{-|
  Copyright   :  (C) 2012-2016, University of Twente,
                          2017, Google Inc.
  License     :  BSD2 (see the file LICENSE)
  Maintainer  :  Christiaan Baaij <christiaan.baaij@gmail.com>

  Capture-free substitution function for CoreHW
-}

{-# LANGUAGE CPP #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE OverloadedStrings #-}

{-# OPTIONS_GHC -fno-warn-orphans #-}

#include "../../ClashDebug.h"

module Clash.Core.Subst
  ( -- * Substitution into types
    -- ** Substitution environments
    TvSubst (..)
  , TvSubstEnv
  -- , mkTvSubst
  , extendTvSubst
  , extendTvSubstList
    -- ** Applying substitutions
  , substTy
  , substTyWith
  , substTyInVar
  , substGlobalsInExistentials
  , substInExistentials
  , substInExistentialsList
    -- * Substitution into terms
    -- ** Substitution environments
  , Subst (..)
  , mkSubst
  , mkTvSubst
  , extendInScopeId
  , extendInScopeIdList
  , extendIdSubst
  , extendIdSubstList
  , extendGblSubstList
    -- ** Applying substitutions
  , substTm
  , maybeSubstTm
  , substAlt
  , substId
    -- * Variable renaming
  , deShadowTerm
  , deShadowAlt
  , freshenTm
  , deshadowLetExpr
    -- * Alpha equivalence
  , aeqType
  , aeqTerm
  )
where

import           Data.Coerce               (coerce)
import           Data.Text.Prettyprint.Doc
import qualified Data.List                 as List
import qualified Data.List.Extra           as List
import           Data.Ord                  (comparing)

import           Clash.Core.FreeVars
  (noFreeVarsOfType, localFVsOfTerms, tyFVsOfTypes)
import           Clash.Core.Pretty         (ppr, fromPpr)
import           Clash.Core.Term
  (LetBinding, Pat (..), Term (..), TickInfo (..), PrimInfo(primName))
import           Clash.Core.Type           (Type (..))
import           Clash.Core.VarEnv
import           Clash.Core.Var            (Id, Var (..), TyVar, isGlobalId)
import           Clash.Debug               (debugIsOn)
import           Clash.Unique
import           Clash.Util
import           Clash.Pretty

-- * Subst

-- | A substitution of 'Type's for 'TyVar's
--
-- Note [Extending the TvSubstEnv]
-- See 'TvSubst' for the invariants that must hold
--
-- This invariant allows a short-cut when the subst env is empty: if the
-- TvSubstEnv is empty, i.e. @nullVarEnv TvSubstEnv@ holds, then
-- (substTy subst ty) does nothing.
--
-- For example, consider:
--
--    (/\a -> /\b(a ~ Int) -> ... b ...) Int
--
-- We substitute Int for 'a'. The Unique of 'b' does not change, but
-- nevertheless we add 'b' to the 'TvSubstEnv' because b's kind does change
--
-- This invariant has several consequences:
--
--   * In 'substTyVarBndr', we extend TvSubstEnv if the unique has changed, or
--     if the kind has changed
--
--   * In 'substTyVar', we do not need to consult the 'InScopeSet'; the
--     TvSubstEnv is enough
--
--   * In 'substTy', we can short-circuit when TvSubstEnv is empty
type TvSubstEnv = VarEnv Type

-- | Type substitution
--
-- The following invariants must hold:
--
--   1. The 'InScopeSet' is needed only to guide the generation of fresh uniques
--
--   2. In particular, the kind of the type variables in the 'InScopeSet' is not
--      relevant.
--
--   3. The substitution is only applied once
--
-- Note [Apply Once]
--
-- We might instantiate @forall a b. ty@ with the types @[a, b]@ or @[b, a]@.
-- So the substitution might go like @[a -> b, b -> a]@. A similar situation
-- arises in terms when we find a redex like @(/\a -> /\b -> e) b a@. Then we
-- also end up with a substitution that permutes variables. Other variations
-- happen to; for example @[a -> (a,b)]@.
--
-- SO A TvSubst MUST BE APPLIED PRECISELY ONCE, OR THINGS MIGHT LOOP
--
-- Note [The substitution invariant]
--
-- When calling (substTy subst ty) it should be the case that the 'InScopeSet'
-- is a superset of both:
--
--   * The free variables of the range of the substitution
--
--   * The free variables of /ty/ minus the domain of the substitution
data TvSubst
  = TvSubst InScopeSet -- Variable in scope /after/ substitution
            TvSubstEnv -- Substitution for types

instance ClashPretty TvSubst where
  clashPretty :: TvSubst -> Doc ()
clashPretty (TvSubst InScopeSet
ins TvSubstEnv
tenv) =
    Doc () -> Doc ()
forall ann. Doc ann -> Doc ann
brackets (Doc () -> Doc ()) -> Doc () -> Doc ()
forall a b. (a -> b) -> a -> b
$ [Doc ()] -> Doc ()
forall ann. [Doc ann] -> Doc ann
sep [ Doc ()
"TvSubst"
                   , Int -> Doc () -> Doc ()
forall ann. Int -> Doc ann -> Doc ann
nest Int
2 (Doc ()
"In scope:" Doc () -> Doc () -> Doc ()
forall ann. Doc ann -> Doc ann -> Doc ann
<+> InScopeSet -> Doc ()
forall a. ClashPretty a => a -> Doc ()
clashPretty InScopeSet
ins)
                   , Int -> Doc () -> Doc ()
forall ann. Int -> Doc ann -> Doc ann
nest Int
2 (Doc ()
"Type env:" Doc () -> Doc () -> Doc ()
forall ann. Doc ann -> Doc ann -> Doc ann
<+> TvSubstEnv -> Doc ()
forall a. ClashPretty a => a -> Doc ()
clashPretty TvSubstEnv
tenv)]

-- | A substitution  of 'Term's for 'Id's
--
-- Note [Extending the Subst]
--
-- For a term 'Subst', which binds 'Id's as well, we make a different choice for
-- Ids than we do for TyVars.
--
-- For TyVars see 'TvSubstEnv's Note [Extending the TvSubstEnv]
--
-- For Ids, we have a different invariant:
--
--   The IdSubstEnv is extended only when the Unique on an Id changes.
--   Otherwise, we just extend the InScopeSet
--
-- In consequence:
--
--   * If all subst envs are empty, substsTm would be a no-op
--
--     However, substTm still goes ahead and substitutes. Reason: we may want
--     to replace existing Ids with new ones from the in-scope set, to avoid
--     space leaks.
--
--   * In substIdBndr, we extend the 'IdSubstEnv' only when the unique changes
--
--   * If TvSubstEnv and IdSubstEnv are all empty, substExpr does nothing
--     (Note that the above rule for 'substIdBndr' maintains this property.)
--
--   * In 'lookupIdSubst', we must look up the Id in the in-scope set, because
--     it may contain non-trivial changes. Exmaple:
--
--     (/\a -> \x:a. ... x ...) Int
--
--     We extend the 'TvSubstEnv' with a @[a |-> Int]@; but x's unique does not
--     change so we only extend the in-scope set. Then we must look up in the
--     in-scope set when we find the occurrence of x.
--
--   * The requirement to look  up the Id in the in-scope set means that we
--     must not take no-op short cut when the 'IdSubstEnv' is empty. We must
--     still look up ever Id in the in-scope set.
--
--   * (However, we don't need to do so for the expression found in the
--     IdSubstEnv, whose range is assumed to be correct wrt the in-scope set)
type IdSubstEnv = VarEnv Term

