{-| Copyright : (C) 2016, University of Twente License : BSD2 (see the file LICENSE) Maintainer : Christiaan Baaij <christiaan.baaij@gmail.com> -} {-# LANGUAGE DataKinds #-} {-# LANGUAGE GADTs #-} {-# LANGUAGE InstanceSigs #-} {-# LANGUAGE KindSignatures #-} {-# LANGUAGE PatternSynonyms #-} {-# LANGUAGE RankNTypes #-} {-# LANGUAGE ScopedTypeVariables #-} {-# LANGUAGE TemplateHaskell #-} {-# LANGUAGE TupleSections #-} {-# LANGUAGE TypeApplications #-} {-# LANGUAGE TypeFamilies #-} {-# LANGUAGE TypeOperators #-} {-# LANGUAGE UndecidableInstances #-} {-# LANGUAGE ViewPatterns #-} {-# LANGUAGE Trustworthy #-} {-# OPTIONS_GHC -fplugin GHC.TypeLits.Normalise -fplugin GHC.TypeLits.KnownNat.Solver #-} module Clash.Sized.RTree ( -- * 'RTree' data type RTree (LR, BR) -- * Construction , treplicate , trepeat -- * Accessors -- ** Indexing , indexTree , tindices -- * Modifying trees , replaceTree -- * Element-wise operations -- ** Mapping , tmap , tzipWith -- ** Zipping , tzip -- ** Unzipping , tunzip -- * Folding , tfold -- ** Specialised folds , tdfold -- * Conversions , v2t , t2v -- * Misc , lazyT ) where import Control.Applicative (liftA2) import qualified Control.Lens as Lens import Data.Default (Default (..)) import Data.Foldable (toList) import Data.Singletons.Prelude (Apply, TyFun, type (@@)) import Data.Proxy (Proxy (..)) import GHC.TypeLits (KnownNat, Nat, type (+), type (^), type (*)) import Language.Haskell.TH.Syntax (Lift(..)) import qualified Prelude as P import Prelude hiding ((++), (!!)) import Test.QuickCheck (Arbitrary (..), CoArbitrary (..)) import Clash.Class.BitPack (BitPack (..)) import Clash.Promoted.Nat (SNat (..), UNat (..), pow2SNat, snatToNum, subSNat, toUNat) import Clash.Promoted.Nat.Literals (d1) import Clash.Sized.Index (Index) import Clash.Sized.Vector (Vec (..), (!!), (++), dtfold, replace) import Clash.XException (ShowX (..), showsX, showsPrecXWith) {- $setup >>> :set -XDataKinds >>> :set -XTypeFamilies >>> :set -XTypeOperators >>> :set -XTemplateHaskell >>> :set -XFlexibleContexts >>> :set -XTypeApplications >>> :set -fplugin GHC.TypeLits.Normalise >>> :set -XUndecidableInstances >>> import Clash.Prelude >>> data IIndex (f :: TyFun Nat *) :: * >>> type instance Apply IIndex l = Index ((2^l)+1) >>> :{ let populationCount' :: (KnownNat k, KnownNat (2^k)) => BitVector (2^k) -> Index ((2^k)+1) populationCount' bv = tdfold (Proxy @IIndex) fromIntegral (\_ x y -> plus x y) (v2t (bv2v bv)) :} -} -- | Perfect depth binary tree. -- -- * Only has elements at the leaf of the tree -- * A tree of depth /d/ has /2^d/ elements. data RTree :: Nat -> * -> * where LR_ :: a -> RTree 0 a BR_ :: RTree d a -> RTree d a -> RTree (d+1) a textract :: RTree 0 a -> a textract (LR_ x) = x {-# NOINLINE textract #-} tsplit :: RTree (d+1) a -> (RTree d a,RTree d a) tsplit (BR_ l r) = (l,r) {-# NOINLINE tsplit #-} -- | Leaf of a perfect depth tree -- -- >>> LR 1 -- 1 -- >>> let x = LR 1 -- >>> :t x -- x :: Num a => RTree 0 a -- -- Can be used as