{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE Trustworthy #-}
{-# OPTIONS_GHC -fno-cpr-anal #-}
{-# OPTIONS_HADDOCK show-extensions #-}
module Clash.Explicit.RAM
(
asyncRam
, asyncRamPow2
, asyncRam#
)
where
import Data.Maybe (isJust)
import GHC.Stack (HasCallStack, withFrozenCallStack)
import GHC.TypeLits (KnownNat)
import qualified Data.Sequence as Seq
import Clash.Explicit.Signal (unbundle, KnownDomain, enable)
import Clash.Promoted.Nat (SNat (..), snatToNum, pow2SNat)
import Clash.Signal.Internal (Clock (..), Signal (..), Enable, fromEnable)
import Clash.Signal.Internal.Ambiguous (clockPeriod)
import Clash.Sized.Unsigned (Unsigned)
import Clash.XException (errorX, maybeIsX, fromJustX, seqX)
asyncRamPow2
:: forall wdom rdom n a
. ( KnownNat n
, HasCallStack
, KnownDomain wdom
, KnownDomain rdom
)
=> Clock wdom
-> Clock rdom
-> Enable wdom
-> Signal rdom (Unsigned n)
-> Signal wdom (Maybe (Unsigned n, a))
-> Signal rdom a
asyncRamPow2 :: Clock wdom
-> Clock rdom
-> Enable wdom
-> Signal rdom (Unsigned n)
-> Signal wdom (Maybe (Unsigned n, a))
-> Signal rdom a
asyncRamPow2 = \Clock wdom
wclk Clock rdom
rclk Enable wdom
en Signal rdom (Unsigned n)
rd Signal wdom (Maybe (Unsigned n, a))
wrM -> (HasCallStack => Signal rdom a) -> Signal rdom a
forall a. HasCallStack => (HasCallStack => a) -> a
withFrozenCallStack
(Clock wdom
-> Clock rdom
-> Enable wdom
-> SNat (2 ^ n)
-> Signal rdom (Unsigned n)
-> Signal wdom (Maybe (Unsigned n, a))
-> Signal rdom a
forall addr (wdom :: Domain) (rdom :: Domain) (n :: Nat) a.
(Enum addr, HasCallStack, KnownDomain wdom, KnownDomain rdom) =>
Clock wdom
-> Clock rdom
-> Enable wdom
-> SNat n
-> Signal rdom addr
-> Signal wdom (Maybe (addr, a))
-> Signal rdom a
asyncRam Clock wdom
wclk Clock rdom
rclk Enable wdom
en (SNat n -> SNat (2 ^ n)
forall (a :: Nat). SNat a -> SNat (2 ^ a)
pow2SNat (KnownNat n => SNat n
forall (n :: Nat). KnownNat n => SNat n
SNat @n)) Signal rdom (Unsigned n)
rd Signal wdom (Maybe (Unsigned n, a))
wrM)
{-# INLINE asyncRamPow2 #-}
asyncRam
:: ( Enum addr
, HasCallStack
, KnownDomain wdom
, KnownDomain rdom
)
=> Clock wdom
-> Clock rdom
-> Enable wdom
-> SNat n
-> Signal rdom addr
-> Signal wdom (Maybe (addr, a))
-> Signal rdom a
asyncRam :: Clock wdom
-> Clock rdom
-> Enable wdom
-> SNat n
-> Signal rdom addr
-> Signal wdom (Maybe (addr, a))
-> Signal rdom a
asyncRam = \Clock wdom
wclk Clock rdom
rclk Enable wdom
gen SNat n
sz Signal rdom addr
rd Signal wdom (Maybe (addr, a))
wrM ->
let en :: Signal wdom Bool
en = Maybe (addr, a) -> Bool
forall a. Maybe a -> Bool
isJust (Maybe (addr, a) -> Bool)
-> Signal wdom (Maybe (addr, a)) -> Signal wdom Bool
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Signal wdom (Maybe (addr, a))
wrM
(Signal wdom addr
wr,Signal wdom a
din) = Signal wdom (addr, a) -> Unbundled wdom (addr, a)
forall a (dom :: Domain).
