{-|
Copyright  :  (C) 2016, University of Twente
License    :  BSD2 (see the file LICENSE)
Maintainer :  Christiaan Baaij <christiaan.baaij@gmail.com>
-}

{-# LANGUAGE CPP                  #-}
{-# LANGUAGE DataKinds            #-}
{-# LANGUAGE GADTs                #-}
{-# LANGUAGE InstanceSigs         #-}
{-# LANGUAGE KindSignatures       #-}
{-# LANGUAGE PatternSynonyms      #-}
{-# LANGUAGE RankNTypes           #-}
{-# LANGUAGE ScopedTypeVariables  #-}
{-# LANGUAGE TemplateHaskell      #-}
{-# LANGUAGE TupleSections        #-}
{-# LANGUAGE TypeApplications     #-}
{-# LANGUAGE TypeFamilies         #-}
{-# LANGUAGE TypeOperators        #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE ViewPatterns         #-}
#if __GLASGOW_HASKELL__ >= 806
{-# LANGUAGE NoStarIsType #-}
#endif

{-# LANGUAGE Trustworthy #-}

{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise -fplugin GHC.TypeLits.KnownNat.Solver #-}

module Clash.Sized.RTree
  ( -- * 'RTree' data type
    RTree (LR, BR)
    -- * Construction
  , treplicate
  , trepeat
    -- * Accessors
    -- ** Indexing
  , indexTree
  , tindices
    -- * Modifying trees
  , replaceTree
    -- * Element-wise operations
    -- ** Mapping
  , tmap
  , tzipWith
    -- ** Zipping
  , tzip
    -- ** Unzipping
  , tunzip
    -- * Folding
  , tfold
    -- ** Specialised folds
  , tdfold
    -- * Conversions
  , v2t
  , t2v
    -- * Misc
  , lazyT
  )
where

import Control.Applicative         (liftA2)
import Control.DeepSeq             (NFData(..))
import qualified Control.Lens      as Lens
import Data.Default.Class          (Default (..))
import Data.Either                 (isLeft)
import Data.Foldable               (toList)
import Data.Kind                   (Type)
import Data.Singletons.Prelude     (Apply, TyFun, type (@@))
import Data.Proxy                  (Proxy (..))
import GHC.TypeLits                (KnownNat, Nat, type (+), type (^), type (*))
import Language.Haskell.TH.Syntax  (Lift(..))
import Prelude                     hiding ((++), (!!))
import Test.QuickCheck             (Arbitrary (..), CoArbitrary (..))

import Clash.Class.BitPack         (BitPack (..), packXWith)
import Clash.Promoted.Nat          (SNat (..), UNat (..), pow2SNat, snatToNum,
                                    subSNat, toUNat)
import Clash.Promoted.Nat.Literals (d1)
import Clash.Sized.Index           (Index)
import Clash.Sized.Vector          (Vec (..), (!!), (++), dtfold, replace)
import Clash.XException
  (ShowX (..), Undefined (..), isX, showsX, showsPrecXWith)

{- $setup
>>> :set -XDataKinds
>>> :set -XTypeFamilies
>>> :set -XTypeOperators
>>> :set -XTemplateHaskell
>>> :set -XFlexibleContexts
>>> :set -XTypeApplications
>>> :set -fplugin GHC.TypeLits.Normalise
>>> :set -XUndecidableInstances
>>> import Clash.Prelude
>>> data IIndex (f :: TyFun Nat *) :: *
>>> type instance Apply IIndex l = Index ((2^l)+1)
>>> :{
let populationCount' :: (KnownNat k, KnownNat (2^k)) => BitVector (2^k) -> Index ((2^k)+1)
    populationCount' bv = tdfold (Proxy @IIndex)
                                 fromIntegral
                                 (\_ x y -> add x y)
                                 (v2t (bv2v bv))
:}
-}

-- | Perfect depth binary tree.
--
-- * Only has elements at the leaf of the tree
-- * A tree of depth /d/ has /2^d/ elements.
data RTree :: Nat -> Type -> Type where
  LR_ :: a -> RTree 0 a
  BR_ :: RTree d a -> RTree d a -> RTree (d+1) a

instance NFData a => NFData (RTree d a) where
    rnf :: RTree d a -> ()
rnf (LR_ x :: a
x) = a -> ()
forall a. NFData a => a -> ()
rnf a
x
    rnf (BR_ l :: RTree d a
l r :: RTree d a
r ) = RTree d a -> ()
forall a. NFData a => a -> ()
rnf RTree d a
l () -> () -> ()
forall a b. a -> b -> b
`seq` RTree d a -> ()
forall a. NFData a => a -> ()
rnf RTree d a
r

textract :: RTree 0 a -> a
textract :: RTree 0 a -> a
textract (LR_ x :: a
x)   = a
x
textract (BR_ _ _) = [Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char] -> a) -> [Char] -> a
forall a b. (a -> b) -> a -> b
$ "textract: nodes hold no values"
{-# NOINLINE textract #-}

tsplit :: RTree (d+1) a -> (RTree d a,RTree d a)
tsplit :: RTree (d + 1) a -> (RTree d a, RTree d a)
tsplit (BR_ l :: RTree d a
l r :: RTree d a
r) = (RTree d a
RTree d a
l,RTree d a
RTree d a
r)
tsplit (LR_ _)   = [Char] -> (RTree d a, RTree d a)
forall a. HasCallStack => [Char] -> a
error ([Char] -> (RTree d a, RTree d a))
-> [Char] -> (RTree d a, RTree d a)
forall a b. (a -> b) -> a -> b
$ "tsplit: leaf is atomic"
{-# NOINLINE tsplit #-}