-- | A substitution environment containing containing both 'Id' and 'TyVar'
-- substitutions.
--
-- Some invariants apply to how you use the substitution:
--
--   1. The 'InScopeSet' contains at least those 'Id's and 'TyVar's that will
--      be in scope /after/ applying the substitution  to a term. Precisely,
--      the in-scope set must be a superset of the free variables of the
--      substitution range that might possibly clash with locally-bound
--      variables in the thing being substituted in.
--
--   2. You may only apply the substitution once. See 'TvSubst'
--
-- There are various ways of setting up the in-scope set such that the first of
-- of these invariants holds:
--
--   * Arrange that the in-scope set really is all the things in scope
--
--   * Arrange that it's the  free vars of the range of the substitution
--
--   * Make it empty, if you know that all the free variables of the
--     substitution are fresh, and hence can´t possibly clash
data Subst
  = Subst
  { Subst -> InScopeSet
substInScope :: InScopeSet -- Variables in scope /after/ substitution
  , Subst -> IdSubstEnv
substTmEnv   :: IdSubstEnv -- Substitution for terms
  , Subst -> TvSubstEnv
substTyEnv   :: TvSubstEnv -- Substitution for types
  , Subst -> IdSubstEnv
substGblEnv  :: IdSubstEnv -- Substitution of globals (in terms)
  }

emptySubst
  :: Subst
emptySubst :: Subst
emptySubst = InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
emptyInScopeSet IdSubstEnv
forall a. VarEnv a
emptyVarEnv TvSubstEnv
forall a. VarEnv a
emptyVarEnv IdSubstEnv
forall a. VarEnv a
emptyVarEnv

-- | An empty substitution, starting the variables currently in scope
mkSubst
  :: InScopeSet
  -> Subst
mkSubst :: InScopeSet -> Subst
mkSubst InScopeSet
is = InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
forall a. VarEnv a
emptyVarEnv TvSubstEnv
forall a. VarEnv a
emptyVarEnv IdSubstEnv
forall a. VarEnv a
emptyVarEnv

-- | Create a type substitution
mkTvSubst
  :: InScopeSet
  -> VarEnv Type
  -> Subst
mkTvSubst :: InScopeSet -> TvSubstEnv -> Subst
mkTvSubst InScopeSet
is TvSubstEnv
env = InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
forall a. VarEnv a
emptyVarEnv TvSubstEnv
env IdSubstEnv
forall a. VarEnv a
emptyVarEnv

-- | Generates the in-scope set for the 'Subst' from the types in the incoming
-- environment.
--
-- Should only be used the type we're substituting into has no free variables
-- outside of the domain of substitution
zipTvSubst
  :: [TyVar]
  -> [Type]
  -> Subst
zipTvSubst :: [TyVar] -> [Type] -> Subst
zipTvSubst [TyVar]
tvs [Type]
tys
  | Bool
debugIsOn
  , Bool -> Bool
not ([TyVar] -> [Type] -> Bool
forall a b. [a] -> [b] -> Bool
List.equalLength [TyVar]
tvs [Type]
tys)
  = String -> Doc ClashAnnotation -> Subst -> Subst
forall ann a. String -> Doc ann -> a -> a
pprTrace String
"zipTvSubst" ([TyVar] -> Doc ClashAnnotation
forall p. PrettyPrec p => p -> Doc ClashAnnotation
ppr [TyVar]
tvs Doc ClashAnnotation -> Doc ClashAnnotation -> Doc ClashAnnotation
forall a. Semigroup a => a -> a -> a
<> Doc ClashAnnotation
forall ann. Doc ann
line Doc ClashAnnotation -> Doc ClashAnnotation -> Doc ClashAnnotation
forall a. Semigroup a => a -> a -> a
<> [Type] -> Doc ClashAnnotation
forall p. PrettyPrec p => p -> Doc ClashAnnotation
ppr [Type]
tys) Subst
emptySubst
  | Bool
otherwise
  = InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst (VarSet -> InScopeSet
mkInScopeSet ([Type] -> VarSet
forall (f :: Type -> Type). Foldable f => f Type -> VarSet
tyFVsOfTypes [Type]
tys)) IdSubstEnv
forall a. VarEnv a
emptyVarEnv TvSubstEnv
tenv IdSubstEnv
forall a. VarEnv a
emptyVarEnv
 where
  tenv :: TvSubstEnv
tenv = [TyVar] -> [Type] -> TvSubstEnv
zipTyEnv [TyVar]
tvs [Type]
tys

zipTyEnv
  :: [TyVar]
  -> [Type]
  -> VarEnv Type
zipTyEnv :: [TyVar] -> [Type] -> TvSubstEnv
zipTyEnv [TyVar]
tvs [Type]
tys = [(TyVar, Type)] -> TvSubstEnv
forall a b. [(Var a, b)] -> VarEnv b
mkVarEnv ([TyVar] -> [Type] -> [(TyVar, Type)]
forall a b. [a] -> [b] -> [(a, b)]
List.zipEqual [TyVar]
tvs [Type]
tys)

-- | Extend the substitution environment with a new 'Id' substitution
extendIdSubst
  :: Subst
  -> Id
  -> Term
  -> Subst
extendIdSubst :: Subst -> Id -> Term -> Subst
extendIdSubst (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) Id
i Term
e =
  InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is (Id -> Term -> IdSubstEnv -> IdSubstEnv
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv Id
i Term
e IdSubstEnv
env) TvSubstEnv
tenv IdSubstEnv
genv

-- | Extend the substitution environment with a list of 'Id' substitutions
extendIdSubstList
  :: Subst
  -> [(Id,Term)]
  -> Subst
extendIdSubstList :: Subst -> [(Id, Term)] -> Subst
extendIdSubstList (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) [(Id, Term)]
es =
  InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is (IdSubstEnv -> [(Id, Term)] -> IdSubstEnv
forall a b. VarEnv a -> [(Var b, a)] -> VarEnv a
extendVarEnvList IdSubstEnv
env [(Id, Term)]
es) TvSubstEnv
tenv IdSubstEnv
genv

-- | Extend the substitution environment with a list of global 'Id' substitutions
extendGblSubstList
  :: Subst
  -> [(Id,Term)]
  -> Subst
extendGblSubstList :: Subst -> [(Id, Term)] -> Subst
extendGblSubstList (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) [(Id, Term)]
es =
  InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv (IdSubstEnv -> [(Id, Term)] -> IdSubstEnv
forall a b. VarEnv a -> [(Var b, a)] -> VarEnv a
extendVarEnvList IdSubstEnv
genv [(Id, Term)]
es)

-- | Extend the substitution environment with a new 'TyVar' substitution
extendTvSubst
  :: Subst
  -> TyVar
  -> Type
  -> Subst
extendTvSubst :: Subst -> TyVar -> Type -> Subst
extendTvSubst (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) TyVar
tv Type
t =
  InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
env (TyVar -> Type -> TvSubstEnv -> TvSubstEnv
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv TyVar
tv Type
t TvSubstEnv
tenv) IdSubstEnv
genv

-- | Extend the substitution environment with a list of 'TyVar' substitutions
extendTvSubstList
  :: Subst
  -> [(TyVar, Type)]
  -> Subst
extendTvSubstList :: Subst -> [(TyVar, Type)] -> Subst
extendTvSubstList (Subst InScopeSet
is IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) [(TyVar, Type)]
ts =
  InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
is IdSubstEnv
env (TvSubstEnv -> [(TyVar, Type)] -> TvSubstEnv
forall a b. VarEnv a -> [(Var b, a)] -> VarEnv a
extendVarEnvList TvSubstEnv
tenv [(TyVar, Type)]
ts) IdSubstEnv
genv

-- | Add an 'Id' to the in-scope set: as a side effect, remove any existing
-- substitutions for it.
extendInScopeId
  :: Subst
  -> Id
  -> Subst
extendInScopeId :: Subst -> Id -> Subst
extendInScopeId (Subst InScopeSet
inScope IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) Id
id' =
  InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
inScope' IdSubstEnv
env' TvSubstEnv
tenv IdSubstEnv
genv
 where
  inScope' :: InScopeSet
inScope' = InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
inScope Id
id'
  env' :: IdSubstEnv
env'     = IdSubstEnv -> Id -> IdSubstEnv
forall a b. VarEnv a -> Var b -> VarEnv a
delVarEnv IdSubstEnv
env Id
id'

-- | Add 'Id's to the in-scope set. See also 'extendInScopeId'
extendInScopeIdList
  :: Subst
  -> [Id]
  -> Subst
extendInScopeIdList :: Subst -> [Id] -> Subst
extendInScopeIdList (Subst InScopeSet
inScope IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) [Id]
ids =
  InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
inScope' IdSubstEnv
env' TvSubstEnv
tenv IdSubstEnv
genv
 where
  inScope' :: InScopeSet
inScope' = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
inScope [Id]
ids
  env' :: IdSubstEnv
env'     = IdSubstEnv -> [Id] -> IdSubstEnv
forall a b. VarEnv a -> [Var b] -> VarEnv a
delVarEnvList IdSubstEnv
env [Id]
ids

