{-# LANGUAGE AllowAmbiguousTypes #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE GADTs #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE RankNTypes #-}
#if __GLASGOW_HASKELL__ >= 806
{-# LANGUAGE NoStarIsType #-}
#endif
{-# LANGUAGE Trustworthy #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_HADDOCK show-extensions #-}
module Clash.Promoted.Nat
(
SNat (..)
, snatProxy
, withSNat
, snatToInteger, snatToNatural, snatToNum
, addSNat, mulSNat, powSNat, minSNat, maxSNat, succSNat
, subSNat, divSNat, modSNat, flogBaseSNat, clogBaseSNat, logBaseSNat, predSNat
, pow2SNat
, SNatLE (..), compareSNat
, UNat (..)
, toUNat
, fromUNat
, addUNat, mulUNat, powUNat
, predUNat, subUNat
, BNat (..)
, toBNat
, fromBNat
, showBNat
, succBNat, addBNat, mulBNat, powBNat
, predBNat, div2BNat, div2Sub1BNat, log2BNat
, stripZeros
, leToPlus
, leToPlusKN
)
where
import Data.Kind (Type)
import GHC.TypeLits (KnownNat, Nat, type (+), type (-), type (*),
type (^), type (<=), natVal)
import GHC.TypeLits.Extra (CLog, FLog, Div, Log, Mod, Min, Max)
import GHC.Natural (naturalFromInteger)
import Language.Haskell.TH (appT, conT, litT, numTyLit, sigE)
import Language.Haskell.TH.Syntax (Lift (..))
import Numeric.Natural (Natural)
import Unsafe.Coerce (unsafeCoerce)
import Clash.XException (ShowX (..), showsPrecXWith)
data SNat (n :: Nat) where
SNat :: KnownNat n => SNat n
instance Lift (SNat n) where
lift :: SNat n -> Q Exp
lift s :: SNat n
s = Q Exp -> TypeQ -> Q Exp
sigE [| SNat |]
(TypeQ -> TypeQ -> TypeQ
appT (Name -> TypeQ
conT ''SNat) (TyLitQ -> TypeQ
litT (TyLitQ -> TypeQ) -> TyLitQ -> TypeQ
forall a b. (a -> b) -> a -> b
$ Integer -> TyLitQ
numTyLit (SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
s)))
snatProxy :: KnownNat n => proxy n -> SNat n
snatProxy :: proxy n -> SNat n
snatProxy _ = SNat n
forall (n :: Nat). KnownNat n => SNat n
SNat
instance Show (SNat n) where
show :: SNat n -> String
show p :: SNat n
p@SNat n
SNat = 'd' Char -> ShowS
forall a. a -> [a] -> [a]
: Integer -> String
forall a. Show a => a -> String
show (SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
p)
instance ShowX (SNat n) where
showsPrecX :: Int -> SNat n -> ShowS
showsPrecX = (Int -> SNat n -> ShowS) -> Int -> SNat n -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> SNat n -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
{-# INLINE withSNat #-}
withSNat :: KnownNat n => (SNat n -> a) -> a
withSNat :: (SNat n -> a) -> a
withSNat f :: SNat n -> a
f = SNat n -> a
f SNat n
forall (n :: Nat). KnownNat n => SNat n
SNat
snatToInteger :: SNat n -> Integer
snatToInteger :: SNat n -> Integer
snatToInteger p :: SNat n
p@SNat n
SNat = SNat n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal SNat n
p
{-# INLINE snatToInteger #-}
snatToNatural :: SNat n -> Natural
snatToNatural :: SNat n -> Natural
snatToNatural = Integer -> Natural
naturalFromInteger (Integer -> Natural) -> (SNat n -> Integer) -> SNat n -> Natural
forall b c a. (b -> c) -> (a -> b) -> a -> c
. SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger
{-# INLINE snatToNatural #-}
snatToNum :: forall a n . Num a => SNat n -> a
snatToNum :: SNat n -> a
snatToNum p :: SNat n
p@SNat n
SNat = Integer -> a
forall a. Num a => Integer -> a
fromInteger (SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
p)
{-# INLINE snatToNum #-}
data UNat :: Nat -> Type where
UZero :: UNat 0
USucc :: UNat n -> UNat (n + 1)
instance KnownNat n => Show (UNat n) where
show :: UNat n -> String
show x :: UNat n
x = 'u'Char -> ShowS
forall a. a -> [a] -> [a]
:Integer -> String
forall a. Show a => a -> String
show (UNat n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal UNat n
x)
instance KnownNat n => ShowX (UNat n) where