-- | Leaf of a perfect depth tree
--
-- >>> LR 1
-- 1
-- >>> let x = LR 1
-- >>> :t x
-- x :: Num a => RTree 0 a
--
-- Can be used as a pattern:
--
-- >>> let f (LR a) (LR b) = a + b
-- >>> :t f
-- f :: Num a => RTree 0 a -> RTree 0 a -> a
-- >>> f (LR 1) (LR 2)
-- 3
pattern LR :: a -> RTree 0 a
pattern $bLR :: a -> RTree 0 a
$mLR :: forall r a. RTree 0 a -> (a -> r) -> (Void# -> r) -> r
LR x <- (textract -> x)
  where
    LR x :: a
x = a -> RTree 0 a
forall a. a -> RTree 0 a
LR_ a
x

-- | Branch of a perfect depth tree
--
-- >>> BR (LR 1) (LR 2)
-- <1,2>
-- >>> let x = BR (LR 1) (LR 2)
-- >>> :t x
-- x :: Num a => RTree 1 a
--
-- Case be used a pattern:
--
-- >>> let f (BR (LR a) (LR b)) = LR (a + b)
-- >>> :t f
-- f :: Num a => RTree 1 a -> RTree 0 a
-- >>> f (BR (LR 1) (LR 2))
-- 3
pattern BR :: RTree d a -> RTree d a -> RTree (d+1) a
pattern $bBR :: RTree d a -> RTree d a -> RTree (d + 1) a
$mBR :: forall r (d :: Nat) a.
RTree (d + 1) a
-> (RTree d a -> RTree d a -> r) -> (Void# -> r) -> r
BR l r <- ((\t -> (tsplit t)) -> (l,r))
  where
    BR l :: RTree d a
l r :: RTree d a
r = RTree d a -> RTree d a -> RTree (d + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR_ RTree d a
l RTree d a
r

instance (KnownNat d, Eq a) => Eq (RTree d a) where
  == :: RTree d a -> RTree d a -> Bool
(==) t1 :: RTree d a
t1 t2 :: RTree d a
t2 = Vec (2 ^ d) a -> Vec (2 ^ d) a -> Bool
forall a. Eq a => a -> a -> Bool
(==) (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t1) (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t2)

instance (KnownNat d, Ord a) => Ord (RTree d a) where
  compare :: RTree d a -> RTree d a -> Ordering
compare t1 :: RTree d a
t1 t2 :: RTree d a
t2 = Vec (2 ^ d) a -> Vec (2 ^ d) a -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t1) (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t2)

instance Show a => Show (RTree n a) where
  showsPrec :: Int -> RTree n a -> ShowS
showsPrec _ (LR_ a :: a
a)   = a -> ShowS
forall a. Show a => a -> ShowS
shows a
a
  showsPrec _ (BR_ l :: RTree d a
l r :: RTree d a
r) = \s :: [Char]
s -> '<'Char -> ShowS
forall a. a -> [a] -> [a]
:RTree d a -> ShowS
forall a. Show a => a -> ShowS
shows RTree d a
l (','Char -> ShowS
forall a. a -> [a] -> [a]
:RTree d a -> ShowS
forall a. Show a => a -> ShowS
shows RTree d a
r ('>'Char -> ShowS
forall a. a -> [a] -> [a]
:[Char]
s))

instance ShowX a => ShowX (RTree n a) where
  showsPrecX :: Int -> RTree n a -> ShowS
showsPrecX = (Int -> RTree n a -> ShowS) -> Int -> RTree n a -> ShowS
forall a. (Int -> a -> ShowS) -> Int -> a -> ShowS
showsPrecXWith Int -> RTree n a -> ShowS
forall (d :: Nat). Int -> RTree d a -> ShowS
go
    where
      go :: Int -> RTree d a -> ShowS
      go :: Int -> RTree d a -> ShowS
go _ (LR_ a :: a
a)   = a -> ShowS
forall a. ShowX a => a -> ShowS
showsX a
a
      go _ (BR_ l :: RTree d a
l r :: RTree d a
r) = \s :: [Char]
s -> '<'Char -> ShowS
forall a. a -> [a] -> [a]
:RTree d a -> ShowS
forall a. ShowX a => a -> ShowS
showsX RTree d a
l (','Char -> ShowS
forall a. a -> [a] -> [a]
:RTree d a -> ShowS
forall a. ShowX a => a -> ShowS
showsX RTree d a
r ('>'Char -> ShowS
forall a. a -> [a] -> [a]
:[Char]
s))

instance KnownNat d => Functor (RTree d) where
  fmap :: (a -> b) -> RTree d a -> RTree d b
fmap = (a -> b) -> RTree d a -> RTree d b
forall (d :: Nat) a b.
KnownNat d =>
(a -> b) -> RTree d a -> RTree d b
tmap

instance KnownNat d => Applicative (RTree d) where
  pure :: a -> RTree d a
pure  = a -> RTree d a
forall (d :: Nat) a. KnownNat d => a -> RTree d a
trepeat
  <*> :: RTree d (a -> b) -> RTree d a -> RTree d b
(<*>) = ((a -> b) -> a -> b) -> RTree d (a -> b) -> RTree d a -> RTree d b
forall a b c (d :: Nat).
KnownNat d =>
(a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith (a -> b) -> a -> b
forall a b. (a -> b) -> a -> b
($)