-- | Substitute within a 'Type'
--
-- The substitution has to satisfy the invariant described in
-- 'TvSubst's Note [The substitution environment]
substTy
  :: HasCallStack
  => Subst
  -> Type
  -> Type
substTy :: Subst -> Type -> Type
substTy (Subst InScopeSet
inScope IdSubstEnv
_ TvSubstEnv
tvS IdSubstEnv
_) Type
ty
  | TvSubstEnv -> Bool
forall a. VarEnv a -> Bool
nullVarEnv TvSubstEnv
tvS
  = Type
ty
  | Bool
otherwise
  = TvSubst -> [Type] -> Type -> Type
forall a. HasCallStack => TvSubst -> [Type] -> a -> a
checkValidSubst TvSubst
s' [Type
ty] (HasCallStack => TvSubst -> Type -> Type
TvSubst -> Type -> Type
substTy' TvSubst
s' Type
ty)
 where
  s' :: TvSubst
s' = InScopeSet -> TvSubstEnv -> TvSubst
TvSubst InScopeSet
inScope TvSubstEnv
tvS

-- | Substitute within a 'TyVar'. See 'substTy'.
substTyInVar
  :: HasCallStack
  => Subst
  -> Var a
  -> Var a
substTyInVar :: Subst -> Var a -> Var a
substTyInVar Subst
subst Var a
tyVar =
  Var a
tyVar { varType :: Type
varType = (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst (Var a -> Type
forall a. Var a -> Type
varType Var a
tyVar)) }

-- | Like 'substTy', but skips the checks for the invariants described in
-- 'TvSubts' Note [The substitution environment]. Should be used inside this
-- module only.
substTyUnchecked
  :: HasCallStack
  => TvSubst
  -> Type
  -> Type
substTyUnchecked :: TvSubst -> Type -> Type
substTyUnchecked subst :: TvSubst
subst@(TvSubst InScopeSet
_ TvSubstEnv
tvS) Type
ty
  | TvSubstEnv -> Bool
forall a. VarEnv a -> Bool
nullVarEnv TvSubstEnv
tvS
  = Type
ty
  | Bool
otherwise
  = HasCallStack => TvSubst -> Type -> Type
TvSubst -> Type -> Type
substTy' TvSubst
subst Type
ty

-- Safely substitute global type variables in a list of potentially
-- shadowing type variables.
substGlobalsInExistentials
  :: HasCallStack
  => InScopeSet
  -- ^ Variables in scope
  -> [TyVar]
  -- ^ List of existentials to apply the substitution for
  -> [(TyVar, Type)]
  -- ^ Substitutions
  -> [TyVar]
substGlobalsInExistentials :: InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substGlobalsInExistentials InScopeSet
is [TyVar]
exts [(TyVar, Type)]
substs0 = [TyVar]
result
  -- TODO: Is is actually possible that existentials shadow each other? If they
  -- TODO: can't, we can remove this function
  where
    iss :: [InScopeSet]
iss     = (InScopeSet -> TyVar -> InScopeSet)
-> InScopeSet -> [TyVar] -> [InScopeSet]
forall b a. (b -> a -> b) -> b -> [a] -> [b]
scanl InScopeSet -> TyVar -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is [TyVar]
exts
    substs1 :: [Subst]
substs1 = (InScopeSet -> Subst) -> [InScopeSet] -> [Subst]
forall a b. (a -> b) -> [a] -> [b]
map (\InScopeSet
is_ -> Subst -> [(TyVar, Type)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is_) [(TyVar, Type)]
substs0) [InScopeSet]
iss
    result :: [TyVar]
result  = (Subst -> TyVar -> TyVar) -> [Subst] -> [TyVar] -> [TyVar]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Subst -> TyVar -> TyVar
forall a. HasCallStack => Subst -> Var a -> Var a
substTyInVar [Subst]
substs1 [TyVar]
exts

-- | Safely substitute type variables in a list of existentials. This function
-- will account for cases where existentials shadow each other.
substInExistentialsList
  :: HasCallStack
  => InScopeSet
  -- ^ Variables in scope
  -> [TyVar]
  -- ^ List of existentials to apply the substitution for
  -> [(TyVar, Type)]
  -- ^ Substitutions
  -> [TyVar]
substInExistentialsList :: InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substInExistentialsList InScopeSet
is [TyVar]
exts [(TyVar, Type)]
substs =
  ([TyVar] -> (TyVar, Type) -> [TyVar])
-> [TyVar] -> [(TyVar, Type)] -> [TyVar]
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl (HasCallStack => InScopeSet -> [TyVar] -> (TyVar, Type) -> [TyVar]
InScopeSet -> [TyVar] -> (TyVar, Type) -> [TyVar]
substInExistentials InScopeSet
is) [TyVar]
exts [(TyVar, Type)]
substs

-- | Safely substitute a type variable in a list of existentials. This function
-- will account for cases where existentials shadow each other.
substInExistentials
  :: HasCallStack
  => InScopeSet
  -- ^ Variables in scope
  -> [TyVar]
  -- ^ List of existentials to apply the substitution for
  -> (TyVar, Type)
  -- ^ Substitution
  -> [TyVar]
substInExistentials :: InScopeSet -> [TyVar] -> (TyVar, Type) -> [TyVar]
substInExistentials InScopeSet
is [TyVar]
exts subst :: (TyVar, Type)
subst@(TyVar
typeVar, Type
_type) =
  -- TODO: Is is actually possible that existentials shadow each other? If they
  -- TODO: can't, we can remove this function
  case TyVar -> [TyVar] -> [Int]
forall a. Eq a => a -> [a] -> [Int]
List.elemIndices TyVar
typeVar [TyVar]
exts of
    [] ->
      -- We're not replacing any of the existentials, but a global variable
      HasCallStack => InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substGlobalsInExistentials InScopeSet
is [TyVar]
exts [(TyVar, Type)
subst]
    ([Int] -> Int
forall a. [a] -> a
last -> Int
i) ->
      -- We're replacing an existential. That means we're not touching any
      -- variables that were introduced before it. For all variables after it,
      -- it is as we would replace global variables in them.
      Int -> [TyVar] -> [TyVar]
forall a. Int -> [a] -> [a]
take (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) [TyVar]
exts [TyVar] -> [TyVar] -> [TyVar]
forall a. [a] -> [a] -> [a]
++ HasCallStack => InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substGlobalsInExistentials InScopeSet
is (Int -> [TyVar] -> [TyVar]
forall a. Int -> [a] -> [a]
drop (Int
iInt -> Int -> Int
forall a. Num a => a -> a -> a
+Int
1) [TyVar]
exts) [(TyVar, Type)
subst]

-- | This checks if the substitution satisfies the invariant from 'TvSbust's
-- Note [The substitution invariant].
checkValidSubst
  :: HasCallStack
  => TvSubst
  -> [Type]
  -> a
  -> a
checkValidSubst :: TvSubst -> [Type] -> a -> a
checkValidSubst subst :: TvSubst
subst@(TvSubst InScopeSet
inScope TvSubstEnv
tenv) [Type]
tys a
a =
  WARN( not (isValidSubst subst),
        "inScope" <+> clashPretty inScope <> line <>
        "tenv" <+> clashPretty tenv <> line <>
        "tenvFVs" <+> clashPretty (tyFVsOfTypes tenv) <> line <>
        "tys" <+> fromPpr tys)
  WARN( not tysFVsInSope,
       "inScope" <+> clashPretty inScope <> line <>
       "tenv" <+> clashPretty tenv <> line <>
       "tys" <+> fromPpr tys <> line <>
       "needsInScope" <+> clashPretty needsInScope)
  a
a
 where
  needsInScope :: VarSet
needsInScope = (Int -> Type -> VarSet -> VarSet) -> VarSet -> TvSubstEnv -> VarSet
forall a b. (Int -> a -> b -> b) -> b -> UniqMap a -> b
foldrWithUnique (\Int
k Type
_ VarSet
s -> Int -> VarSet -> VarSet
delVarSetByKey Int
k VarSet
s)
                   ([Type] -> VarSet
forall (f :: Type -> Type). Foldable f => f Type -> VarSet
tyFVsOfTypes [Type]
tys)
                   TvSubstEnv
tenv
  tysFVsInSope :: Bool
tysFVsInSope = VarSet
needsInScope VarSet -> InScopeSet -> Bool
`varSetInScope` InScopeSet
inScope

