{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE KindSignatures #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}
{-# LANGUAGE Unsafe #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.KnownNat.Solver #-}
{-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise #-}
{-# OPTIONS_HADDOCK show-extensions not-home #-}
module Clash.Sized.Internal.Index
(
Index (..)
, fromSNat
, pack#
, unpack#
, eq#
, neq#
, lt#
, ge#
, gt#
, le#
, enumFrom#
, enumFromThen#
, enumFromTo#
, enumFromThenTo#
, maxBound#
, (+#)
, (-#)
, (*#)
, fromInteger#
, plus#
, minus#
, times#
, quot#
, rem#
, toInteger#
, resize#
)
where
import Control.DeepSeq (NFData (..))
import Data.Data (Data)
import Data.Default (Default (..))
import Data.Proxy (Proxy (..))
import Text.Read (Read (..), ReadPrec)
import Language.Haskell.TH (TypeQ, appT, conT, litT, numTyLit, sigE)
import Language.Haskell.TH.Syntax (Lift(..))
import GHC.TypeLits (CmpNat, KnownNat, Nat, type (+), type (-),
type (*), type (<=), natVal)
import GHC.TypeLits.Extra (CLog)
import Test.QuickCheck.Arbitrary (Arbitrary (..), CoArbitrary (..),
arbitraryBoundedIntegral,
coarbitraryIntegral, shrinkIntegral)
import Clash.Class.BitPack (BitPack (..))
import Clash.Class.Num (ExtendingNum (..), SaturatingNum (..),
SaturationMode (..))
import Clash.Class.Resize (Resize (..))
import {-# SOURCE #-} Clash.Sized.Internal.BitVector (BitVector (BV))
import Clash.Promoted.Nat (SNat, snatToNum, leToPlusKN)
import Clash.XException (ShowX (..), showsPrecXWith)
newtype Index (n :: Nat) =
I { unsafeToInteger :: Integer }
deriving Data
instance NFData (Index n) where
rnf (I i) = rnf i `seq` ()
{-# NOINLINE rnf #-}
instance KnownNat n => BitPack (Index n) where
type BitSize (Index n) = CLog 2 n
pack = pack#
unpack = unpack#
fromSNat :: (KnownNat m, CmpNat n m ~ 'LT) => SNat n -> Index m
fromSNat = snatToNum
{-# NOINLINE pack# #-}
pack# :: Index n -> BitVector (CLog 2 n)
pack# (I i) = BV i
{-# NOINLINE unpack# #-}
unpack# :: KnownNat n => BitVector (CLog 2 n) -> Index n
unpack# (BV i) = fromInteger_INLINE i
instance Eq (Index n) where
(==) = eq#
(/=) = neq#
{-# NOINLINE eq# #-}
eq# :: (Index n) -> (Index n) -> Bool
(I n) `eq#` (I m) = n == m
{-# NOINLINE neq# #-}
neq# :: (Index n) -> (Index n) -> Bool
(I n) `neq#` (I m) = n /= m
instance Ord (Index n) where
(<) = lt#
(>=) = ge#
(>) = gt#
(<=) = le#
lt#,ge#,gt#,le# :: Index n -> Index n -> Bool
{-# NOINLINE lt# #-}
lt# (I n) (I m) = n < m
{-# NOINLINE ge# #-}
ge# (I n) (I m) = n >= m
{-# NOINLINE gt# #-}
gt# (I n) (I m) = n > m
{-# NOINLINE le# #-}
le# (I n) (I m) = n <= m
instance KnownNat n => Enum (Index n) where
succ = (+# fromInteger# 1)
pred = (-# fromInteger# 1)
toEnum = fromInteger# . toInteger
fromEnum = fromEnum . toInteger#
enumFrom = enumFrom#
enumFromThen = enumFromThen#
enumFromTo = enumFromTo#
enumFromThenTo = enumFromThenTo#
{-# NOINLINE enumFrom# #-}
{-# NOINLINE enumFromThen# #-}
{-# NOINLINE enumFromTo# #-}
{-# NOINLINE enumFromThenTo# #-}
enumFrom# :: KnownNat n => Index n -> [Index n]
enumFromThen# :: KnownNat n => Index n -> Index n -> [Index n]
enumFromTo# :: Index n -> Index n -> [Index n]
enumFromThenTo# :: Index n -> Index n -> Index n -> [Index n]
enumFrom# x = map fromInteger_INLINE [unsafeToInteger x ..]
enumFromThen# x y = map fromInteger_INLINE [unsafeToInteger x, unsafeToInteger y ..]