a pattern: -- -- >>> let f (LR a) (LR b) = a + b -- >>> :t f -- f :: Num a => RTree 0 a -> RTree 0 a -> a -- >>> f (LR 1) (LR 2) -- 3 pattern LR :: a -> RTree 0 a pattern LR x <- (textract -> x) where LR x = LR_ x -- | Branch of a perfect depth tree -- -- >>> BR (LR 1) (LR 2) -- <1,2> -- >>> let x = BR (LR 1) (LR 2) -- >>> :t x -- x :: Num a => RTree 1 a -- -- Case be used a pattern: -- -- >>> let f (BR (LR a) (LR b)) = LR (a + b) -- >>> :t f -- f :: Num a => RTree 1 a -> RTree 0 a -- >>> f (BR (LR 1) (LR 2)) -- 3 pattern BR :: RTree d a -> RTree d a -> RTree (d+1) a pattern BR l r <- ((\t -> (tsplit t)) -> (l,r)) where BR l r = BR_ l r instance (KnownNat d, Eq a) => Eq (RTree d a) where (==) t1 t2 = (==) (t2v t1) (t2v t2) instance (KnownNat d, Ord a) => Ord (RTree d a) where compare t1 t2 = compare (t2v t1) (t2v t2) instance Show a => Show (RTree n a) where showsPrec _ (LR_ a) = shows a showsPrec _ (BR_ l r) = \s -> '<':shows l (',':shows r ('>':s)) instance ShowX a => ShowX (RTree n a) where showsPrecX = showsPrecXWith go where go :: Int -> RTree d a -> ShowS go _ (LR_ a) = showsX a go _ (BR_ l r) = \s -> '<':showsX l (',':showsX r ('>':s)) instance KnownNat d => Functor (RTree d) where fmap = tmap instance KnownNat d => Applicative (RTree d) where pure = trepeat (<*>) = tzipWith ($) instance KnownNat d => Foldable (RTree d) where foldMap f = tfold f mappend data TraversableTree (g :: * -> *) (a :: *) (f :: TyFun Nat *) :: * type instance Apply (TraversableTree f a) d = f (RTree d a) instance KnownNat d => Traversable (RTree d) where traverse :: forall f a b . Applicative f => (a -> f b) -> RTree d a -> f (RTree d b) traverse f = tdfold (Proxy @(TraversableTree f b)) (fmap LR . f) (const (liftA2 BR)) instance (KnownNat d, KnownNat (BitSize a), BitPack a) => BitPack (RTree d a) where type BitSize (RTree d a) = (2^d) * (BitSize a) pack = pack . t2v unpack = v2t . unpack type instance Lens.Index (RTree d a) = Int type instance Lens.IxValue (RTree d a) = a instance KnownNat d => Lens.Ixed (RTree d a) where ix i f t = replaceTree i <$> f (indexTree t i) <*> pure t instance (KnownNat d, Default a) => Default (RTree d a) where def = trepeat def instance Lift a => Lift (RTree d a) where lift (LR_ a) = [| LR_ a |] lift (BR_ t1 t2) = [| BR_ $(lift t1) $(lift t2) |] instance (KnownNat d, Arbitrary a) => Arbitrary (RTree d a) where arbitrary = sequenceA (trepeat arbitrary) shrink = sequenceA . fmap shrink instance (KnownNat d, CoArbitrary a) => CoArbitrary (RTree d a) where coarbitrary = coarbitrary . toList -- | A /dependently/ typed fold over trees. -- -- As an example of when you might want to use 'dtfold' we will build a -- population counter: a circuit that counts the number of bits set to '1' in -- a 'BitVector'. Given a vector of /n/ bits, we only need we need a data type -- that can represent the number /n/: 'Index' @(n+1)@. 