-- | When calling 'substTy' it should be the case that the in-scope set in the
-- substitution is a superset of the free variables of the range of the
-- substitution.
--
-- See also 'TvSubst's Note [The substitution invariant].
isValidSubst
  :: TvSubst
  -> Bool
isValidSubst :: TvSubst -> Bool
isValidSubst (TvSubst InScopeSet
inScope TvSubstEnv
tenv) = VarSet
tenvFVs VarSet -> InScopeSet -> Bool
`varSetInScope` InScopeSet
inScope
 where
  tenvFVs :: VarSet
tenvFVs = TvSubstEnv -> VarSet
forall (f :: Type -> Type). Foldable f => f Type -> VarSet
tyFVsOfTypes TvSubstEnv
tenv

-- | The work-horse of 'substTy'
substTy'
  :: HasCallStack
  => TvSubst
  -> Type
  -> Type
substTy' :: TvSubst -> Type -> Type
substTy' TvSubst
subst = Type -> Type
go where
  go :: Type -> Type
go = \case
    VarTy TyVar
tv -> TvSubst -> TyVar -> Type
substTyVar TvSubst
subst TyVar
tv
    ForAllTy TyVar
tv Type
ty -> case TvSubst -> TyVar -> (TvSubst, TyVar)
substTyVarBndr TvSubst
subst TyVar
tv of
      (TvSubst
subst', TyVar
tv') -> TyVar -> Type -> Type
ForAllTy TyVar
tv' (HasCallStack => TvSubst -> Type -> Type
TvSubst -> Type -> Type
substTy' TvSubst
subst' Type
ty)
    AppTy Type
fun Type
arg -> Type -> Type -> Type
AppTy (Type -> Type
go Type
fun) (Type -> Type
go Type
arg)
    Type
ty -> Type
ty

-- | Substitute a variable with a type if it's within the substitution's domain.
--
-- Does not substitute within the kind of free variables.
substTyVar
  :: TvSubst
  -> TyVar
  -> Type
substTyVar :: TvSubst -> TyVar -> Type
substTyVar (TvSubst InScopeSet
_ TvSubstEnv
tenv) TyVar
tv = case TyVar -> TvSubstEnv -> Maybe Type
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv TyVar
tv TvSubstEnv
tenv of
  Just Type
ty -> Type
ty
  Maybe Type
_       -> TyVar -> Type
VarTy TyVar
tv

-- | Substitute a type variable in a binding position, returning an extended
-- substitution environment and a new type variable.
--
-- Substitutes within the kind of the type variable
substTyVarBndr
  :: TvSubst
  -> TyVar
  -> (TvSubst, TyVar)
substTyVarBndr :: TvSubst -> TyVar -> (TvSubst, TyVar)
substTyVarBndr subst :: TvSubst
subst@(TvSubst InScopeSet
inScope TvSubstEnv
tenv) TyVar
oldVar =
  ASSERT2( no_capture, clashPretty oldVar <> line
                    <> clashPretty newVar <> line
                    <> clashPretty subst )
  (InScopeSet -> TvSubstEnv -> TvSubst
TvSubst (InScopeSet
inScope InScopeSet -> TyVar -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
`extendInScopeSet` TyVar
newVar) TvSubstEnv
newEnv, TyVar
newVar)
 where
  newEnv :: TvSubstEnv
newEnv | Bool
noChange  = TvSubstEnv -> TyVar -> TvSubstEnv
forall a b. VarEnv a -> Var b -> VarEnv a
delVarEnv TvSubstEnv
tenv TyVar
oldVar
         | Bool
otherwise = TyVar -> Type -> TvSubstEnv -> TvSubstEnv
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv TyVar
oldVar (TyVar -> Type
VarTy TyVar
newVar) TvSubstEnv
tenv

  -- Assertion that we're not capturing something in the substitution
  no_capture :: Bool
no_capture = Bool -> Bool
not (TyVar
newVar TyVar -> VarSet -> Bool
forall a. Var a -> VarSet -> Bool
`elemVarSet` TvSubstEnv -> VarSet
forall (f :: Type -> Type). Foldable f => f Type -> VarSet
tyFVsOfTypes TvSubstEnv
tenv)

  oldKi :: Type
oldKi        = TyVar -> Type
forall a. Var a -> Type
varType TyVar
oldVar
  -- verify that the kind is closed
  noKindChange :: Bool
noKindChange = Type -> Bool
noFreeVarsOfType Type
oldKi
  -- noChange means that the new type variable is identical in all respects to
  -- the old type variable (same unique, same kind)
  -- See 'TvSubstEnv's Note [Extending the TvSubstEnv]
  --
  -- In that case we don't need to extend the substitution to map old to new.
  -- But instead we must zap any current substitution for the variable. For
  -- example
  --
  --   (\x.e) with subst = [x | -> e']
  --
  -- Here we must simply zap the substitution for x
  noChange :: Bool
noChange     = Bool
noKindChange Bool -> Bool -> Bool
&& (TyVar
newVar TyVar -> TyVar -> Bool
forall a. Eq a => a -> a -> Bool
== TyVar
oldVar)

  -- uniqAway ensures that the new variable is not already in scope
  newVar :: TyVar
newVar | Bool
noKindChange = InScopeSet -> TyVar -> TyVar
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope TyVar
oldVar
         | Bool
otherwise    = InScopeSet -> TyVar -> TyVar
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope
                            (TyVar
oldVar {varType :: Type
varType = HasCallStack => TvSubst -> Type -> Type
TvSubst -> Type -> Type
substTyUnchecked TvSubst
subst Type
oldKi})

-- | Substitute within a 'Term'. Just return original term if given
-- substitution is "Nothing".
maybeSubstTm
  :: HasCallStack
  => Doc ()
  -> Maybe Subst
  -> Term
  -> Term
maybeSubstTm :: Doc () -> Maybe Subst -> Term -> Term
maybeSubstTm Doc ()
_doc Maybe Subst
Nothing = Term -> Term
forall a. a -> a
id
maybeSubstTm Doc ()
doc (Just Subst
s) = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
s

-- | Substitute within a 'Term'
substTm
  :: HasCallStack
  => Doc ()
  -> Subst
  -> Term
  -> Term
substTm :: Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst = Term -> Term
go where
  go :: Term -> Term
go = \case
    Var Id
v -> HasCallStack => Doc () -> Subst -> Id -> Term
Doc () -> Subst -> Id -> Term
lookupIdSubst (Doc ()
doc Doc () -> Doc () -> Doc ()
forall a. Semigroup a => a -> a -> a
<> Doc ()
forall ann. Doc ann
line Doc () -> Doc () -> Doc ()
forall a. Semigroup a => a -> a -> a
<> Doc ()
"subsTm") Subst
subst Id
v
    Lam Id
v Term
e -> case HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst Id
v of
      (Subst
subst',Id
v') -> Id -> Term -> Term
Lam Id
v' (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst' Term
e)
    TyLam TyVar
v Term
e -> case HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst TyVar
v of
      (Subst
subst',TyVar
v') -> TyVar -> Term -> Term
TyLam TyVar
v' (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst' Term
e)
    App Term
l Term
r -> Term -> Term -> Term
App (Term -> Term
go Term
l) (Term -> Term
go Term
r)
    TyApp Term
l Type
r -> Term -> Type -> Term
TyApp (Term -> Term
go Term
l) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
r)
    Letrec [(Id, Term)]
bs Term
e -> case HasCallStack =>
Doc () -> Subst -> [(Id, Term)] -> (Subst, [(Id, Term)])
Doc () -> Subst -> [(Id, Term)] -> (Subst, [(Id, Term)])
substBind Doc ()
doc Subst
subst [(Id, Term)]
bs of
      (Subst
subst',[(Id, Term)]
bs') -> [(Id, Term)] -> Term -> Term
Letrec [(Id, Term)]
bs' (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst' Term
e)
    Case Term
subj Type
ty [Alt]
alts -> Term -> Type -> [Alt] -> Term
Case (Term -> Term
go Term
subj) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
ty) ((Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map Alt -> Alt
goAlt [Alt]
alts)
    Cast Term
e Type
t1 Type
t2 -> Term -> Type -> Type -> Term
Cast (Term -> Term
go Term
e) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
t1) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
t2)
    Tick TickInfo
tick Term
e -> TickInfo -> Term -> Term
Tick (TickInfo -> TickInfo
goTick TickInfo
tick) (Term -> Term
go Term
e)
    Term
tm -> Term
tm

