Copyright  (C) 20132016 University of Twente 2017 Google Inc. 

License  BSD2 (see the file LICENSE) 
Maintainer  Christiaan Baaij <christiaan.baaij@gmail.com> 
Safe Haskell  Safe 
Language  Haskell2010 
Whereas the output of a Mealy machine depends on current transition, the output of a Moore machine depends on the previous state.
Moore machines are strictly less expressive, but may impose laxer timing requirements.
Synopsis
 moore :: Clock domain gated > Reset domain synchronous > (s > i > s) > (s > o) > s > Signal domain i > Signal domain o
 mooreB :: (Bundle i, Bundle o) => Clock domain gated > Reset domain synchronous > (s > i > s) > (s > o) > s > Unbundled domain i > Unbundled domain o
 medvedev :: Clock domain gated > Reset domain synchronous > (s > i > s) > s > Signal domain i > Signal domain s
 medvedevB :: (Bundle i, Bundle s) => Clock domain gated > Reset domain synchronous > (s > i > s) > s > Unbundled domain i > Unbundled domain s
Moore machines with explicit clock and reset ports
:: Clock domain gated 

> Reset domain synchronous  
> (s > i > s)  Transfer function in moore machine form:

> (s > o)  Output function in moore machine form:

> s  Initial state 
> Signal domain i > Signal domain o  Synchronous sequential function with input and output matching that of the moore machine 
Create a synchronous function from a combinational function describing a moore machine
macT :: Int  Current state > (Int,Int)  Input > (Int,Int)  Updated state macT s (x,y) = x * y + s mac ::Clock
mac Source >Reset
mac Asynchronous >Signal
mac (Int, Int) >Signal
mac Int mac clk rst =moore
clk rst macT id 0
>>>
simulate (mac systemClockGen systemResetGen) [(1,1),(2,2),(3,3),(4,4)]
[0,1,5,14... ...
Synchronous sequential functions can be composed just like their combinational counterpart:
dualMac :: Clock domain gated > Reset domain synchronous > (Signal
domain Int,Signal
domain Int) > (Signal
domain Int,Signal
domain Int) >Signal
domain Int dualMac clk rst (a,b) (x,y) = s1 + s2 where s1 =moore
clk rst mac id 0 (bundle
(a,x)) s2 =moore
clk rst mac id 0 (bundle
(b,y))
:: (Bundle i, Bundle o)  
=> Clock domain gated  
> Reset domain synchronous  
> (s > i > s)  Transfer function in moore machine form:

> (s > o)  Output function in moore machine form:

> s  Initial state 
> Unbundled domain i > Unbundled domain o  Synchronous sequential function with input and output matching that of the moore machine 
A version of moore
that does automatic Bundle
ing
Given a functions t
and o
of types:
t :: Int > (Bool, Int) > Int o :: Int > (Int, Bool)
When we want to make compositions of t
and o
in g
using moore'
, we have to
write:
g clk rst a b c = (b1,b2,i2) where (i1,b1) =unbundle
(moore clk rst t o 0 (bundle
(a,b))) (i2,b2) =unbundle
(moore clk rst t o 3 (bundle
(i1,c)))
Using mooreB'
however we can write:
g clk rst a b c = (b1,b2,i2) where (i1,b1) =mooreB
clk rst t o 0 (a,b) (i2,b2) =mooreB
clk rst t o 3 (i1,c)