'Index' @k@ has a range -- of @[0 .. k-1]@ (using @ceil(log2(k))@ bits), hence we need 'Index' @n+1@. -- As an initial attempt we will use 'tfold', because it gives a nice (@log2(n)@) -- tree-structure of adders: -- -- @ -- populationCount :: (KnownNat (2^d), KnownNat d, KnownNat (2^d+1)) -- => BitVector (2^d) -> Index (2^d+1) -- populationCount = tfold fromIntegral (+) . v2t . bv2v -- @ -- -- The \"problem\" with this description is that all adders have the same -- bit-width, i.e. all adders are of the type: -- -- @ -- (+) :: 'Index' (2^d+1) -> 'Index' (2^d+1) -> 'Index' (2^d+1). -- @ -- -- This is a \"problem\" because we could have a more efficient structure: -- one where each layer of adders is /precisely/ wide enough to count the number -- of bits at that layer. That is, at height /d/ we want the adder to be of -- type: -- -- @ -- 'Index' ((2^d)+1) -> 'Index' ((2^d)+1) -> 'Index' ((2^(d+1))+1) -- @ -- -- We have such an adder in the form of the 'Clash.Class.Num.plus' function, as -- defined in the instance 'Clash.Class.Num.ExtendingNum' instance of 'Index'. -- However, we cannot simply use 'fold' to create a tree-structure of -- 'Clash.Class.Num.plus'es: -- -- >>> :{ -- let populationCount' :: (KnownNat (2^d), KnownNat d, KnownNat (2^d+1)) -- => BitVector (2^d) -> Index (2^d+1) -- populationCount' = tfold fromIntegral plus . v2t . bv2v -- :} -- <BLANKLINE> -- <interactive>:... -- • Couldn't match type ‘(((2 ^ d) + 1) + ((2 ^ d) + 1)) - 1’ -- with ‘(2 ^ d) + 1’ -- Expected type: Index ((2 ^ d) + 1) -- -> Index ((2 ^ d) + 1) -> Index ((2 ^ d) + 1) -- Actual type: Index ((2 ^ d) + 1) -- -> Index ((2 ^ d) + 1) -- -> AResult (Index ((2 ^ d) + 1)) (Index ((2 ^ d) + 1)) -- • In the second argument of ‘tfold’, namely ‘plus’ -- In the first argument of ‘(.)’, namely ‘tfold fromIntegral plus’ -- In the expression: tfold fromIntegral plus . v2t . bv2v -- • Relevant bindings include -- populationCount' :: BitVector (2 ^ d) -> Index ((2 ^ d) + 1) -- (bound at ...) -- -- because 'tfold' expects a function of type \"@b -> b -> b@\", i.e. a function -- where the arguments and result all have exactly the same type. -- -- In order to accommodate the type of our 'Clash.Class.Num.plus', where the -- result is larger than the arguments, we must use a dependently typed fold in -- the the form of 'dtfold': -- -- @ -- {\-\# LANGUAGE UndecidableInstances \#-\} -- import Data.Singletons.Prelude -- import Data.Proxy -- -- data IIndex (f :: 'TyFun' Nat *) :: * -- type instance 'Apply' IIndex l = 'Index' ((2^l)+1) -- -- populationCount' :: (KnownNat k, KnownNat (2^k)) -- => BitVector (2^k) -> Index ((2^k)+1) -- populationCount' bv = 'tdfold' (Proxy @IIndex) -- fromIntegral -- (\\_ x y -> 'Clash.Class.Num.plus' x y) -- ('v2t' ('Clash.Sized.Vector.bv2v' bv)) -- @ -- -- And we can test that it works: -- -- >>> :t populationCount' (7 :: BitVector 16) -- populationCount' (7 :: BitVector 16) :: Index 17 -- >>> populationCount' (7 :: BitVector 16) -- 3 tdfold :: forall p k a . KnownNat k => Proxy (p :: TyFun Nat * -> *) -- ^ The /motive/ -> (a -> (p @@ 0)) -- ^ Function to apply