  goAlt :: Alt -> Alt
goAlt (Pat
pat,Term
alt) = case Pat
pat of
    DataPat DataCon
dc [TyVar]
tvs [Id]
ids -> case (Subst -> TyVar -> (Subst, TyVar))
-> Subst -> [TyVar] -> (Subst, [TyVar])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst [TyVar]
tvs of
      (Subst
subst1,[TyVar]
tvs') -> case (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst1 [Id]
ids of
        (Subst
subst2,[Id]
ids') -> (DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
tvs' [Id]
ids',HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst2 Term
alt)
    Pat
_ -> (Pat
pat,Term -> Term
go Term
alt)

  goTick :: TickInfo -> TickInfo
goTick t :: TickInfo
t@(SrcSpan SrcSpan
_)  = TickInfo
t
  goTick (NameMod NameMod
m Type
ty) = NameMod -> Type -> TickInfo
NameMod NameMod
m (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
ty)
  goTick t :: TickInfo
t@TickInfo
DeDup        = TickInfo
t
  goTick t :: TickInfo
t@TickInfo
NoDeDup      = TickInfo
t

-- | Substitute within a case-alternative
substAlt
  :: HasCallStack
  => Doc ()
  -> Subst
  -- ^ The substitution
  -> (Pat, Term)
  -- ^ The alternative in which to apply the substitution
  -> (Pat, Term)
substAlt :: Doc () -> Subst -> Alt -> Alt
substAlt Doc ()
doc Subst
subst (Pat
pat,Term
alt) = case Pat
pat of
  DataPat DataCon
dc [TyVar]
tvs [Id]
ids -> case (Subst -> TyVar -> (Subst, TyVar))
-> Subst -> [TyVar] -> (Subst, [TyVar])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst [TyVar]
tvs of
    (Subst
subst1,[TyVar]
tvs1) -> case (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst1 [Id]
ids of
      (Subst
subst2,[Id]
ids1) -> (DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
tvs1 [Id]
ids1,HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst2 Term
alt)
  Pat
_ -> (Pat
pat, HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
doc Subst
subst Term
alt)

substId
  :: HasCallStack
  => Subst
  -> Id
  -> Id
substId :: Subst -> Id -> Id
substId Subst
subst Id
oldId = (Subst, Id) -> Id
forall a b. (a, b) -> b
snd ((Subst, Id) -> Id) -> (Subst, Id) -> Id
forall a b. (a -> b) -> a -> b
$ HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst Id
oldId

-- | Find the substitution for an 'Id' in the 'Subst'
lookupIdSubst
  :: HasCallStack
  => Doc ()
  -> Subst
  -> Id
  -> Term
lookupIdSubst :: Doc () -> Subst -> Id -> Term
lookupIdSubst Doc ()
doc (Subst InScopeSet
inScope IdSubstEnv
tmS TvSubstEnv
_ IdSubstEnv
genv) Id
v
  | Id -> Bool
forall a. Var a -> Bool
isGlobalId Id
v = case Id -> IdSubstEnv -> Maybe Term
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
v IdSubstEnv
genv of
                     Just Term
e -> Term
e
                     Maybe Term
_      -> Id -> Term
Var Id
v
  | Just Term
e <- Id -> IdSubstEnv -> Maybe Term
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
v IdSubstEnv
tmS = Term
e
  -- Vital! See 'IdSubstEnv' Note [Extending the Subst]
  --
  -- TODO: We match on Id here to workaround an issue where type variables
  -- TODO: "shadow" term variables. Omitting the check would make 'lookupIdSubst'
  -- TODO: potentially replace an "Id" with a TyVar. For more information:
  -- TODO:
  -- TODO:   https://github.com/clash-lang/clash-compiler/issues/1046
  -- TODO:
  | Just v' :: Var Any
v'@(Id {}) <- InScopeSet -> Id -> Maybe (Var Any)
forall a. InScopeSet -> Var a -> Maybe (Var Any)
lookupInScope InScopeSet
inScope Id
v = Id -> Term
Var (Var Any -> Id
coerce Var Any
v')
  | Bool
otherwise = WARN(True, "Subst.lookupIdSubst" <+> doc <+> fromPpr v)
                Id -> Term
Var Id
v

-- | Substitute an 'Id' for another one according to the 'Subst' given,
-- returning the result and an update 'Subst' that should be used in subsequent
-- substitutions.
substIdBndr
  :: HasCallStack
  => Subst
  -> Id
  -> (Subst,Id)
substIdBndr :: Subst -> Id -> (Subst, Id)
substIdBndr subst :: Subst
subst@(Subst InScopeSet
inScope IdSubstEnv
env TvSubstEnv
tenv IdSubstEnv
genv) Id
oldId =
  (InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst (InScopeSet
inScope InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
`extendInScopeSet` Id
newId) IdSubstEnv
newEnv TvSubstEnv
tenv IdSubstEnv
genv, Id
newId)
 where
  id1 :: Id
id1 = InScopeSet -> Id -> Id
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope Id
oldId
  newId :: Id
newId | Bool
noTypeChange = Id
id1
        | Bool
otherwise    = Id
id1 {varType :: Type
varType = HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst (Id -> Type
forall a. Var a -> Type
varType Id
id1)}

  oldTy :: Type
oldTy = Id -> Type
forall a. Var a -> Type
varType Id
oldId
  noTypeChange :: Bool
noTypeChange = TvSubstEnv -> Bool
forall a. VarEnv a -> Bool
nullVarEnv TvSubstEnv
tenv Bool -> Bool -> Bool
|| Type -> Bool
noFreeVarsOfType Type
oldTy

  -- Extend the substitution if the unique has changed.
  --
  -- In case it hasn't changed we don't need to extend the substitution to map
  -- old to new. But instead we must zap any current substitution for the
  -- variable. For example
  --
  --   (\x.e) with subst = [x | -> e']
  --
  -- Here we must simply zap the substitution for x
  newEnv :: IdSubstEnv
newEnv | Bool
noChange  = IdSubstEnv -> Id -> IdSubstEnv
forall a b. VarEnv a -> Var b -> VarEnv a
delVarEnv IdSubstEnv
env Id
oldId
         | Bool
otherwise = Id -> Term -> IdSubstEnv -> IdSubstEnv
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv Id
oldId (Id -> Term
Var Id
newId) IdSubstEnv
env

  -- See Note [Extending the Subst] why it's not necessary to check noTypeChange
  noChange :: Bool
noChange = Id
id1 Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
oldId

-- | Like 'substTyVarBndr' but takes a 'Subst' instead of a 'TvSubst'
substTyVarBndr'
  :: HasCallStack
  => Subst
  -> TyVar
  -> (Subst,TyVar)
substTyVarBndr' :: Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' (Subst InScopeSet
inScope IdSubstEnv
tmS TvSubstEnv
tyS IdSubstEnv
tgS) TyVar
tv =
  case TvSubst -> TyVar -> (TvSubst, TyVar)
substTyVarBndr (InScopeSet -> TvSubstEnv -> TvSubst
TvSubst InScopeSet
inScope TvSubstEnv
tyS) TyVar
tv of
    (TvSubst InScopeSet
inScope' TvSubstEnv
tyS',TyVar
tv') -> (InScopeSet -> IdSubstEnv -> TvSubstEnv -> IdSubstEnv -> Subst
Subst InScopeSet
inScope' IdSubstEnv
tmS TvSubstEnv
tyS' IdSubstEnv
tgS, TyVar
tv')