showsPrecX :: Int -> UNat n -> ShowS
showsPrecX = (Int -> UNat n -> ShowS) -> Int -> UNat n -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> UNat n -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
toUNat :: forall n . SNat n -> UNat n
toUNat :: SNat n -> UNat n
toUNat p :: SNat n
p@SNat n
SNat = Integer -> UNat n
forall (m :: Nat). Integer -> UNat m
fromI @n (SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
p)
where
fromI :: forall m . Integer -> UNat m
fromI :: Integer -> UNat m
fromI 0 = UNat 0 -> UNat m
forall a b. a -> b
unsafeCoerce @(UNat 0) @(UNat m) UNat 0
UZero
fromI n :: Integer
n = UNat ((m - 1) + 1) -> UNat m
forall a b. a -> b
unsafeCoerce @(UNat ((m-1)+1)) @(UNat m) (UNat (m - 1) -> UNat ((m - 1) + 1)
forall (n :: Nat). UNat n -> UNat (n + 1)
USucc (Integer -> UNat (m - 1)
forall (m :: Nat). Integer -> UNat m
fromI @(m-1) (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
- 1)))
fromUNat :: UNat n -> SNat n
fromUNat :: UNat n -> SNat n
fromUNat UZero = SNat 0
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 0
fromUNat (USucc x :: UNat n
x) = SNat n -> SNat 1 -> SNat (n + 1)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> SNat (a + b)
addSNat (UNat n -> SNat n
forall (n :: Nat). UNat n -> SNat n
fromUNat UNat n
x) (SNat 1
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 1)
addUNat :: UNat n -> UNat m -> UNat (n + m)
addUNat :: UNat n -> UNat m -> UNat (n + m)
addUNat UZero y :: UNat m
y = UNat m
UNat (n + m)
y
addUNat x :: UNat n
x UZero = UNat n
UNat (n + m)
x
addUNat (USucc x :: UNat n
x) y :: UNat m
y = UNat (n + m) -> UNat ((n + m) + 1)
forall (n :: Nat). UNat n -> UNat (n + 1)
USucc (UNat n -> UNat m -> UNat (n + m)
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n + m)
addUNat UNat n
x UNat m
y)
mulUNat :: UNat n -> UNat m -> UNat (n * m)
mulUNat :: UNat n -> UNat m -> UNat (n * m)
mulUNat UZero _ = UNat 0
UNat (n * m)
UZero
mulUNat _ UZero = UNat 0
UNat (n * m)
UZero
mulUNat (USucc x :: UNat n
x) y :: UNat m
y = UNat m -> UNat (n * m) -> UNat (m + (n * m))
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n + m)
addUNat UNat m
y (UNat n -> UNat m -> UNat (n * m)
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n * m)
mulUNat UNat n
x UNat m
y)
powUNat :: UNat n -> UNat m -> UNat (n ^ m)
powUNat :: UNat n -> UNat m -> UNat (n ^ m)
powUNat _ UZero = UNat 0 -> UNat (0 + 1)
forall (n :: Nat). UNat n -> UNat (n + 1)
USucc UNat 0
UZero
powUNat x :: UNat n
x (USucc y :: UNat n
y) = UNat n -> UNat (n ^ n) -> UNat (n * (n ^ n))
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n * m)
mulUNat UNat n
x (UNat n -> UNat n -> UNat (n ^ n)
forall (n :: Nat) (m :: Nat). UNat n -> UNat m -> UNat (n ^ m)
powUNat UNat n
x UNat n
y)
predUNat :: UNat (n+1) -> UNat n
predUNat :: UNat (n + 1) -> UNat n
predUNat (USucc x :: UNat n
x) = UNat n
UNat n
x
predUNat UZero =
String -> UNat n
forall a. HasCallStack => String -> a
error "predUNat: impossible: 0 minus 1, -1 is not a natural number"
subUNat :: UNat (m+n) -> UNat n -> UNat m
subUNat :: UNat (m + n) -> UNat n -> UNat m
subUNat x :: UNat (m + n)
x UZero = UNat m
UNat (m + n)
x
subUNat (USucc x :: UNat n
x) (USucc y :: UNat n
y) = UNat (m + n) -> UNat n -> UNat m
forall (m :: Nat) (n :: Nat). UNat (m + n) -> UNat n -> UNat m
subUNat UNat n
UNat (m + n)
x UNat n
y
subUNat UZero _ = String -> UNat m
forall a. HasCallStack => String -> a
error "subUNat: impossible: 0 + (n + 1) ~ 0"
predSNat :: SNat (a+1) -> SNat (a)
predSNat :: SNat (a + 1) -> SNat a
predSNat SNat = SNat a
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE predSNat #-}
succSNat :: SNat a -> SNat (a+1)
succSNat :: SNat a -> SNat (a + 1)
succSNat SNat = SNat (a + 1)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE succSNat #-}