instance KnownNat d => Foldable (RTree d) where
  foldMap :: (a -> m) -> RTree d a -> m
foldMap f :: a -> m
f = (a -> m) -> (m -> m -> m) -> RTree d a -> m
forall (d :: Nat) a b.
KnownNat d =>
(a -> b) -> (b -> b -> b) -> RTree d a -> b
tfold a -> m
f m -> m -> m
forall a. Monoid a => a -> a -> a
mappend

data TraversableTree (g :: Type -> Type) (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (TraversableTree f a) d = f (RTree d a)

instance KnownNat d => Traversable (RTree d) where
  traverse :: forall f a b . Applicative f => (a -> f b) -> RTree d a -> f (RTree d b)
  traverse :: (a -> f b) -> RTree d a -> f (RTree d b)
traverse f :: a -> f b
f = Proxy (TraversableTree f b)
-> (a -> TraversableTree f b @@ 0)
-> (forall (l :: Nat).
    SNat l
    -> (TraversableTree f b @@ l)
    -> (TraversableTree f b @@ l)
    -> TraversableTree f b @@ (l + 1))
-> RTree d a
-> TraversableTree f b @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
    SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (TraversableTree f b)
forall k (t :: k). Proxy t
Proxy @(TraversableTree f b))
                      ((b -> RTree 0 b) -> f b -> f (RTree 0 b)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap b -> RTree 0 b
forall a. a -> RTree 0 a
LR (f b -> f (RTree 0 b)) -> (a -> f b) -> a -> f (RTree 0 b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> f b
f)
                      ((f (RTree l b) -> f (RTree l b) -> f (RTree (l + 1) b))
-> SNat l -> f (RTree l b) -> f (RTree l b) -> f (RTree (l + 1) b)
forall a b. a -> b -> a
const ((RTree l b -> RTree l b -> RTree (l + 1) b)
-> f (RTree l b) -> f (RTree l b) -> f (RTree (l + 1) b)
forall (f :: Type -> Type) a b c.
Applicative f =>
(a -> b -> c) -> f a -> f b -> f c
liftA2 RTree l b -> RTree l b -> RTree (l + 1) b
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR))

instance (KnownNat d, KnownNat (BitSize a), BitPack a) =>
  BitPack (RTree d a) where
  type BitSize (RTree d a) = (2^d) * (BitSize a)
  pack :: RTree d a -> BitVector (BitSize (RTree d a))
pack   = (RTree d a -> BitVector ((2 ^ d) * BitSize a))
-> RTree d a -> BitVector ((2 ^ d) * BitSize a)
forall (n :: Nat) a.
KnownNat n =>
(a -> BitVector n) -> a -> BitVector n
packXWith (Vec (2 ^ d) a -> BitVector ((2 ^ d) * BitSize a)
forall a. BitPack a => a -> BitVector (BitSize a)
pack (Vec (2 ^ d) a -> BitVector ((2 ^ d) * BitSize a))
-> (RTree d a -> Vec (2 ^ d) a)
-> RTree d a
-> BitVector ((2 ^ d) * BitSize a)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v)
  unpack :: BitVector (BitSize (RTree d a)) -> RTree d a
unpack = Vec (2 ^ d) a -> RTree d a
forall (d :: Nat) a. KnownNat d => Vec (2 ^ d) a -> RTree d a
v2t (Vec (2 ^ d) a -> RTree d a)
-> (BitVector ((2 ^ d) * BitSize a) -> Vec (2 ^ d) a)
-> BitVector ((2 ^ d) * BitSize a)
-> RTree d a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. BitVector ((2 ^ d) * BitSize a) -> Vec (2 ^ d) a
forall a. BitPack a => BitVector (BitSize a) -> a
unpack

type instance Lens.Index   (RTree d a) = Int
type instance Lens.IxValue (RTree d a) = a
instance KnownNat d => Lens.Ixed (RTree d a) where
  ix :: Index (RTree d a) -> Traversal' (RTree d a) (IxValue (RTree d a))
ix i :: Index (RTree d a)
i f :: IxValue (RTree d a) -> f (IxValue (RTree d a))
f t :: RTree d a
t = Int -> a -> RTree d a -> RTree d a
forall (d :: Nat) i a.
(KnownNat d, Enum i) =>
i -> a -> RTree d a -> RTree d a
replaceTree Int
Index (RTree d a)
i (a -> RTree d a -> RTree d a) -> f a -> f (RTree d a -> RTree d a)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> IxValue (RTree d a) -> f (IxValue (RTree d a))
f (RTree d a -> Int -> a
forall (d :: Nat) i a. (KnownNat d, Enum i) => RTree d a -> i -> a
indexTree RTree d a
t Int
Index (RTree d a)
i) f (RTree d a -> RTree d a) -> f (RTree d a) -> f (RTree d a)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> RTree d a -> f (RTree d a)
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure RTree d a
t

instance (KnownNat d, Default a) => Default (RTree d a) where
  def :: RTree d a
def = a -> RTree d a
forall (d :: Nat) a. KnownNat d => a -> RTree d a
trepeat a
forall a. Default a => a
def

instance Lift a => Lift (RTree d a) where
  lift :: RTree d a -> Q Exp
lift (LR_ a :: a
a)     = [| LR_ a |]
  lift (BR_ t1 :: RTree d a
t1 t2 :: RTree d a
t2) = [| BR_ $(lift t1) $(lift t2) |]