-- | Apply a substitution to an entire set of let-bindings, additionally
-- returning an updated 'Subst' that should be used by subsequent substitutions.
substBind
  :: HasCallStack
  => Doc ()
  -> Subst
  -> [LetBinding]
  -> (Subst,[LetBinding])
substBind :: Doc () -> Subst -> [(Id, Term)] -> (Subst, [(Id, Term)])
substBind Doc ()
doc Subst
subst [(Id, Term)]
xs =
  (Subst
subst',[Id] -> [Term] -> [(Id, Term)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
bndrs' [Term]
rhss')
 where
  ([Id]
bndrs,[Term]
rhss)    = [(Id, Term)] -> ([Id], [Term])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, Term)]
xs
  (Subst
subst',[Id]
bndrs') = (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst [Id]
bndrs
  rhss' :: [Term]
rhss'           = (Term -> Term) -> [Term] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm (Doc ()
"substBind" Doc () -> Doc () -> Doc ()
forall ann. Doc ann -> Doc ann -> Doc ann
<+> Doc ()
doc) Subst
subst') [Term]
rhss

-- | Type substitution, see 'zipTvSubst'
--
-- Works only if the domain of the substitution is superset of the type being
-- substituted into
substTyWith
  :: HasCallStack
  => [TyVar]
  -> [Type]
  -> Type
  -> Type
substTyWith :: [TyVar] -> [Type] -> Type -> Type
substTyWith [TyVar]
tvs [Type]
tys =
  ASSERT( List.equalLength tvs tys )
  HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy ([TyVar] -> [Type] -> Subst
zipTvSubst [TyVar]
tvs [Type]
tys)

-- | Ensure that non of the binders in an expression shadow each-other, nor
-- conflict with he in-scope set
deShadowTerm
  :: HasCallStack
  => InScopeSet
  -> Term
  -> Term
deShadowTerm :: InScopeSet -> Term -> Term
deShadowTerm InScopeSet
is Term
e = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"deShadowTerm" (InScopeSet -> Subst
mkSubst InScopeSet
is) Term
e

-- | Ensure that non of the binders in an alternative shadow each-other, nor
-- conflict with the in-scope set
deShadowAlt ::
  HasCallStack =>
  InScopeSet ->
  (Pat, Term) ->
  (Pat, Term)
deShadowAlt :: InScopeSet -> Alt -> Alt
deShadowAlt InScopeSet
is = HasCallStack => Doc () -> Subst -> Alt -> Alt
Doc () -> Subst -> Alt -> Alt
substAlt Doc ()
"deShadowAlt" (InScopeSet -> Subst
mkSubst InScopeSet
is)

-- | Ensure that non of the let-bindings of a let-expression shadow w.r.t the
-- in-scope set
deshadowLetExpr
  :: HasCallStack
  => InScopeSet
  -- ^ Current InScopeSet
  -> [LetBinding]
  -- ^ Bindings of the let-expression
  -> Term
  -- ^ The body of the let-expression
  -> ([LetBinding],Term)
  -- ^ Deshadowed let-bindings, where let-bound expressions and the let-body
  -- properly reference the renamed variables
deshadowLetExpr :: InScopeSet -> [(Id, Term)] -> Term -> ([(Id, Term)], Term)
deshadowLetExpr InScopeSet
is [(Id, Term)]
bs Term
e =
  case HasCallStack =>
Doc () -> Subst -> [(Id, Term)] -> (Subst, [(Id, Term)])
Doc () -> Subst -> [(Id, Term)] -> (Subst, [(Id, Term)])
substBind Doc ()
"deshadowLetBindings" (InScopeSet -> Subst
mkSubst InScopeSet
is) [(Id, Term)]
bs of
    (Subst
s1,[(Id, Term)]
bs1) -> ([(Id, Term)]
bs1, HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"deShadowLetBody" Subst
s1 Term
e)

-- | A much stronger variant of `deShadowTerm` that ensures that all bound
-- variables are unique.
--
-- Also returns an extended 'InScopeSet' additionally containing the (renamed)
-- unique bound variables of the term.
freshenTm
  :: InScopeSet
  -- ^ Current set of variables in scope
  -> Term
  -> (InScopeSet, Term)
freshenTm :: InScopeSet -> Term -> (InScopeSet, Term)
freshenTm InScopeSet
is0 = Subst -> Term -> (InScopeSet, Term)
go (InScopeSet -> Subst
mkSubst InScopeSet
is0) where
  go :: Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 = \case
    Var Id
v -> (Subst -> InScopeSet
substInScope Subst
subst0, HasCallStack => Doc () -> Subst -> Id -> Term
Doc () -> Subst -> Id -> Term
lookupIdSubst Doc ()
"freshenTm" Subst
subst0 Id
v)
    Lam Id
v Term
e -> case HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst0 Id
v of
      (Subst
subst1,Id
v') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst1 Term
e of
        (InScopeSet
is2,Term
e') -> (InScopeSet
is2, Id -> Term -> Term
Lam Id
v' Term
e')
    TyLam TyVar
v Term
e -> case HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst0 TyVar
v of
      (Subst
subst1,TyVar
v') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst1 Term
e of
        (InScopeSet
is2,Term
e') -> (InScopeSet
is2,TyVar -> Term -> Term
TyLam TyVar
v' Term
e')
    App Term
l Term
r -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
l of
      (InScopeSet
is1,Term
l') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 {substInScope :: InScopeSet
substInScope = InScopeSet
is1} Term
r of
        (InScopeSet
is2,Term
r') -> (InScopeSet
is2, Term -> Term -> Term
App Term
l' Term
r')
    TyApp Term
l Type
r -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
l of
      (InScopeSet
is1,Term
l') -> (InScopeSet
is1, Term -> Type -> Term
TyApp Term
l' (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
r))
    Letrec [(Id, Term)]
bs Term
e -> case Subst -> [(Id, Term)] -> (Subst, [(Id, Term)])
goBind Subst
subst0 [(Id, Term)]
bs of
      (Subst
subst1,[(Id, Term)]
bs') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst1 Term
e of
        (InScopeSet
is2,Term
e') -> (InScopeSet
is2,[(Id, Term)] -> Term -> Term
Letrec [(Id, Term)]
bs' Term
e')
    Case Term
subj Type
ty [Alt]
alts -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
subj of
      (InScopeSet
is1,Term
subj') -> case (InScopeSet -> Alt -> (InScopeSet, Alt))
-> InScopeSet -> [Alt] -> (InScopeSet, [Alt])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL (\InScopeSet
isN -> Subst -> Alt -> (InScopeSet, Alt)
goAlt Subst
subst0 {substInScope :: InScopeSet
substInScope = InScopeSet
isN}) InScopeSet
is1 [Alt]
alts of
        (InScopeSet
is2,[Alt]
alts') -> (InScopeSet
is2, Term -> Type -> [Alt] -> Term
Case Term
subj' (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
ty) [Alt]
alts')
    Cast Term
e Type
t1 Type
t2 -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
e of
      (InScopeSet
is1, Term
e') -> (InScopeSet
is1, Term -> Type -> Type -> Term
Cast Term
e' (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
t1) (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
t2))
    Tick TickInfo
tick Term
e -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
e of
       (InScopeSet
is1, Term
e') -> (InScopeSet
is1, TickInfo -> Term -> Term
Tick (Subst -> TickInfo -> TickInfo
goTick Subst
subst0 TickInfo
tick) Term
e')
    Term
tm -> (Subst -> InScopeSet
substInScope Subst
subst0, Term
tm)

  goBind :: Subst -> [(Id, Term)] -> (Subst, [(Id, Term)])
goBind Subst
subst0 [(Id, Term)]
xs =
    let ([Id]
bndrs,[Term]
rhss)    = [(Id, Term)] -> ([Id], [Term])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, Term)]
xs
        (Subst
subst1,[Id]
bndrs') = (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst0 [Id]
bndrs
        (InScopeSet
is2,[Term]
rhss')     = (InScopeSet -> Term -> (InScopeSet, Term))
-> InScopeSet -> [Term] -> (InScopeSet, [Term])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL (\InScopeSet
isN -> Subst -> Term -> (InScopeSet, Term)
go Subst
subst1 {substInScope :: InScopeSet
substInScope = InScopeSet
isN})
                                         (Subst -> InScopeSet
substInScope Subst
subst1)
                                         [Term]
rhss
    in  (Subst
subst1 {substInScope :: InScopeSet
substInScope = InScopeSet
is2},[Id] -> [Term] -> [(Id, Term)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
bndrs' [Term]
rhss')