Bundle a =>
Signal dom a -> Unbundled dom a
unbundle (Maybe (addr, a) -> (addr, a)
forall a. HasCallStack => Maybe a -> a
fromJustX (Maybe (addr, a) -> (addr, a))
-> Signal wdom (Maybe (addr, a)) -> Signal wdom (addr, a)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Signal wdom (Maybe (addr, a))
wrM)
in (HasCallStack => Signal rdom a) -> Signal rdom a
forall a. HasCallStack => (HasCallStack => a) -> a
withFrozenCallStack
(Clock wdom
-> Clock rdom
-> Enable wdom
-> SNat n
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
forall (wdom :: Domain) (rdom :: Domain) (n :: Nat) a.
(HasCallStack, KnownDomain wdom, KnownDomain rdom) =>
Clock wdom
-> Clock rdom
-> Enable wdom
-> SNat n
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
asyncRam# Clock wdom
wclk Clock rdom
rclk Enable wdom
gen SNat n
sz (addr -> Int
forall a. Enum a => a -> Int
fromEnum (addr -> Int) -> Signal rdom addr -> Signal rdom Int
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Signal rdom addr
rd) Signal wdom Bool
en (addr -> Int
forall a. Enum a => a -> Int
fromEnum (addr -> Int) -> Signal wdom addr -> Signal wdom Int
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Signal wdom addr
wr) Signal wdom a
din)
{-# INLINE asyncRam #-}
asyncRam#
:: forall wdom rdom n a
. ( HasCallStack
, KnownDomain wdom
, KnownDomain rdom )
=> Clock wdom
-> Clock rdom
-> Enable wdom
-> SNat n
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
asyncRam# :: Clock wdom
-> Clock rdom
-> Enable wdom
-> SNat n
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
asyncRam# !Clock wdom
_ !Clock rdom
_ Enable wdom
en SNat n
sz Signal rdom Int
rd Signal wdom Bool
we Signal wdom Int
wr Signal wdom a
din = Signal rdom a
dout
where
ramI :: Seq a
ramI = Int -> a -> Seq a
forall a. Int -> a -> Seq a
Seq.replicate
Int
szI
((HasCallStack => a) -> a
forall a. HasCallStack => (HasCallStack => a) -> a
withFrozenCallStack (String -> a
forall a. HasCallStack => String -> a
errorX String
"asyncRam#: initial value undefined"))
en0 :: Signal wdom Bool
en0 = Enable wdom -> Signal wdom Bool
forall (dom :: Domain). Enable dom -> Signal dom Bool
fromEnable (Enable wdom -> Signal wdom Bool -> Enable wdom
forall (dom :: Domain). Enable dom -> Signal dom Bool -> Enable dom
enable Enable wdom
en Signal wdom Bool
we)
dout :: Signal rdom a
dout = if Int
rPeriod Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
wPeriod
then Seq a
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
goSingle Seq a
ramI Signal rdom Int
rd Signal wdom Bool
en0 Signal wdom Int
wr Signal wdom a
din
else Int
-> Seq a
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
go Int
0 Seq a
ramI Signal rdom Int
rd Signal wdom Bool
en0 Signal wdom Int
wr Signal wdom a
din
rPeriod :: Int
rPeriod = SNat (DomainConfigurationPeriod (KnownConf rdom)) -> Int
forall a (n :: Nat). Num a => SNat n -> a
snatToNum (forall (period :: Nat).
(KnownDomain rdom,
DomainConfigurationPeriod (KnownConf rdom) ~ period) =>
SNat period
forall (dom :: Domain) (period :: Nat).
(KnownDomain dom, DomainPeriod dom ~ period) =>
SNat period
clockPeriod @rdom) :: Int
wPeriod :: Int
wPeriod = SNat (DomainConfigurationPeriod (KnownConf wdom)) -> Int
forall a (n :: Nat). Num a => SNat n -> a
snatToNum (forall (period :: Nat).
(KnownDomain wdom,
DomainConfigurationPeriod (KnownConf wdom) ~ period) =>
SNat period
forall (dom :: Domain) (period :: Nat).