instance (KnownNat d, Arbitrary a) => Arbitrary (RTree d a) where
  arbitrary :: Gen (RTree d a)
arbitrary = RTree d (Gen a) -> Gen (RTree d a)
forall (t :: Type -> Type) (f :: Type -> Type) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA (Gen a -> RTree d (Gen a)
forall (d :: Nat) a. KnownNat d => a -> RTree d a
trepeat Gen a
forall a. Arbitrary a => Gen a
arbitrary)
  shrink :: RTree d a -> [RTree d a]
shrink    = RTree d [a] -> [RTree d a]
forall (t :: Type -> Type) (f :: Type -> Type) a.
(Traversable t, Applicative f) =>
t (f a) -> f (t a)
sequenceA (RTree d [a] -> [RTree d a])
-> (RTree d a -> RTree d [a]) -> RTree d a -> [RTree d a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a -> [a]) -> RTree d a -> RTree d [a]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap a -> [a]
forall a. Arbitrary a => a -> [a]
shrink

instance (KnownNat d, CoArbitrary a) => CoArbitrary (RTree d a) where
  coarbitrary :: RTree d a -> Gen b -> Gen b
coarbitrary = [a] -> Gen b -> Gen b
forall a b. CoArbitrary a => a -> Gen b -> Gen b
coarbitrary ([a] -> Gen b -> Gen b)
-> (RTree d a -> [a]) -> RTree d a -> Gen b -> Gen b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RTree d a -> [a]
forall (t :: Type -> Type) a. Foldable t => t a -> [a]
toList

instance (KnownNat d, Undefined a) => Undefined (RTree d a) where
  deepErrorX :: [Char] -> RTree d a
deepErrorX x :: [Char]
x = a -> RTree d a
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ([Char] -> a
forall a. (Undefined a, HasCallStack) => [Char] -> a
deepErrorX [Char]
x)

  rnfX :: RTree d a -> ()
rnfX t :: RTree d a
t = if Either [Char] (RTree d a) -> Bool
forall a b. Either a b -> Bool
isLeft (RTree d a -> Either [Char] (RTree d a)
forall a. a -> Either [Char] a
isX RTree d a
t) then () else RTree d a -> ()
go RTree d a
t
   where
    go :: RTree d a -> ()
    go :: RTree d a -> ()
go (LR_ x :: a
x)   = a -> ()
forall a. Undefined a => a -> ()
rnfX a
x
    go (BR_ l :: RTree d a
l r :: RTree d a
r) = RTree d a -> ()
forall a. Undefined a => a -> ()
rnfX RTree d a
l () -> () -> ()
forall a b. a -> b -> b
`seq` RTree d a -> ()
forall a. Undefined a => a -> ()
rnfX RTree d a
r