to the elements on the leafs -> (forall l . SNat l -> (p @@ l) -> (p @@ l) -> (p @@ (l+1))) -- ^ Function to fold the branches with. -- -- __NB:__ @SNat l@ is the depth of the two sub-branches. -> RTree k a -- ^ Tree to fold over. -> (p @@ k) tdfold _ f g = go SNat where go :: SNat m -> RTree m a -> (p @@ m) go _ (LR_ a) = f a go sn (BR_ l r) = let sn' = sn `subSNat` d1 in g sn' (go sn' l) (go sn' r) {-# NOINLINE tdfold #-} data TfoldTree (a :: *) (f :: TyFun Nat *) :: * type instance Apply (TfoldTree a) d = a -- | Reduce a tree to a single element tfold :: forall d a b . KnownNat d => (a -> b) -- ^ Function to apply to the leaves -> (b -> b -> b) -- ^ Function to combine the results of the reduction -- of two branches -> RTree d a -- ^ Tree to fold reduce -> b tfold f g = tdfold (Proxy @(TfoldTree b)) f (const g) -- | \"'treplicate' @d a@\" returns a tree of depth /d/, and has /2^d/ copies -- of /a/. -- -- >>> treplicate (SNat :: SNat 3) 6 -- <<<6,6>,<6,6>>,<<6,6>,<6,6>>> -- >>> treplicate d3 6 -- <<<6,6>,<6,6>>,<<6,6>,<6,6>>> treplicate :: forall d a . SNat d -> a -> RTree d a treplicate sn a = go (toUNat sn) where go :: UNat n -> RTree n a go UZero = LR a go (USucc un) = BR (go un) (go un) {-# NOINLINE treplicate #-} -- | \"'trepeat' @a@\" creates a tree with as many copies of /a/ as demanded by -- the context. -- -- >>> trepeat 6 :: RTree 2 Int -- <<6,6>,<6,6>> trepeat :: KnownNat d => a -> RTree d a trepeat = treplicate SNat data MapTree (a :: *) (f :: TyFun Nat *) :: * type instance Apply (MapTree a) d = RTree d a -- | \"'tmap' @f t@\" is the tree obtained by apply /f/ to each element of /t/, -- i.e., -- -- > tmap f (BR (LR a) (LR b)) == BR (LR (f a)) (LR (f b)) tmap :: forall d a b . KnownNat d => (a -> b) -> RTree d a -> RTree d b tmap f = tdfold (Proxy @(MapTree b)) (LR . f) (\_ l r -> BR l r) -- | Generate a tree of indices, where the depth of the tree is determined by -- the context. -- -- >>> tindices :: RTree 3 (Index 8) -- <<<0,1>,<2,3>>,<<4,5>,<6,7>>> tindices :: forall d . KnownNat d => RTree d (Index (2^d)) tindices = tdfold (Proxy @(MapTree (Index (2^d)))) LR (\s@SNat l r -> BR l (tmap (+(snatToNum (pow2SNat s))) r)) (treplicate SNat 0) data V2TTree (a :: *) (f :: TyFun Nat *) :: * type instance Apply (V2TTree a) d = RTree d a -- | Convert a vector with /2^d/ elements to a tree of depth /d/. -- -- >>> (1:>2:>3:>4:>Nil) -- <1,2,3,4> -- >>> v2t (1:>2:>3:>4:>Nil) -- <<1,2>,<3,4>> v2t :: forall d a . KnownNat d => Vec (2^d) a -> RTree d a v2t = dtfold (Proxy @(V2TTree a)) LR (const BR) data T2VTree (a :: *) (f :: TyFun Nat *) :: * type instance Apply (T2VTree a) d = Vec (2^d) a -- | Convert a tree of depth /d/ to a vector of /2^d/ elements -- -- >>> (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- <<1,2>,<3,4>> -- >>> t2v (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- <1,2,3,4> t2v :: forall d a . KnownNat d => RTree d a -> Vec (2^d) a t2v = tdfold (Proxy @(T2VTree a)) (:> Nil) (\_ l r -> l ++ r) -- | \"'indexTree' @t n@\" returns the /n/'th element of /t/. -- -- The bottom-left leaf had index /0/, and the bottom-right leaf has index -- /2^d-1/, where /d/ is the depth of the tree -- -- >>> indexTree (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) 0 -- 1 -- >>> indexTree (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) 2 -- 3 -- >>> indexTree (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) 14 -- *** Exception: Clash.Sized.Vector.(!!): index 14 is larger than maximum index 3 -- ... indexTree :: (KnownNat d, Enum i) => RTree d a -> i -> a indexTree t i = (t2v t) !! i -- | \"'replaceTree' @n a t@\" returns the tree /t/ where the /n/'th element is -- replaced by /a/. -- -- The bottom-left leaf had index /0/, and the bottom-right leaf has index -- /2^d-1/, where /d/ is the depth of the tree -- -- >>> replaceTree 0 5 (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- <<5,2>,<3,4>> -- >>> replaceTree 2 7 (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- <<1,2>,<7,4>> -- >>> replaceTree 9 6 (BR (BR (LR 1) (LR 2)) (BR (LR 3) (LR 4))) -- <<1,2>,<3,*** Exception: Clash.Sized.Vector.replace: index 9 is larger than maximum index 3 -- ... replaceTree :: (KnownNat d, Enum i) => i -> a -> RTree d a -> RTree d a replaceTree i a = v2t . replace i a . t2v data ZipWithTree (b :: *) (c :: *) (f :: TyFun Nat *) :: * type instance Apply (ZipWithTree b c) d = RTree d b -> RTree d c -- | 'tzipWith' generalises 'tzip' by zipping with the function given as the -- first argument, instead of a tupling function. For example, "tzipWith (+)" -- applied to two trees produces the tree of corresponding sums. -- -- > tzipWith f (BR (LR a1) (LR b1)) (BR (LR a2) (LR b2)) == BR (LR (f a1 a2)) (LR (f b1 b2)) tzipWith :: forall a b c d . KnownNat d => (a -> b -> c) -> RTree d a -> RTree d b -> RTree d c tzipWith f = tdfold (Proxy @(ZipWithTree b c)) lr br where lr :: a -> RTree 0 b -> RTree 0 c lr a (LR b) = LR (f a b) lr _ _ = error "impossible" br :: SNat l -> (RTree l b -> RTree l c) -> (RTree l b -> RTree l c) -> RTree (l+1) b -> RTree (l+1) c br _ fl fr (BR l r) = BR (fl l) (fr r) br _ _ _ _ = error "impossible" -- | 'tzip' takes two trees and returns a tree of corresponding pairs. tzip :: KnownNat d => RTree d a -> RTree d b -> RTree d (a,b) tzip = tzipWith (,) data UnzipTree (a :: *) (b :: *) (f :: TyFun Nat *) :: * type instance Apply (UnzipTree a b) d = (RTree d a, RTree d b) -- | 'tunzip' transforms a tree of pairs into a tree of first components and a -- tree of second components. tunzip :: forall d a b . KnownNat d => RTree d (a,b) -> (RTree d a,RTree d b) tunzip = tdfold (Proxy @(UnzipTree a b)) lr br where lr (a,b) = (LR a,LR b) br _ (l1,r1) (l2,r2) = (BR l1 l2, BR r1 r2) -- | Given a function 'f' that is strict in its /n/th 'RTree' argument, make it -- lazy by applying 'lazyT' to this argument: -- -- > f x0 x1 .. (lazyT xn) .. xn_plus_k lazyT :: KnownNat d => RTree d a -> RTree d a lazyT = tzipWith (flip const) (trepeat undefined)