addSNat :: SNat a -> SNat b -> SNat (a+b)
addSNat :: SNat a -> SNat b -> SNat (a + b)
addSNat SNat SNat = SNat (a + b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE addSNat #-}
infixl 6 `addSNat`
subSNat :: SNat (a+b) -> SNat b -> SNat a
subSNat :: SNat (a + b) -> SNat b -> SNat a
subSNat SNat SNat = SNat a
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE subSNat #-}
infixl 6 `subSNat`
mulSNat :: SNat a -> SNat b -> SNat (a*b)
mulSNat :: SNat a -> SNat b -> SNat (a * b)
mulSNat SNat SNat = SNat (a * b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE mulSNat #-}
infixl 7 `mulSNat`
powSNat :: SNat a -> SNat b -> SNat (a^b)
powSNat :: SNat a -> SNat b -> SNat (a ^ b)
powSNat SNat SNat = SNat (a ^ b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# NOINLINE powSNat #-}
infixr 8 `powSNat`
divSNat :: (1 <= b) => SNat a -> SNat b -> SNat (Div a b)
divSNat :: SNat a -> SNat b -> SNat (Div a b)
divSNat SNat SNat = SNat (Div a b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE divSNat #-}
infixl 7 `divSNat`
modSNat :: (1 <= b) => SNat a -> SNat b -> SNat (Mod a b)
modSNat :: SNat a -> SNat b -> SNat (Mod a b)
modSNat SNat SNat = SNat (Mod a b)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE modSNat #-}
infixl 7 `modSNat`
minSNat :: SNat a -> SNat b -> SNat (Min a b)
minSNat :: SNat a -> SNat b -> SNat (Min a b)
minSNat SNat SNat = SNat (Min a b)
forall (n :: Nat). KnownNat n => SNat n
SNat
maxSNat :: SNat a -> SNat b -> SNat (Max a b)
maxSNat :: SNat a -> SNat b -> SNat (Max a b)
maxSNat SNat SNat = SNat (Max a b)
forall (n :: Nat). KnownNat n => SNat n
SNat
flogBaseSNat :: (2 <= base, 1 <= x)
=> SNat base
-> SNat x
-> SNat (FLog base x)
flogBaseSNat :: SNat base -> SNat x -> SNat (FLog base x)
flogBaseSNat SNat SNat = SNat (FLog base x)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# NOINLINE flogBaseSNat #-}
clogBaseSNat :: (2 <= base, 1 <= x)
=> SNat base
-> SNat x
-> SNat (CLog base x)
clogBaseSNat :: SNat base -> SNat x -> SNat (CLog base x)
clogBaseSNat SNat SNat = SNat (CLog base x)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# NOINLINE clogBaseSNat #-}
logBaseSNat :: (FLog base x ~ CLog base x)
=> SNat base
-> SNat x
-> SNat (Log base x)
logBaseSNat :: SNat base -> SNat x -> SNat (Log base x)
logBaseSNat SNat SNat = SNat (Log base x)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# NOINLINE logBaseSNat #-}
pow2SNat :: SNat a -> SNat (2^a)
pow2SNat :: SNat a -> SNat (2 ^ a)
pow2SNat SNat = SNat (2 ^ a)
forall (n :: Nat). KnownNat n => SNat n
SNat
{-# INLINE pow2SNat #-}
data SNatLE a b where
SNatLE :: forall a b . a <= b => SNatLE a b
SNatGT :: forall a b . (b+1) <= a => SNatLE a b
compareSNat :: forall a b . SNat a -> SNat b -> SNatLE a b
compareSNat :: SNat a -> SNat b -> SNatLE a b
compareSNat a :: SNat a
a b :: SNat b
b =
if SNat a -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat a
a Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
<= SNat b -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat b
b
then SNatLE 0 0 -> SNatLE a b
forall a b. a -> b
unsafeCoerce ((0 <= 0) => SNatLE 0 0
forall (a :: Nat) (b :: Nat). (a <= b) => SNatLE a b
SNatLE @0 @0)
else SNatLE 1 0 -> SNatLE a b
forall a b. a -> b
unsafeCoerce (((0 + 1) <= 1) => SNatLE 1 0
forall (a :: Nat) (b :: Nat). ((b + 1) <= a) => SNatLE a b
SNatGT @1 @0)
data BNat :: Nat -> Type where
BT :: BNat 0
B0 :: BNat n -> BNat (2*n)
B1 :: BNat n -> BNat ((2*n) + 1)
instance KnownNat n => Show (BNat n) where
show :: BNat n -> String
show x :: BNat n
x = 'b'Char -> ShowS
forall a. a -> [a] -> [a]
:Integer -> String
forall a. Show a => a -> String
show (BNat n -> Integer
forall (n :: Nat) (proxy :: Nat -> Type).