-- | A /dependently/ typed fold over trees.
--
-- As an example of when you might want to use 'dtfold' we will build a
-- population counter: a circuit that counts the number of bits set to '1' in
-- a 'BitVector'. Given a vector of /n/ bits, we only need we need a data type
-- that can represent the number /n/: 'Index' @(n+1)@. 'Index' @k@ has a range
-- of @[0 .. k-1]@ (using @ceil(log2(k))@ bits), hence we need 'Index' @n+1@.
-- As an initial attempt we will use 'tfold', because it gives a nice (@log2(n)@)
-- tree-structure of adders:
--
-- @
-- populationCount :: (KnownNat (2^d), KnownNat d, KnownNat (2^d+1))
--                 => BitVector (2^d) -> Index (2^d+1)
-- populationCount = tfold fromIntegral (+) . v2t . bv2v
-- @
--
-- The \"problem\" with this description is that all adders have the same
-- bit-width, i.e. all adders are of the type:
--
-- @
-- (+) :: 'Index' (2^d+1) -> 'Index' (2^d+1) -> 'Index' (2^d+1).
-- @
--
-- This is a \"problem\" because we could have a more efficient structure:
-- one where each layer of adders is /precisely/ wide enough to count the number
-- of bits at that layer. That is, at height /d/ we want the adder to be of
-- type:
--
-- @
-- 'Index' ((2^d)+1) -> 'Index' ((2^d)+1) -> 'Index' ((2^(d+1))+1)
-- @
--
-- We have such an adder in the form of the 'Clash.Class.Num.add' function, as
-- defined in the instance 'Clash.Class.Num.ExtendingNum' instance of 'Index'.
-- However, we cannot simply use 'fold' to create a tree-structure of
-- 'Clash.Class.Num.add'es:
--
-- >>> :{
-- let populationCount' :: (KnownNat (2^d), KnownNat d, KnownNat (2^d+1))
--                      => BitVector (2^d) -> Index (2^d+1)
--     populationCount' = tfold fromIntegral add . v2t . bv2v
-- :}
-- <BLANKLINE>
-- <interactive>:...
--     • Couldn't match type ‘(((2 ^ d) + 1) + ((2 ^ d) + 1)) - 1’
--                      with ‘(2 ^ d) + 1’
--       Expected type: Index ((2 ^ d) + 1)
--                      -> Index ((2 ^ d) + 1) -> Index ((2 ^ d) + 1)
--         Actual type: Index ((2 ^ d) + 1)
--                      -> Index ((2 ^ d) + 1)
--                      -> AResult (Index ((2 ^ d) + 1)) (Index ((2 ^ d) + 1))
--     • In the second argument of ‘tfold’, namely ‘add’
--       In the first argument of ‘(.)’, namely ‘tfold fromIntegral add’
--       In the expression: tfold fromIntegral add . v2t . bv2v
--     • Relevant bindings include
--         populationCount' :: BitVector (2 ^ d) -> Index ((2 ^ d) + 1)
--           (bound at ...)
--
-- because 'tfold' expects a function of type \"@b -> b -> b@\", i.e. a function
-- where the arguments and result all have exactly the same type.
--
-- In order to accommodate the type of our 'Clash.Class.Num.add', where the
-- result is larger than the arguments, we must use a dependently typed fold in
-- the form of 'dtfold':
--
-- @
-- {\-\# LANGUAGE UndecidableInstances \#-\}
-- import Data.Singletons.Prelude
-- import Data.Proxy
--
-- data IIndex (f :: 'TyFun' Nat *) :: *
-- type instance 'Apply' IIndex l = 'Index' ((2^l)+1)
--
-- populationCount' :: (KnownNat k, KnownNat (2^k))
--                  => BitVector (2^k) -> Index ((2^k)+1)
-- populationCount' bv = 'tdfold' (Proxy @IIndex)
--                              fromIntegral
--                              (\\_ x y -> 'Clash.Class.Num.add' x y)
--                              ('v2t' ('Clash.Sized.Vector.bv2v' bv))
-- @
--
-- And we can test that it works:
--
-- >>> :t populationCount' (7 :: BitVector 16)
-- populationCount' (7 :: BitVector 16) :: Index 17
-- >>> populationCount' (7 :: BitVector 16)
-- 3
tdfold :: forall p k a . KnownNat k
       => Proxy (p :: TyFun Nat Type -> Type) -- ^ The /motive/
       -> (a -> (p @@ 0)) -- ^ Function to apply to the elements on the leafs
       -> (forall l . SNat l -> (p @@ l) -> (p @@ l) -> (p @@ (l+1)))
       -- ^ Function to fold the branches with.
       --
       -- __NB:__ @SNat l@ is the depth of the two sub-branches.
       -> RTree k a -- ^ Tree to fold over.
       -> (p @@ k)
tdfold :: Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
    SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold _ f :: a -> p @@ 0
f g :: forall (l :: Nat). SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1)
g = SNat k -> RTree k a -> p @@ k
forall (m :: Nat). SNat m -> RTree m a -> p @@ m
go SNat k
forall (n :: Nat). KnownNat n => SNat n
SNat
  where
    go :: SNat m -> RTree m a -> (p @@ m)
    go :: SNat m -> RTree m a -> p @@ m
go _  (LR_ a :: a
a)   = a -> p @@ 0
f a
a
    go sn :: SNat m
sn (BR_ l :: RTree d a
l r :: RTree d a
r) = let sn' :: SNat d
sn' = SNat m
SNat (d + 1)
sn SNat (d + 1) -> SNat 1 -> SNat d
forall (a :: Nat) (b :: Nat). SNat (a + b) -> SNat b -> SNat a
`subSNat` SNat 1
d1
                      in  SNat d -> (p @@ d) -> (p @@ d) -> p @@ (d + 1)
forall (l :: Nat). SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1)
g SNat d
sn' (SNat d -> RTree d a -> p @@ d
forall (m :: Nat). SNat m -> RTree m a -> p @@ m
go SNat d
sn' RTree d a
l) (SNat d -> RTree d a -> p @@ d
forall (m :: Nat). SNat m -> RTree m a -> p @@ m
go SNat d
sn' RTree d a
r)
{-# NOINLINE tdfold #-}

data TfoldTree (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (TfoldTree a) d = a

-- | Reduce a tree to a single element
tfold :: forall d a b .
         KnownNat d
      => (a -> b) -- ^ Function to apply to the leaves
      -> (b -> b -> b) -- ^ Function to combine the results of the reduction
                       -- of two branches
      -> RTree d a -- ^ Tree to fold reduce
      -> b
tfold :: (a -> b) -> (b -> b -> b) -> RTree d a -> b
tfold f :: a -> b
f g :: b -> b -> b
g = Proxy (TfoldTree b)
-> (a -> TfoldTree b @@ 0)
-> (forall (l :: Nat).
    SNat l
    -> (TfoldTree b @@ l)
    -> (TfoldTree b @@ l)
    -> TfoldTree b @@ (l + 1))
-> RTree d a
-> TfoldTree b @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
    SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (TfoldTree b)
forall k (t :: k). Proxy t
Proxy @(TfoldTree b)) a -> b
a -> TfoldTree b @@ 0
f ((b -> b -> b) -> SNat l -> b -> b -> b
forall a b. a -> b -> a
const b -> b -> b
g)

-- | \"'treplicate' @d a@\" returns a tree of depth /d/, and has /2^d/ copies
-- of /a/.
--
-- >>> treplicate (SNat :: SNat 3) 6
-- <<<6,6>,<6,6>>,<<6,6>,<6,6>>>
-- >>> treplicate d3 6
-- <<<6,6>,<6,6>>,<<6,6>,<6,6>>>
treplicate :: forall d a . SNat d -> a -> RTree d a
treplicate :: SNat d -> a -> RTree d a
treplicate sn :: SNat d
sn a :: a
a = UNat d -> RTree d a
forall (n :: Nat). UNat n -> RTree n a
go (SNat d -> UNat d
forall (n :: Nat). SNat n -> UNat n
toUNat SNat d
sn)
  where
    go :: UNat n -> RTree n a
    go :: UNat n -> RTree n a
go UZero      = a -> RTree 0 a
forall a. a -> RTree 0 a
LR a
a
    go (USucc un :: UNat n
un) = RTree n a -> RTree n a -> RTree (n + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR (UNat n -> RTree n a
forall (n :: Nat). UNat n -> RTree n a
go UNat n
un) (UNat n -> RTree n a
forall (n :: Nat). UNat n -> RTree n a
go UNat n
un)
{-# NOINLINE treplicate #-}

