int
partitionWeight Partition
outer
  list :: [Ribbon]
list = [ SkewPartition -> Int -> Int -> Int -> Ribbon
Ribbon SkewPartition
skew (SkewPartition -> Int
len SkewPartition
skew) (SkewPartition -> Int
ht SkewPartition
skew) (SkewPartition -> Int
wt SkewPartition
skew)
         | SkewPartition
skew <- Partition -> Int -> [SkewPartition]
skewPartitionsWithOuterShape Partition
outer Int
givenLength
         , SkewPartition -> Bool
isRibbon SkewPartition
skew
         ]
  len :: SkewPartition -> Int
len SkewPartition
skew = forall (t :: * -> *) a. Foldable t => t a -> Int
length (SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew)
  ht :: SkewPartition -> Int
ht  SkewPartition
skew = (forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Eq a => [a] -> [[a]]
group forall a b. (a -> b) -> a -> b
$ forall a. Ord a => [a] -> [a]
sort forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew) forall a. Num a => a -> a -> a
- Int
1
  wt :: SkewPartition -> Int
wt  SkewPartition
skew = (forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Eq a => [a] -> [[a]]
group forall a b. (a -> b) -> a -> b
$ forall a. Ord a => [a] -> [a]
sort forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd forall a b. (a -> b) -> a -> b
$ SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew) forall a. Num a => a -> a -> a
- Int
1

-- | Naive (and slow) implementation listing all outer border strips of the given length
outerRibbonsOfLengthNaive :: Partition -> Int -> [Ribbon]
outerRibbonsOfLengthNaive :: Partition -> Int -> [Ribbon]
outerRibbonsOfLengthNaive Partition
inner Int
givenLength = [Ribbon]
list where
  pweight :: Int
pweight = Partition -> Int
partitionWeight Partition
inner
  list :: [Ribbon]
list = [ SkewPartition -> Int -> Int -> Int -> Ribbon
Ribbon SkewPartition
skew (SkewPartition -> Int
len SkewPartition
skew) (SkewPartition -> Int
ht SkewPartition
skew) (SkewPartition -> Int
wt SkewPartition
skew)
         | SkewPartition
skew <- Partition -> Int -> [SkewPartition]
skewPartitionsWithInnerShape Partition
inner Int
givenLength
         , SkewPartition -> Bool
isRibbon SkewPartition
skew
         ]
  len :: SkewPartition -> Int
len SkewPartition
skew = forall (t :: * -> *) a. Foldable t => t a -> Int
length (SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew)
  ht :: SkewPartition -> Int
ht  SkewPartition
skew = (forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Eq a => [a] -> [[a]]
group forall a b. (a -> b) -> a -> b
$ forall a. Ord a => [a] -> [a]
sort forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> a
fst forall a b. (a -> b) -> a -> b
$ SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew) forall a. Num a => a -> a -> a
- Int
1
  wt :: SkewPartition -> Int
wt  SkewPartition
skew = (forall (t :: * -> *) a. Foldable t => t a -> Int
length forall a b. (a -> b) -> a -> b
$ forall a. Eq a => [a] -> [[a]]
group forall a b. (a -> b) -> a -> b
$ forall a. Ord a => [a] -> [a]
sort forall a b. (a -> b) -> a -> b
$ forall a b. (a -> b) -> [a] -> [b]
map forall a b. (a, b) -> b
snd forall a b. (a -> b) -> a -> b
$ SkewPartition -> [(Int, Int)]
skewPartitionElements SkewPartition
skew) forall a. Num a => a -> a -> a
- Int
1

--------------------------------------------------------------------------------
-- * Annotated borders

-- | A box on the border of a partition
data BorderBox = BorderBox
  { BorderBox -> Bool
_canStartStrip :: !Bool
  , BorderBox -> Bool
_canEndStrip   :: !Bool
  , BorderBox -> Int
_yCoord :: !Int
  , BorderBox -> Int
_xCoord :: !Int
  }
  deriving Int -> BorderBox -> ShowS
[BorderBox] -> ShowS
BorderBox -> String
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [BorderBox] -> ShowS
$cshowList :: [BorderBox] -> ShowS
show :: BorderBox -> String
$cshow :: BorderBox -> String
showsPrec :: Int -> BorderBox -> ShowS
$cshowsPrec :: Int -> BorderBox -> ShowS
Show
 