KnownNat n =>
proxy n -> Integer
natVal BNat n
x)
instance KnownNat n => ShowX (BNat n) where
showsPrecX :: Int -> BNat n -> ShowS
showsPrecX = (Int -> BNat n -> ShowS) -> Int -> BNat n -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> BNat n -> ShowS
forall a. Show a => Int -> a -> ShowS
showsPrec
showBNat :: BNat n -> String
showBNat :: BNat n -> String
showBNat = String -> BNat n -> String
forall (m :: Nat). String -> BNat m -> String
go []
where
go :: String -> BNat m -> String
go :: String -> BNat m -> String
go xs :: String
xs BT = "0b" String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
xs
go xs :: String
xs (B0 x :: BNat n
x) = String -> BNat n -> String
forall (m :: Nat). String -> BNat m -> String
go ('0'Char -> ShowS
forall a. a -> [a] -> [a]
:String
xs) BNat n
x
go xs :: String
xs (B1 x :: BNat n
x) = String -> BNat n -> String
forall (m :: Nat). String -> BNat m -> String
go ('1'Char -> ShowS
forall a. a -> [a] -> [a]
:String
xs) BNat n
x
toBNat :: SNat n -> BNat n
toBNat :: SNat n -> BNat n
toBNat s :: SNat n
s@SNat n
SNat = Integer -> BNat n
forall (m :: Nat). Integer -> BNat m
toBNat' (SNat n -> Integer
forall (n :: Nat). SNat n -> Integer
snatToInteger SNat n
s)
where
toBNat' :: Integer -> BNat m
toBNat' :: Integer -> BNat m
toBNat' 0 = BNat 0 -> BNat m
forall a b. a -> b
unsafeCoerce BNat 0
BT
toBNat' n :: Integer
n = case Integer
n Integer -> Integer -> (Integer, Integer)
forall a. Integral a => a -> a -> (a, a)
`divMod` 2 of
(n' :: Integer
n',1) -> BNat ((2 * Any) + 1) -> BNat m
forall a b. a -> b
unsafeCoerce (BNat Any -> BNat ((2 * Any) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (Integer -> BNat Any
forall (m :: Nat). Integer -> BNat m
toBNat' Integer
n'))
(n' :: Integer
n',_) -> BNat (2 * Any) -> BNat m
forall a b. a -> b
unsafeCoerce (BNat Any -> BNat (2 * Any)
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (Integer -> BNat Any
forall (m :: Nat). Integer -> BNat m
toBNat' Integer
n'))
fromBNat :: BNat n -> SNat n
fromBNat :: BNat n -> SNat n
fromBNat BT = SNat 0
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 0
fromBNat (B0 x :: BNat n
x) = SNat 2 -> SNat n -> SNat (2 * n)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> SNat (a * b)
mulSNat (SNat 2
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 2) (BNat n -> SNat n
forall (n :: Nat). BNat n -> SNat n
fromBNat BNat n
x)
fromBNat (B1 x :: BNat n
x) = SNat (2 * n) -> SNat 1 -> SNat ((2 * n) + 1)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> SNat (a + b)
addSNat (SNat 2 -> SNat n -> SNat (2 * n)
forall (a :: Nat) (b :: Nat). SNat a -> SNat b -> SNat (a * b)
mulSNat (SNat 2
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 2) (BNat n -> SNat n
forall (n :: Nat). BNat n -> SNat n
fromBNat BNat n
x))
(SNat 1
forall (n :: Nat). KnownNat n => SNat n
SNat :: SNat 1)
addBNat :: BNat n -> BNat m -> BNat (n+m)
addBNat :: BNat n -> BNat m -> BNat (n + m)
addBNat (B0 a :: BNat n
a) (B0 b :: BNat n
b) = BNat (n + n) -> BNat (2 * (n + n))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat n -> BNat n -> BNat (n + n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat BNat n