-- | \"'trepeat' @a@\" creates a tree with as many copies of /a/ as demanded by
-- the context.
--
-- >>> trepeat 6 :: RTree 2 Int
-- <<6,6>,<6,6>>
trepeat :: KnownNat d => a -> RTree d a
trepeat :: a -> RTree d a
trepeat = SNat d -> a -> RTree d a
forall (d :: Nat) a. SNat d -> a -> RTree d a
treplicate SNat d
forall (n :: Nat). KnownNat n => SNat n
SNat

data MapTree (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (MapTree a) d = RTree d a

-- | \"'tmap' @f t@\" is the tree obtained by apply /f/ to each element of /t/,
-- i.e.,
--
-- > tmap f (BR (LR a) (LR b)) == BR (LR (f a)) (LR (f b))
tmap :: forall d a b . KnownNat d => (a -> b) -> RTree d a -> RTree d b
tmap :: (a -> b) -> RTree d a -> RTree d b
tmap f :: a -> b
f = Proxy (MapTree b)
-> (a -> MapTree b @@ 0)
-> (forall (l :: Nat).
    SNat l
    -> (MapTree b @@ l) -> (MapTree b @@ l) -> MapTree b @@ (l + 1))
-> RTree d a
-> MapTree b @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
    SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (MapTree b)
forall k (t :: k). Proxy t
Proxy @(MapTree b)) (b -> RTree 0 b
forall a. a -> RTree 0 a
LR (b -> RTree 0 b) -> (a -> b) -> a -> RTree 0 b
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> b
f) (\_ l :: MapTree b @@ l
l r :: MapTree b @@ l
r -> RTree l b -> RTree l b -> RTree (l + 1) b
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR MapTree b @@ l
RTree l b
l MapTree b @@ l
RTree l b
r)

-- | Generate a tree of indices, where the depth of the tree is determined by
-- the context.
--
-- >>> tindices :: RTree 3 (Index 8)
-- <<<0,1>,<2,3>>,<<4,5>,<6,7>>>
tindices :: forall d . KnownNat d => RTree d (Index (2^d))
tindices :: RTree d (Index (2 ^ d))
tindices =
  Proxy (MapTree (Index (2 ^ d)))
-> (Index (2 ^ d) -> MapTree (Index (2 ^ d)) @@ 0)
-> (forall (l :: Nat).
    SNat l
    -> (MapTree (Index (2 ^ d)) @@ l)
    -> (MapTree (Index (2 ^ d)) @@ l)
    -> MapTree (Index (2 ^ d)) @@ (l + 1))
-> RTree d (Index (2 ^ d))
-> MapTree (Index (2 ^ d)) @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
    SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (MapTree (Index (2 ^ d)))
forall k (t :: k). Proxy t
Proxy @(MapTree (Index (2^d)))) Index (2 ^ d) -> MapTree (Index (2 ^ d)) @@ 0
forall a. a -> RTree 0 a
LR
         (\s :: SNat l
s@SNat l
SNat l :: MapTree (Index (2 ^ d)) @@ l
l r :: MapTree (Index (2 ^ d)) @@ l
r -> RTree l (Index (2 ^ d))
-> RTree l (Index (2 ^ d)) -> RTree (l + 1) (Index (2 ^ d))
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR MapTree (Index (2 ^ d)) @@ l
RTree l (Index (2 ^ d))
l ((Index (2 ^ d) -> Index (2 ^ d))
-> RTree l (Index (2 ^ d)) -> RTree l (Index (2 ^ d))
forall (d :: Nat) a b.
KnownNat d =>
(a -> b) -> RTree d a -> RTree d b
tmap (Index (2 ^ d) -> Index (2 ^ d) -> Index (2 ^ d)
forall a. Num a => a -> a -> a
+(SNat (2 ^ l) -> Index (2 ^ d)
forall a (n :: Nat). Num a => SNat n -> a
snatToNum (SNat l -> SNat (2 ^ l)
forall (a :: Nat). SNat a -> SNat (2 ^ a)
pow2SNat SNat l
s))) MapTree (Index (2 ^ d)) @@ l
RTree l (Index (2 ^ d))
r))
         (SNat d -> Index (2 ^ d) -> RTree d (Index (2 ^ d))
forall (d :: Nat) a. SNat d -> a -> RTree d a
treplicate SNat d
forall (n :: Nat). KnownNat n => SNat n
SNat 0)

data V2TTree (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (V2TTree a) d = RTree d a

-- | Convert a vector with /2^d/ elements to a tree of depth /d/.
--
-- >>> (1:>2:>3:>4:>Nil)
-- <1,2,3,4>
-- >>> v2t (1:>2:>3:>4:>Nil)
-- <<1,2>,<3,4>>
v2t :: forall d a . KnownNat d => Vec (2^d) a -> RTree d a
v2t :: Vec (2 ^ d) a -> RTree d a
v2t = Proxy (V2TTree a)
-> (a -> V2TTree a @@ 0)
-> (forall (l :: Nat).
    SNat l
    -> (V2TTree a @@ l) -> (V2TTree a @@ l) -> V2TTree a @@ (l + 1))
-> Vec (2 ^ d) a
-> V2TTree a @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
    SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> Vec (2 ^ k) a
-> p @@ k
dtfold (Proxy (V2TTree a)
forall k (t :: k). Proxy t
Proxy @(V2TTree a)) a -> V2TTree a @@ 0
forall a. a -> RTree 0 a
LR ((RTree l a -> RTree l a -> RTree (l + 1) a)
-> SNat l -> RTree l a -> RTree l a -> RTree (l + 1) a
forall a b. a -> b -> a
const RTree l a -> RTree l a -> RTree (l + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR)

data T2VTree (a :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (T2VTree a) d = Vec (2^d) a