-- | The boxes of the full inner border strip, annotated with whether a border strip 
-- can start or end there.
annotatedInnerBorderStrip :: Partition -> [BorderBox]
annotatedInnerBorderStrip :: Partition -> [BorderBox]
annotatedInnerBorderStrip Partition
partition = if Partition -> Bool
isEmptyPartition Partition
partition then [] else [BorderBox]
list where
  list :: [BorderBox]
list    = (Int, Int) -> [(Int, Int)] -> [BorderBox]
goVert (forall a. [a] -> a
head [(Int, Int)]
corners) (forall a. [a] -> [a]
tail [(Int, Int)]
corners) 
  corners :: [(Int, Int)]
corners = Partition -> [(Int, Int)]
extendedCornerSequence Partition
partition  

  goVert :: (Int, Int) -> [(Int, Int)] -> [BorderBox]
goVert  (Int
y1,Int
x ) ((Int
y2,Int
_ ):[(Int, Int)]
rest) = [ Bool -> Bool -> Int -> Int -> BorderBox
BorderBox Bool
True (Int
yforall a. Eq a => a -> a -> Bool
==Int
y2) Int
y Int
x | Int
y<-[Int
y1forall a. Num a => a -> a -> a
+Int
1..Int
y2] ] forall a. [a] -> [a] -> [a]
++ (Int, Int) -> [(Int, Int)] -> [BorderBox]
goHoriz (Int
y2,Int
x) [(Int, Int)]
rest
  goVert  (Int, Int)
_       []             = [] 

  goHoriz :: (Int, Int) -> [(Int, Int)] -> [BorderBox]
goHoriz (Int
y ,Int
x1) ((Int
_, Int
x2):[(Int, Int)]
rest) = case [(Int, Int)]
rest of
    [] -> [ Bool -> Bool -> Int -> Int -> BorderBox
BorderBox Bool
False Bool
True    Int
y Int
x | Int
x<-[Int
x1forall a. Num a => a -> a -> a
-Int
1,Int
x1forall a. Num a => a -> a -> a
-Int
2..Int
x2forall a. Num a => a -> a -> a
+Int
1] ]
    [(Int, Int)]
_  -> [ Bool -> Bool -> Int -> Int -> BorderBox
BorderBox Bool
False (Int
xforall a. Eq a => a -> a -> Bool
/=Int
x2) Int
y Int
x | Int
x<-[Int
x1forall a. Num a => a -> a -> a
-Int
1,Int
x1forall a. Num a => a -> a -> a
-Int
2..Int
x2  ] ] forall a. [a] -> [a] -> [a]
++ (Int, Int) -> [(Int, Int)] -> [BorderBox]
goVert (Int
y,Int
x2) [(Int, Int)]
rest

-- | The boxes of the full outer border strip, annotated with whether a border strip 
-- can start or end there.
annotatedOuterBorderStrip :: Partition -> [BorderBox]
annotatedOuterBorderStrip :: Partition -> [BorderBox]
annotatedOuterBorderStrip Partition
partition = if Partition -> Bool
isEmptyPartition Partition
partition then [] else [BorderBox]
list where
  list :: [BorderBox]
list    = (Int, Int) -> [(Int, Int)] -> [BorderBox]
goVert (forall a. [a] -> a
head [(Int, Int)]
corners) (forall a. [a] -> [a]
tail [(Int, Int)]
corners) 
  corners :: [(Int, Int)]
corners = Partition -> [(Int, Int)]
extendedCornerSequence Partition
partition  

  goVert :: (Int, Int) -> [(Int, Int)] -> [BorderBox]
goVert  (Int
y1,Int
x ) ((Int
y2,Int
_ ):[(Int, Int)]
rest) = [ Bool -> Bool -> Int -> Int -> BorderBox
BorderBox (Int
yforall a. Eq a => a -> a -> Bool
==Int
y1) (Int
yforall a. Eq a => a -> a -> Bool
/=Int
y2) (Int
yforall a. Num a => a -> a -> a
+Int
1) (Int
xforall a. Num a => a -> a -> a
+Int
1) | Int
y<-[Int
y1..Int
y2] ] forall a. [a] -> [a] -> [a]
++ (Int, Int) -> [(Int, Int)] -> [BorderBox]
goHoriz (Int
y2,Int
x) [(Int, Int)]
rest
  goVert  (Int, Int)
_       []             = [] 

  goHoriz :: (Int, Int) -> [(Int, Int)] -> [BorderBox]
goHoriz (Int
y ,Int
x1) ((Int
_, Int
x2):[(Int, Int)]
rest) = case [(Int, Int)]
rest of
    [] -> [ Bool -> Bool -> Int -> Int -> BorderBox
BorderBox Bool
True (Int
xforall a. Eq a => a -> a -> Bool
==Int
0) (Int
yforall a. Num a => a -> a -> a
+Int
1) (Int
xforall a. Num a => a -> a -> a
+Int
1) | Int
x<-[Int
x1forall a. Num a => a -> a -> a
-Int
1,Int
x1forall a. Num a => a -> a -> a
-Int
2..Int
x2  ] ]
    [(Int, Int)]
_  -> [ Bool -> Bool -> Int -> Int -> BorderBox
BorderBox Bool
True Bool
False  (Int
yforall a. Num a => a -> a -> a
+Int
1) (Int
xforall a. Num a => a -> a -> a
+Int
1) | Int
x<-[Int
x1forall a. Num a => a -> a -> a
-Int
1,Int
x1forall a. Num a => a -> a -> a
-Int
2..Int
x2forall a. Num a => a -> a -> a
+Int
1] ] forall a. [a] -> [a] -> [a]
++ (Int, Int) -> [(Int, Int)] -> [BorderBox]
goVert (Int
y,Int
x2) [(Int, Int)]
rest


--------------------------------------------------------------------------------