a BNat n
b)
addBNat (B0 a :: BNat n
a) (B1 b :: BNat n
b) = BNat (n + n) -> BNat ((2 * (n + n)) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (BNat n -> BNat n -> BNat (n + n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat BNat n
a BNat n
b)
addBNat (B1 a :: BNat n
a) (B0 b :: BNat n
b) = BNat (n + n) -> BNat ((2 * (n + n)) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (BNat n -> BNat n -> BNat (n + n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat BNat n
a BNat n
b)
addBNat (B1 a :: BNat n
a) (B1 b :: BNat n
b) = BNat ((n + n) + 1) -> BNat (2 * ((n + n) + 1))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat (n + n) -> BNat ((n + n) + 1)
forall (n :: Nat). BNat n -> BNat (n + 1)
succBNat (BNat n -> BNat n -> BNat (n + n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat BNat n
a BNat n
b))
addBNat BT b :: BNat m
b = BNat m
BNat (n + m)
b
addBNat a :: BNat n
a BT = BNat n
BNat (n + m)
a
mulBNat :: BNat n -> BNat m -> BNat (n*m)
mulBNat :: BNat n -> BNat m -> BNat (n * m)
mulBNat BT _ = BNat 0
BNat (n * m)
BT
mulBNat _ BT = BNat 0
BNat (n * m)
BT
mulBNat (B0 a :: BNat n
a) b :: BNat m
b = BNat (n * m) -> BNat (2 * (n * m))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat n -> BNat m -> BNat (n * m)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat n
a BNat m
b)
mulBNat (B1 a :: BNat n
a) b :: BNat m
b = BNat (2 * (n * m)) -> BNat m -> BNat ((2 * (n * m)) + m)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n + m)
addBNat (BNat (n * m) -> BNat (2 * (n * m))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat n -> BNat m -> BNat (n * m)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat n
a BNat m
b)) BNat m
b
powBNat :: BNat n -> BNat m -> BNat (n^m)
powBNat :: BNat n -> BNat m -> BNat (n ^ m)
powBNat _ BT = BNat 0 -> BNat ((2 * 0) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 BNat 0
BT
powBNat a :: BNat n
a (B0 b :: BNat n
b) = let z :: BNat (n ^ n)
z = BNat n -> BNat n -> BNat (n ^ n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n ^ m)
powBNat BNat n
a BNat n
b
in BNat (n ^ n) -> BNat (n ^ n) -> BNat ((n ^ n) * (n ^ n))
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat (n ^ n)
z BNat (n ^ n)
z
powBNat a :: BNat n
a (B1 b :: BNat n
b) = let z :: BNat (n ^ n)
z = BNat n -> BNat n -> BNat (n ^ n)
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n ^ m)
powBNat BNat n
a BNat n
b
in BNat n
-> BNat ((n ^ n) * (n ^ n)) -> BNat (n * ((n ^ n) * (n ^ n)))
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat n
a (BNat (n ^ n) -> BNat (n ^ n) -> BNat ((n ^ n) * (n ^ n))
forall (n :: Nat) (m :: Nat). BNat n -> BNat m -> BNat (n * m)
mulBNat BNat (n ^ n)
z BNat (n ^ n)
z)
succBNat :: BNat n -> BNat (n+1)
succBNat :: BNat n -> BNat (n + 1)
succBNat BT = BNat 0 -> BNat ((2 * 0) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 BNat 0
BT
succBNat (B0 a :: BNat n
a) = BNat n -> BNat ((2 * n) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 BNat n
a
succBNat (B1 a :: BNat n
a) = BNat (n + 1) -> BNat (2 * (n + 1))