  goAlt :: Subst -> Alt -> (InScopeSet, Alt)
goAlt Subst
subst0 (Pat
pat,Term
alt) = case Pat
pat of
    DataPat DataCon
dc [TyVar]
tvs [Id]
ids -> case (Subst -> TyVar -> (Subst, TyVar))
-> Subst -> [TyVar] -> (Subst, [TyVar])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> TyVar -> (Subst, TyVar)
Subst -> TyVar -> (Subst, TyVar)
substTyVarBndr' Subst
subst0 [TyVar]
tvs of
      (Subst
subst1,[TyVar]
tvs') -> case (Subst -> Id -> (Subst, Id)) -> Subst -> [Id] -> (Subst, [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL HasCallStack => Subst -> Id -> (Subst, Id)
Subst -> Id -> (Subst, Id)
substIdBndr Subst
subst1 [Id]
ids of
        (Subst
subst2,[Id]
ids') -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst2 Term
alt of
          (InScopeSet
is3,Term
alt') -> (InScopeSet
is3,(DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
tvs' [Id]
ids',Term
alt'))
    Pat
_ -> case Subst -> Term -> (InScopeSet, Term)
go Subst
subst0 Term
alt of
      (InScopeSet
is1,Term
alt') -> (InScopeSet
is1,(Pat
pat,Term
alt'))

  goTick :: Subst -> TickInfo -> TickInfo
goTick Subst
subst0 (NameMod NameMod
m Type
ty) = NameMod -> Type -> TickInfo
NameMod NameMod
m (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst0 Type
ty)
  goTick Subst
_      TickInfo
tick           = TickInfo
tick

-- * AEQ

-- | Alpha equality for types
aeqType
  :: Type
  -> Type
  -> Bool
aeqType :: Type -> Type -> Bool
aeqType Type
t1 Type
t2 = RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
rnEnv Type
t1 Type
t2 Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
EQ
 where
  rnEnv :: RnEnv
rnEnv = InScopeSet -> RnEnv
mkRnEnv (VarSet -> InScopeSet
mkInScopeSet ([Type] -> VarSet
forall (f :: Type -> Type). Foldable f => f Type -> VarSet
tyFVsOfTypes [Type
t1,Type
t2]))

-- | Alpha comparison for types
acmpType
  :: Type
  -> Type
  -> Ordering
acmpType :: Type -> Type -> Ordering
acmpType Type
t1 Type
t2 = RnEnv -> Type -> Type -> Ordering
acmpType' (InScopeSet -> RnEnv
mkRnEnv InScopeSet
inScope) Type
t1 Type
t2
 where
  inScope :: InScopeSet
inScope = VarSet -> InScopeSet
mkInScopeSet ([Type] -> VarSet
forall (f :: Type -> Type). Foldable f => f Type -> VarSet
tyFVsOfTypes [Type
t1,Type
t2])

-- | Alpha comparison for types. Faster than 'acmpType' as it doesn't need to
-- calculate the free variables to create the 'InScopeSet'
acmpType'
  :: RnEnv
  -> Type
  -> Type
  -> Ordering
acmpType' :: RnEnv -> Type -> Type -> Ordering
acmpType' = RnEnv -> Type -> Type -> Ordering
go
 where
  go :: RnEnv -> Type -> Type -> Ordering
go RnEnv
env (VarTy TyVar
tv1) (VarTy TyVar
tv2) = TyVar -> TyVar -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (RnEnv -> TyVar -> TyVar
rnOccLTy RnEnv
env TyVar
tv1) (RnEnv -> TyVar -> TyVar
rnOccRTy RnEnv
env TyVar
tv2)
  go RnEnv
_   (ConstTy ConstTy
c1) (ConstTy ConstTy
c2) = ConstTy -> ConstTy -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ConstTy
c1 ConstTy
c2
  go RnEnv
env (ForAllTy TyVar
tv1 Type
t1) (ForAllTy TyVar
tv2 Type
t2) =
    RnEnv -> Type -> Type -> Ordering
go RnEnv
env (TyVar -> Type
forall a. Var a -> Type
varType TyVar
tv1) (TyVar -> Type
forall a. Var a -> Type
varType TyVar
tv2) Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Type -> Type -> Ordering
go (RnEnv -> TyVar -> TyVar -> RnEnv
rnTyBndr RnEnv
env TyVar
tv1 TyVar
tv2) Type
t1 Type
t2
  go RnEnv
env (AppTy Type
s1 Type
t1) (AppTy Type
s2 Type
t2) =
    RnEnv -> Type -> Type -> Ordering
go RnEnv
env Type
s1 Type
s2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Type -> Type -> Ordering
go RnEnv
env Type
t1 Type
t2
  go RnEnv
_ (LitTy LitTy
l1) (LitTy LitTy
l2) = LitTy -> LitTy -> Ordering
forall a. Ord a => a -> a -> Ordering
compare LitTy
l1 LitTy
l2
  go RnEnv
env (AnnType [Attr']
_ Type
t1) (AnnType [Attr']
_ Type
t2) =
    -- XXX: maybe ignore annotations, like we ignore ticks, i.e.
    --
    -- go env (AnnType t1) t2 = go env t1 t2
    -- go env t1 (AnnType t2) = go env t1 t2
    RnEnv -> Type -> Type -> Ordering
go RnEnv
env Type
t1 Type
t2
  go RnEnv
_ Type
t1 Type
t2 = Word -> Word -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Type -> Word
getRank Type
t1) (Type -> Word
getRank Type
t2)

  getRank :: Type -> Word
  getRank :: Type -> Word
getRank (VarTy {})    = Word
0
  getRank (LitTy {})    = Word
1
  getRank (ConstTy {})  = Word
2
  getRank (AnnType {})  = Word
3
  getRank (AppTy {})    = Word
4
  getRank (ForAllTy {}) = Word
5

-- | Alpha equality for terms
aeqTerm
  :: Term
  -> Term
  -> Bool
aeqTerm :: Term -> Term -> Bool
aeqTerm Term
t1 Term
t2 = InScopeSet -> Term -> Term -> Bool
aeqTerm' InScopeSet
inScope Term
t1 Term
t2
 where
  inScope :: InScopeSet
inScope = VarSet -> InScopeSet
mkInScopeSet ([Term] -> VarSet
forall (f :: Type -> Type). Foldable f => f Term -> VarSet
localFVsOfTerms [Term
t1,Term
t2])

-- | Alpha equality for terms. Faster than 'aeqTerm' as it doesn't need to
-- calculate the free variables to create the 'InScopeSet'
aeqTerm'
  :: InScopeSet
  -- ^ Superset of variables in scope of the left and right term
  -> Term
  -> Term
  -> Bool
aeqTerm' :: InScopeSet -> Term -> Term -> Bool
aeqTerm' InScopeSet
inScope Term
t1 Term
t2 = InScopeSet -> Term -> Term -> Ordering
acmpTerm' InScopeSet
inScope Term
t1 Term
t2 Ordering -> Ordering -> Bool
forall a. Eq a => a -> a -> Bool
== Ordering
EQ

-- | Alpha comparison for types
acmpTerm
  :: Term
  -> Term
  -> Ordering
acmpTerm :: Term -> Term -> Ordering
acmpTerm Term
t1 Term
t2 = InScopeSet -> Term -> Term -> Ordering
acmpTerm' InScopeSet
inScope Term
t1 Term
t2
 where
  inScope :: InScopeSet
inScope = VarSet -> InScopeSet
mkInScopeSet ([Term] -> VarSet
forall (f :: Type -> Type). Foldable f => f Term -> VarSet
localFVsOfTerms [Term
t1,Term
t2])