(KnownDomain dom, DomainPeriod dom ~ period) =>
SNat period
clockPeriod @wdom) :: Int
szI :: Int
szI = SNat n -> Int
forall a (n :: Nat). Num a => SNat n -> a
snatToNum SNat n
sz :: Int
goSingle :: Seq.Seq a -> Signal rdom Int -> Signal wdom Bool
-> Signal wdom Int -> Signal wdom a -> Signal rdom a
goSingle :: Seq a
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
goSingle !Seq a
ram (Int
r :- Signal rdom Int
rs) ~(Bool
e :- Signal wdom Bool
es) wt :: Signal wdom Int
wt@(~(Int
w :- Signal wdom Int
ws)) dt :: Signal wdom a
dt@(~(a
d :- Signal wdom a
ds)) =
let ram0 :: Seq a
ram0 = Seq a -> Bool -> Int -> a -> Seq a
forall a. Seq a -> Bool -> Int -> a -> Seq a
upd Seq a
ram Bool
e Int
w a
d
o :: a
o = Seq a
ram Seq a -> Int -> a
forall a. Seq a -> Int -> a
`Seq.index` Int
r
in a
o a -> Signal rdom a -> Signal rdom a
forall (dom :: Domain) a. a -> Signal dom a -> Signal dom a
:- (Signal wdom Int
wt Signal wdom Int -> Signal rdom a -> Signal rdom a
`seq` Signal wdom a
dt Signal wdom a -> Signal rdom a -> Signal rdom a
`seq` Seq a
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
goSingle Seq a
ram0 Signal rdom Int
rs Signal wdom Bool
es Signal wdom Int
ws Signal wdom a
ds)
go :: Int -> Seq.Seq a -> Signal rdom Int -> Signal wdom Bool
-> Signal wdom Int -> Signal wdom a -> Signal rdom a
go :: Int
-> Seq a
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
go Int
relTime !Seq a
ram rt :: Signal rdom Int
rt@(~(Int
r :- Signal rdom Int
rs)) et :: Signal wdom Bool
et@(~(Bool
e :- Signal wdom Bool
es)) wt :: Signal wdom Int
wt@(~(Int
w :- Signal wdom Int
ws))
dt :: Signal wdom a
dt@(~(a
d :- Signal wdom a
ds))
| Int
relTime Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
0 = let ram0 :: Seq a
ram0 = Seq a -> Bool -> Int -> a -> Seq a
forall a. Seq a -> Bool -> Int -> a -> Seq a
upd Seq a
ram Bool
e Int
w a
d
in Signal wdom Int
wt Signal wdom Int -> Signal rdom a -> Signal rdom a
`seq` Signal wdom a
dt Signal wdom a -> Signal rdom a -> Signal rdom a
`seq`
Int
-> Seq a
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
go (Int
relTime Int -> Int -> Int
forall a. Num a => a -> a -> a
+ Int
wPeriod) Seq a
ram0 Signal rdom Int
rt Signal wdom Bool
es Signal wdom Int
ws Signal wdom a
ds
| Bool
otherwise = let o :: a
o = Seq a
ram Seq a -> Int -> a
forall a. Seq a -> Int -> a
`Seq.index` Int
r
in a
o a -> Signal rdom a -> Signal rdom a
forall (dom :: Domain) a. a -> Signal dom a -> Signal dom a
:- Int
-> Seq a
-> Signal rdom Int
-> Signal wdom Bool
-> Signal wdom Int
-> Signal wdom a
-> Signal rdom a
go (Int
relTime Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
rPeriod) Seq a
ram Signal rdom Int
rs Signal wdom Bool
et Signal wdom Int
wt Signal wdom a
dt
upd :: Seq a -> Bool -> Int -> a -> Seq a
upd Seq a
ram Bool
we0 Int
waddr a
d = case Bool -> Maybe Bool
forall a. a -> Maybe a
maybeIsX Bool
we0 of
Maybe Bool
Nothing -> case Int -> Maybe Int
forall a. a -> Maybe a
maybeIsX Int
waddr of
Maybe Int
Nothing ->
Int -> a -> a
seq Int
waddr a
d a -> Seq a -> Seq a
forall (f :: Type -> Type) a b. Functor f => a -> f b -> f a
<$ Seq a
ram
Just Int
wa ->
Int -> a -> Seq a -> Seq a
forall a. Int -> a -> Seq a -> Seq a
Seq.update Int
wa (Bool -> a -> a
seq Bool
we0 a
d) Seq a
ram
Just Bool
True -> case Int -> Maybe Int
forall a. a -> Maybe a
maybeIsX Int
waddr of
Maybe Int
Nothing ->
Int -> a -> a
seq Int
waddr a
d a -> Seq a -> Seq a
forall (f :: Type -> Type) a b. Functor f => a -> f b -> f a
<$ Seq a
ram
Just Int
wa -> a
d a -> Seq a -> Seq a
forall a b. a -> b -> b
`seqX` Int -> a -> Seq a -> Seq a
forall a. Int -> a -> Seq a -> Seq a
Seq.update Int
wa a
d Seq a
ram
Maybe Bool
_ -> Seq a
ram
{-# NOINLINE asyncRam# #-}