-- | Convert a tree of depth /d/ to a vector of /2^d/ elements
--
-- >>> (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4)))
-- <<1,2>,<3,4>>
-- >>> t2v (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4)))
-- <1,2,3,4>
t2v :: forall d a . KnownNat d => RTree d a -> Vec (2^d) a
t2v :: RTree d a -> Vec (2 ^ d) a
t2v = Proxy (T2VTree a)
-> (a -> T2VTree a @@ 0)
-> (forall (l :: Nat).
    SNat l
    -> (T2VTree a @@ l) -> (T2VTree a @@ l) -> T2VTree a @@ (l + 1))
-> RTree d a
-> T2VTree a @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
    SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (T2VTree a)
forall k (t :: k). Proxy t
Proxy @(T2VTree a)) (a -> Vec 0 a -> Vec (0 + 1) a
forall a (n :: Nat). a -> Vec n a -> Vec (n + 1) a
:> Vec 0 a
forall a. Vec 0 a
Nil) (\_ l :: T2VTree a @@ l
l r :: T2VTree a @@ l
r -> T2VTree a @@ l
Vec (2 ^ l) a
l Vec (2 ^ l) a -> Vec (2 ^ l) a -> Vec ((2 ^ l) + (2 ^ l)) a
forall (n :: Nat) a (m :: Nat). Vec n a -> Vec m a -> Vec (n + m) a
++ T2VTree a @@ l
Vec (2 ^ l) a
r)

-- | \"'indexTree' @t n@\" returns the /n/'th element of /t/.
--
-- The bottom-left leaf had index /0/, and the bottom-right leaf has index
-- /2^d-1/, where /d/ is the depth of the tree
--
-- >>> indexTree (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) 0
-- 1
-- >>> indexTree (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) 2
-- 3
-- >>> indexTree (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) 14
-- *** Exception: Clash.Sized.Vector.(!!): index 14 is larger than maximum index 3
-- ...
indexTree :: (KnownNat d, Enum i) => RTree d a -> i -> a
indexTree :: RTree d a -> i -> a
indexTree t :: RTree d a
t i :: i
i = (RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v RTree d a
t) Vec (2 ^ d) a -> i -> a
forall (n :: Nat) i a. (KnownNat n, Enum i) => Vec n a -> i -> a
!! i
i

-- | \"'replaceTree' @n a t@\" returns the tree /t/ where the /n/'th element is
-- replaced by /a/.
--
-- The bottom-left leaf had index /0/, and the bottom-right leaf has index
-- /2^d-1/, where /d/ is the depth of the tree
--
-- >>> replaceTree 0 5 (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4)))
-- <<5,2>,<3,4>>
-- >>> replaceTree 2 7 (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4)))
-- <<1,2>,<7,4>>
-- >>> replaceTree 9 6 (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4)))
-- <<1,2>,<3,*** Exception: Clash.Sized.Vector.replace: index 9 is larger than maximum index 3
-- ...
replaceTree :: (KnownNat d, Enum i) => i -> a -> RTree d a -> RTree d a
replaceTree :: i -> a -> RTree d a -> RTree d a
replaceTree i :: i
i a :: a
a = Vec (2 ^ d) a -> RTree d a
forall (d :: Nat) a. KnownNat d => Vec (2 ^ d) a -> RTree d a
v2t (Vec (2 ^ d) a -> RTree d a)
-> (RTree d a -> Vec (2 ^ d) a) -> RTree d a -> RTree d a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. i -> a -> Vec (2 ^ d) a -> Vec (2 ^ d) a
forall (n :: Nat) i a.
(KnownNat n, Enum i) =>
i -> a -> Vec n a -> Vec n a
replace i
i a
a (Vec (2 ^ d) a -> Vec (2 ^ d) a)
-> (RTree d a -> Vec (2 ^ d) a) -> RTree d a -> Vec (2 ^ d) a
forall b c a. (b -> c) -> (a -> b) -> a -> c
. RTree d a -> Vec (2 ^ d) a
forall (d :: Nat) a. KnownNat d => RTree d a -> Vec (2 ^ d) a
t2v

data ZipWithTree (b :: Type) (c :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (ZipWithTree b c) d = RTree d b -> RTree d c

-- | 'tzipWith' generalizes 'tzip' by zipping with the function given as the
-- first argument, instead of a tupling function. For example, "tzipWith (+)"
-- applied to two trees produces the tree of corresponding sums.
--
-- > tzipWith f (BR (LR a1) (LR b1)) (BR (LR a2) (LR b2)) == BR (LR (f a1 a2)) (LR (f b1 b2))
tzipWith :: forall a b c d . KnownNat d => (a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith :: (a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith f :: a -> b -> c
f = Proxy (ZipWithTree b c)
-> (a -> ZipWithTree b c @@ 0)
-> (forall (l :: Nat).
    SNat l
    -> (ZipWithTree b c @@ l)
    -> (ZipWithTree b c @@ l)
    -> ZipWithTree b c @@ (l + 1))
-> RTree d a
-> ZipWithTree b c @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
    SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (ZipWithTree b c)
forall k (t :: k). Proxy t
Proxy @(ZipWithTree b c)) a -> ZipWithTree b c @@ 0
a -> RTree 0 b -> RTree 0 c
lr forall (l :: Nat).
SNat l
-> (ZipWithTree b c @@ l)
-> (ZipWithTree b c @@ l)
-> ZipWithTree b c @@ (l + 1)
forall (l :: Nat).
SNat l
-> (RTree l b -> RTree l c)
-> (RTree l b -> RTree l c)
-> RTree (l + 1) b
-> RTree (l + 1) c
br
  where
    lr :: a -> RTree 0 b -> RTree 0 c
    lr :: a -> RTree 0 b -> RTree 0 c
lr a :: a
a (LR b :: b
b) = c -> RTree 0 c
forall a. a -> RTree 0 a
LR (a -> b -> c
f a
a b
b)
    lr _ _      = [Char] -> RTree 0 c
forall a. HasCallStack => [Char] -> a
error "impossible"