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 (BNat n -> BNat (n + 1)
forall (n :: Nat). BNat n -> BNat (n + 1)
succBNat BNat n
a)
predBNat :: (1 <= n) => BNat n -> BNat (n-1)
predBNat :: BNat n -> BNat (n - 1)
predBNat (B1 a :: BNat n
a) = case BNat n -> BNat n
forall (n :: Nat). BNat n -> BNat n
stripZeros BNat n
a of
BT -> BNat 0
BNat (n - 1)
BT
a' :: BNat n
a' -> BNat n -> BNat (2 * n)
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 BNat n
a'
predBNat (B0 x :: BNat n
x) = BNat (n - 1) -> BNat ((2 * (n - 1)) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (BNat n -> BNat (n - 1)
forall (n :: Nat). (1 <= n) => BNat n -> BNat (n - 1)
predBNat BNat n
x)
div2BNat :: BNat (2*n) -> BNat n
div2BNat :: BNat (2 * n) -> BNat n
div2BNat BT = BNat n
BNat 0
BT
div2BNat (B0 x :: BNat n
x) = BNat n
BNat n
x
div2BNat (B1 _) = String -> BNat n
forall a. HasCallStack => String -> a
error "div2BNat: impossible: 2*n ~ 2*n+1"
div2Sub1BNat :: BNat (2*n+1) -> BNat n
div2Sub1BNat :: BNat ((2 * n) + 1) -> BNat n
div2Sub1BNat (B1 x :: BNat n
x) = BNat n
BNat n
x
div2Sub1BNat _ = String -> BNat n
forall a. HasCallStack => String -> a
error "div2Sub1BNat: impossible: 2*n+1 ~ 2*n"
log2BNat :: BNat (2^n) -> BNat n
log2BNat :: BNat (2 ^ n) -> BNat n
log2BNat BT = String -> BNat n
forall a. HasCallStack => String -> a
error "log2BNat: log2(0) not defined"
log2BNat (B1 x :: BNat n
x) = case BNat n -> BNat n
forall (n :: Nat). BNat n -> BNat n
stripZeros BNat n
x of
BT -> BNat n
BNat 0
BT
_ -> String -> BNat n
forall a. HasCallStack => String -> a
error "log2BNat: impossible: 2^n ~ 2x+1"
log2BNat (B0 x :: BNat n
x) = BNat (n - 1) -> BNat ((n - 1) + 1)
forall (n :: Nat). BNat n -> BNat (n + 1)
succBNat (BNat (2 ^ (n - 1)) -> BNat (n - 1)
forall (n :: Nat). BNat (2 ^ n) -> BNat n
log2BNat BNat n
BNat (2 ^ (n - 1))
x)
stripZeros :: BNat n -> BNat n
stripZeros :: BNat n -> BNat n
stripZeros BT = BNat n
BNat 0
BT
stripZeros (B1 x :: BNat n
x) = BNat n -> BNat ((2 * n) + 1)
forall (n :: Nat). BNat n -> BNat ((2 * n) + 1)
B1 (BNat n -> BNat n
forall (n :: Nat). BNat n -> BNat n
stripZeros BNat n
x)
stripZeros (B0 BT) = BNat n
BNat 0
BT
stripZeros (B0 x :: BNat n
x) = case BNat n -> BNat n
forall (n :: Nat). BNat n -> BNat n
stripZeros BNat n
x of
BT -> BNat n
BNat 0
BT
k :: BNat n
k -> BNat n -> BNat (2 * n)
forall (n :: Nat). BNat n -> BNat (2 * n)
B0 BNat n
k
leToPlus
:: forall (k :: Nat) (n :: Nat) r
. ( k <= n
)
=> (forall m . (n ~ (k + m)) => r)
-> r
leToPlus :: (forall (m :: Nat). (n ~ (k + m)) => r) -> r
leToPlus r :: forall (m :: Nat). (n ~ (k + m)) => r
r = (n ~ (k + (n - k))) => r
forall (m :: Nat). (n ~ (k + m)) => r
r @(n - k)
{-# INLINE leToPlus #-}
leToPlusKN
:: forall (k :: Nat) (n :: Nat) r
. ( k <= n
, KnownNat k
, KnownNat n
)
=> (forall m . (n ~ (k + m), KnownNat m) => r)
-> r
leToPlusKN :: (forall (m :: Nat). (n ~ (k + m), KnownNat m) => r) -> r
leToPlusKN r :: forall (m :: Nat). (n ~ (k + m), KnownNat m) => r
r = (n ~ (k + (n - k)), KnownNat (n - k)) => r
forall (m :: Nat). (n ~ (k + m), KnownNat m) => r
r @(n - k)
{-# INLINE leToPlusKN #-}