-- | Alpha comparison for types. Faster than 'acmpTerm' as it doesn't need to
-- calculate the free variables to create the 'InScopeSet'
acmpTerm'
  :: InScopeSet
  -- ^ Superset of variables in scope of the left and right term
  -> Term
  -> Term
  -> Ordering
acmpTerm' :: InScopeSet -> Term -> Term -> Ordering
acmpTerm' InScopeSet
inScope = RnEnv -> Term -> Term -> Ordering
go (InScopeSet -> RnEnv
mkRnEnv InScopeSet
inScope)
 where
  thenCmpTm :: Ordering -> Ordering -> Ordering
thenCmpTm Ordering
EQ  Ordering
rel = Ordering
rel
  thenCmpTm Ordering
rel Ordering
_   = Ordering
rel

  go :: RnEnv -> Term -> Term -> Ordering
go RnEnv
env (Var Id
id1) (Var Id
id2)   = Id -> Id -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (RnEnv -> Id -> Id
rnOccLId RnEnv
env Id
id1) (RnEnv -> Id -> Id
rnOccRId RnEnv
env Id
id2)
  go RnEnv
_   (Data DataCon
dc1) (Data DataCon
dc2) = DataCon -> DataCon -> Ordering
forall a. Ord a => a -> a -> Ordering
compare DataCon
dc1 DataCon
dc2
  go RnEnv
_   (Literal Literal
l1) (Literal Literal
l2) = Literal -> Literal -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Literal
l1 Literal
l2
  go RnEnv
_   (Prim PrimInfo
p1) (Prim PrimInfo
p2) = (PrimInfo -> Text) -> PrimInfo -> PrimInfo -> Ordering
forall a b. Ord a => (b -> a) -> b -> b -> Ordering
comparing PrimInfo -> Text
primName PrimInfo
p1 PrimInfo
p2
  go RnEnv
env (Lam Id
b1 Term
e1) (Lam Id
b2 Term
e2) =
    RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env (Id -> Type
forall a. Var a -> Type
varType Id
b1) (Id -> Type
forall a. Var a -> Type
varType Id
b2) Ordering -> Ordering -> Ordering
`thenCompare`
    RnEnv -> Term -> Term -> Ordering
go (RnEnv -> Id -> Id -> RnEnv
rnTmBndr RnEnv
env Id
b1 Id
b2) Term
e1 Term
e2
  go RnEnv
env (TyLam TyVar
b1 Term
e1) (TyLam TyVar
b2 Term
e2) =
    RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env (TyVar -> Type
forall a. Var a -> Type
varType TyVar
b1) (TyVar -> Type
forall a. Var a -> Type
varType TyVar
b2) Ordering -> Ordering -> Ordering
`thenCompare`
    RnEnv -> Term -> Term -> Ordering
go (RnEnv -> TyVar -> TyVar -> RnEnv
rnTyBndr RnEnv
env TyVar
b1 TyVar
b2) Term
e1 Term
e2
  go RnEnv
env (App Term
l1 Term
r1) (App Term
l2 Term
r2) =
    RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
l1 Term
l2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
r1 Term
r2
  go RnEnv
env (TyApp Term
l1 Type
r1) (TyApp Term
l2 Type
r2) =
    RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
l1 Term
l2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env Type
r1 Type
r2
  go RnEnv
env (Letrec [(Id, Term)]
bs1 Term
e1) (Letrec [(Id, Term)]
bs2 Term
e2) =
    Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ([(Id, Term)] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [(Id, Term)]
bs1) ([(Id, Term)] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [(Id, Term)]
bs2) Ordering -> Ordering -> Ordering
`thenCompare`
    (Ordering -> Ordering -> Ordering)
-> Ordering -> [Ordering] -> Ordering
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ordering -> Ordering -> Ordering
thenCmpTm Ordering
EQ ((Term -> Term -> Ordering) -> [Term] -> [Term] -> [Ordering]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (RnEnv -> Term -> Term -> Ordering
go RnEnv
env') [Term]
rhs1 [Term]
rhs2) Ordering -> Ordering -> Ordering
`thenCompare`
    RnEnv -> Term -> Term -> Ordering
go RnEnv
env' Term
e1 Term
e2
   where
    ([Id]
ids1,[Term]
rhs1) = [(Id, Term)] -> ([Id], [Term])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, Term)]
bs1
    ([Id]
ids2,[Term]
rhs2) = [(Id, Term)] -> ([Id], [Term])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, Term)]
bs2
    env' :: RnEnv
env' = RnEnv -> [Id] -> [Id] -> RnEnv
rnTmBndrs RnEnv
env [Id]
ids1 [Id]
ids2
  go RnEnv
env (Case Term
e1 Type
_ [Alt]
a1) (Case Term
e2 Type
_ [Alt]
a2) =
    Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ([Alt] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Alt]
a1) ([Alt] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Alt]
a2) Ordering -> Ordering -> Ordering
`thenCompare`
    RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
e1 Term
e2 Ordering -> Ordering -> Ordering
`thenCompare`
    (Ordering -> Ordering -> Ordering)
-> Ordering -> [Ordering] -> Ordering
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Ordering -> Ordering -> Ordering
thenCmpTm Ordering
EQ ((Alt -> Alt -> Ordering) -> [Alt] -> [Alt] -> [Ordering]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (RnEnv -> Alt -> Alt -> Ordering
goAlt RnEnv
env) [Alt]
a1 [Alt]
a2)
  go RnEnv
env (Cast Term
e1 Type
l1 Type
r1) (Cast Term
e2 Type
l2 Type
r2) =
    RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
e1 Term
e2 Ordering -> Ordering -> Ordering
`thenCompare`
    RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env Type
l1 Type
l2 Ordering -> Ordering -> Ordering
`thenCompare`
    RnEnv -> Type -> Type -> Ordering
acmpType' RnEnv
env Type
r1 Type
r2
  -- Look through ticks for aeq
  go RnEnv
env (Tick TickInfo
_ Term
e1) Term
e2 = RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
e1 Term
e2
  go RnEnv
env Term
e1 (Tick TickInfo
_ Term
e2) = RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
e1 Term
e2

  go RnEnv
_ Term
e1 Term
e2 = Word -> Word -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Term -> Word
getRank Term
e1) (Term -> Word
getRank Term
e2)

  goAlt :: RnEnv -> Alt -> Alt -> Ordering
goAlt RnEnv
env (DataPat DataCon
c1 [TyVar]
tvs1 [Id]
ids1,Term
e1) (DataPat DataCon
c2 [TyVar]
tvs2 [Id]
ids2,Term
e2) =
    DataCon -> DataCon -> Ordering
forall a. Ord a => a -> a -> Ordering
compare DataCon
c1 DataCon
c2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Term -> Term -> Ordering
go RnEnv
env' Term
e1 Term
e2
   where
    env' :: RnEnv
env' = RnEnv -> [Id] -> [Id] -> RnEnv
rnTmBndrs (RnEnv -> [TyVar] -> [TyVar] -> RnEnv
rnTyBndrs RnEnv
env [TyVar]
tvs1 [TyVar]
tvs2) [Id]
ids1 [Id]
ids2
  goAlt RnEnv
env (Pat
c1,Term
e1) (Pat
c2,Term
e2) =
    Pat -> Pat -> Ordering
forall a. Ord a => a -> a -> Ordering
compare Pat
c1 Pat
c2 Ordering -> Ordering -> Ordering
`thenCompare` RnEnv -> Term -> Term -> Ordering
go RnEnv
env Term
e1 Term
e2

  getRank :: Term -> Word
  getRank :: Term -> Word
getRank = \case
    Var {}     -> Word
0
    Data {}    -> Word
1
    Literal {} -> Word
2
    Prim {}    -> Word
3
    Cast {}    -> Word
4
    App {}     -> Word
5
    TyApp {}   -> Word
6
    Lam {}     -> Word
7
    TyLam {}   -> Word
8
    Letrec {}  -> Word
9
    Case {}    -> Word
10
    Tick {}    -> Word
11

thenCompare :: Ordering -> Ordering -> Ordering
thenCompare :: Ordering -> Ordering -> Ordering
thenCompare Ordering
EQ Ordering
rel = Ordering
rel
thenCompare Ordering
rel Ordering
_  = Ordering
rel

instance Eq Type where
  == :: Type -> Type -> Bool
(==) = Type -> Type -> Bool
aeqType

instance Ord Type where
  compare :: Type -> Type -> Ordering
compare = Type -> Type -> Ordering
acmpType

instance Eq Term where
  == :: Term -> Term -> Bool
(==) = Term -> Term -> Bool
aeqTerm

instance Ord Term where
  compare :: Term -> Term -> Ordering
compare = Term -> Term -> Ordering
acmpTerm