enumFromTo# x y = map I [unsafeToInteger x .. unsafeToInteger y]
enumFromThenTo# x1 x2 y = map I [unsafeToInteger x1, unsafeToInteger x2 .. unsafeToInteger y]
instance KnownNat n => Bounded (Index n) where
minBound = fromInteger# 0
maxBound = maxBound#
{-# NOINLINE maxBound# #-}
maxBound# :: KnownNat n => Index n
maxBound# = let res = fromInteger_INLINE (natVal res - 1) in res
instance KnownNat n => Num (Index n) where
(+) = (+#)
(-) = (-#)
(*) = (*#)
negate = (maxBound# -#)
abs = id
signum i = if i == 0 then 0 else 1
fromInteger = fromInteger#
(+#),(-#),(*#) :: KnownNat n => Index n -> Index n -> Index n
{-# NOINLINE (+#) #-}
(+#) (I a) (I b) = fromInteger_INLINE $ a + b
{-# NOINLINE (-#) #-}
(-#) (I a) (I b) = fromInteger_INLINE $ a - b
{-# NOINLINE (*#) #-}
(*#) (I a) (I b) = fromInteger_INLINE $ a * b
fromInteger# :: KnownNat n => Integer -> Index n
{-# NOINLINE fromInteger# #-}
fromInteger# = fromInteger_INLINE
{-# INLINE fromInteger_INLINE #-}
fromInteger_INLINE :: forall n . KnownNat n => Integer -> Index n
fromInteger_INLINE i = bound `seq` if i > (-1) && i < bound then I i else err
where
bound = natVal (Proxy @n)
err = error ("Clash.Sized.Index: result " ++ show i ++
" is out of bounds: [0.." ++ show (bound - 1) ++ "]")
instance ExtendingNum (Index m) (Index n) where
type AResult (Index m) (Index n) = Index (m + n - 1)
plus = plus#
minus = minus#
type MResult (Index m) (Index n) = Index (((m - 1) * (n - 1)) + 1)
times = times#
plus#, minus# :: Index m -> Index n -> Index (m + n - 1)
{-# NOINLINE plus# #-}
plus# (I a) (I b) = I (a + b)
{-# NOINLINE minus# #-}
minus# (I a) (I b) =
let z = a - b
err = error ("Clash.Sized.Index.minus: result " ++ show z ++
" is smaller than 0")
res = if z < 0 then err else I z
in res
{-# NOINLINE times# #-}
times# :: Index m -> Index n -> Index (((m - 1) * (n - 1)) + 1)
times# (I a) (I b) = I (a * b)
instance (KnownNat n, 1 <= n) => SaturatingNum (Index n) where
satPlus SatWrap a b =
leToPlusKN @1 a $ \a' ->
leToPlusKN @1 b $ \b' ->
case plus# a' b' of
z | let m = fromInteger# (natVal (Proxy @ n))
, z >= m -> resize# (z - m)
z -> resize# z
satPlus SatZero a b =
leToPlusKN @1 a $ \a' ->
leToPlusKN @1 b $ \b' ->
case plus# a' b' of
z | let m = fromInteger# (natVal (Proxy @ n))
, z >= m -> fromInteger# 0
z -> resize# z
satPlus _ a b =
leToPlusKN @1 a $ \a' ->
leToPlusKN @1 b $ \b' ->
case plus# a' b' of
z | let m = fromInteger# (natVal (Proxy @ n))
, z >= m -> maxBound#
z -> resize# z
satMin SatWrap a b =
if lt# a b
then maxBound -# (b -# a) +# 1
else a -# b
satMin _ a b =
if lt# a b
then fromInteger# 0
else a -# b
satMult SatWrap a b =
leToPlusKN @1 a $ \a' ->
leToPlusKN @1 b $ \b' ->
case times# a' b' of
z | let m = fromInteger# (natVal (Proxy @ n))
, z >= m -> resize# (z - m)
z -> resize# z
satMult SatZero a b =
leToPlusKN @1 a $ \a' ->
leToPlusKN @1 b $ \b' ->
case times# a' b' of
z | let m = fromInteger# (natVal (Proxy @ n))
, z >= m -> fromInteger# 0
z -> resize# z
satMult _ a b =
leToPlusKN @1 a $ \a' ->
leToPlusKN @1 b $ \b' ->
case times# a' b' of
z | let m = fromInteger# (natVal (Proxy @ n))
, z >= m -> maxBound#
z -> resize# z
instance KnownNat n => Real (Index n) where
toRational = toRational . toInteger#
instance KnownNat n => Integral (Index n) where
quot = quot#
rem = rem#
div = quot#
mod = rem#
quotRem n d = (n `quot#` d,n `rem#` d)
divMod n d = (n `quot#` d,n `rem#` d)
toInteger = toInteger#
quot#,rem# :: Index n -> Index n -> Index n
{-# NOINLINE quot# #-}
(I a) `quot#` (I b) = I (a `div` b)
{-# NOINLINE rem# #-}
(I a) `rem#` (I b) = I (a `rem` b)
{-# NOINLINE toInteger# #-}
toInteger# :: Index n -> Integer
toInteger# (I n) = n
instance Resize Index where
resize = resize#
zeroExtend = extend
truncateB = resize#
resize# :: KnownNat m => Index n -> Index m
resize# (I i) = fromInteger_INLINE i
{-# NOINLINE resize# #-}
instance KnownNat n => Lift (Index n) where
lift u@(I i) = sigE [| fromInteger# i |] (decIndex (natVal u))
{-# NOINLINE lift #-}
decIndex :: Integer -> TypeQ
decIndex n = appT (conT ''Index) (litT $ numTyLit n)
instance Show (Index n) where
show (I i) = show i
{-# NOINLINE show #-}
instance ShowX (Index n) where
showsPrecX = showsPrecXWith showsPrec
instance KnownNat n => Read (Index n) where
readPrec = fromIntegral <$> (readPrec :: ReadPrec Word)
instance KnownNat n => Default (Index n) where
def = fromInteger# 0
instance KnownNat n => Arbitrary (Index n) where
arbitrary = arbitraryBoundedIntegral
shrink = shrinkIndex
shrinkIndex :: KnownNat n => Index n -> [Index n]
shrinkIndex x | natVal x < 3 = case toInteger x of
1 -> [0]
_ -> []
| otherwise = shrinkIntegral x
instance KnownNat n => CoArbitrary (Index n) where
coarbitrary = coarbitraryIntegral