    br :: SNat l
       -> (RTree l b -> RTree l c)
       -> (RTree l b -> RTree l c)
       -> RTree (l+1) b
       -> RTree (l+1) c
    br :: SNat l
-> (RTree l b -> RTree l c)
-> (RTree l b -> RTree l c)
-> RTree (l + 1) b
-> RTree (l + 1) c
br _ fl :: RTree l b -> RTree l c
fl fr :: RTree l b -> RTree l c
fr (BR l r) = RTree l c -> RTree l c -> RTree (l + 1) c
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR (RTree l b -> RTree l c
fl RTree l b
l) (RTree l b -> RTree l c
fr RTree l b
r)
    br _ _  _  _        = [Char] -> RTree (l + 1) c
forall a. HasCallStack => [Char] -> a
error "impossible"

-- | 'tzip' takes two trees and returns a tree of corresponding pairs.
tzip :: KnownNat d => RTree d a -> RTree d b -> RTree d (a,b)
tzip :: RTree d a -> RTree d b -> RTree d (a, b)
tzip = (a -> b -> (a, b)) -> RTree d a -> RTree d b -> RTree d (a, b)
forall a b c (d :: Nat).
KnownNat d =>
(a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith (,)

data UnzipTree (a :: Type) (b :: Type) (f :: TyFun Nat Type) :: Type
type instance Apply (UnzipTree a b) d = (RTree d a, RTree d b)

-- | 'tunzip' transforms a tree of pairs into a tree of first components and a
-- tree of second components.
tunzip :: forall d a b . KnownNat d => RTree d (a,b) -> (RTree d a,RTree d b)
tunzip :: RTree d (a, b) -> (RTree d a, RTree d b)
tunzip = Proxy (UnzipTree a b)
-> ((a, b) -> UnzipTree a b @@ 0)
-> (forall (l :: Nat).
    SNat l
    -> (UnzipTree a b @@ l)
    -> (UnzipTree a b @@ l)
    -> UnzipTree a b @@ (l + 1))
-> RTree d (a, b)
-> UnzipTree a b @@ d
forall (p :: TyFun Nat Type -> Type) (k :: Nat) a.
KnownNat k =>
Proxy p
-> (a -> p @@ 0)
-> (forall (l :: Nat).
    SNat l -> (p @@ l) -> (p @@ l) -> p @@ (l + 1))
-> RTree k a
-> p @@ k
tdfold (Proxy (UnzipTree a b)
forall k (t :: k). Proxy t
Proxy @(UnzipTree a b)) (a, b) -> UnzipTree a b @@ 0
forall a a. (a, a) -> (RTree 0 a, RTree 0 a)
lr forall p (d :: Nat) a (d :: Nat) a.
p
-> (RTree d a, RTree d a)
-> (RTree d a, RTree d a)
-> (RTree (d + 1) a, RTree (d + 1) a)
forall (l :: Nat).
SNat l
-> (UnzipTree a b @@ l)
-> (UnzipTree a b @@ l)
-> UnzipTree a b @@ (l + 1)
br
  where
    lr :: (a, a) -> (RTree 0 a, RTree 0 a)
lr   (a :: a
a,b :: a
b) = (a -> RTree 0 a
forall a. a -> RTree 0 a
LR a
a,a -> RTree 0 a
forall a. a -> RTree 0 a
LR a
b)

    br :: p
-> (RTree d a, RTree d a)
-> (RTree d a, RTree d a)
-> (RTree (d + 1) a, RTree (d + 1) a)
br _ (l1 :: RTree d a
l1,r1 :: RTree d a
r1) (l2 :: RTree d a
l2,r2 :: RTree d a
r2) = (RTree d a -> RTree d a -> RTree (d + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR RTree d a
l1 RTree d a
l2, RTree d a -> RTree d a -> RTree (d + 1) a
forall (d :: Nat) a. RTree d a -> RTree d a -> RTree (d + 1) a
BR RTree d a
r1 RTree d a
r2)

-- | Given a function 'f' that is strict in its /n/th 'RTree' argument, make it
-- lazy by applying 'lazyT' to this argument:
--
-- > f x0 x1 .. (lazyT xn) .. xn_plus_k
lazyT :: KnownNat d
      => RTree d a
      -> RTree d a
lazyT :: RTree d a -> RTree d a
lazyT = (Any -> a -> a) -> RTree d Any -> RTree d a -> RTree d a
forall a b c (d :: Nat).
KnownNat d =>
(a -> b -> c) -> RTree d a -> RTree d b -> RTree d c
tzipWith ((a -> Any -> a) -> Any -> a -> a
forall a b c. (a -> b -> c) -> b -> a -> c
flip a -> Any -> a
forall a b. a -> b -> a
const) (Any -> RTree d Any
forall (d :: Nat) a. KnownNat d => a -> RTree d a
trepeat Any
forall a. HasCallStack => a
undefined)