{-# LANGUAGE CPP #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE QuasiQuotes #-}
{-# LANGUAGE TemplateHaskell #-}
module Clash.Core.Util where
import Control.Concurrent.Supply (Supply, freshId)
import qualified Control.Lens as Lens
import Control.Monad.Trans.Except (Except, throwE)
import qualified Data.HashSet as HashSet
import qualified Data.Graph as Graph
import Data.List (foldl', mapAccumR)
import Data.List.Extra (zipEqual)
import Data.Maybe
(fromJust, isJust, mapMaybe, catMaybes)
import qualified Data.Set as Set
import qualified Data.Set.Lens as Lens
import qualified Data.Text as T
#if !MIN_VERSION_base(4,11,0)
import Data.Semigroup
#endif
import PrelNames (ipClassKey)
import Unique (getKey)
import Clash.Core.DataCon
import Clash.Core.EqSolver
import Clash.Core.FreeVars (tyFVsOfTypes, typeFreeVars, freeLocalIds)
import Clash.Core.Name
(Name (..), OccName, mkUnsafeInternalName, mkUnsafeSystemName)
import Clash.Core.Pretty (showPpr)
import Clash.Core.Subst
import Clash.Core.Term
import Clash.Core.TyCon (TyConMap, tyConDataCons)
import Clash.Core.Type
import Clash.Core.TysPrim (typeNatKind)
import Clash.Core.Var (Id, Var(..), mkLocalId, mkTyVar)
import Clash.Core.VarEnv
import Clash.Debug (traceIf)
import Clash.Unique
import Clash.Util
mkVec :: DataCon
-> DataCon
-> Type
-> Integer
-> [Term]
-> Term
mkVec :: DataCon -> DataCon -> Type -> Integer -> [Term] -> Term
mkVec DataCon
nilCon DataCon
consCon Type
resTy = Integer -> [Term] -> Term
go
where
go :: Integer -> [Term] -> Term
go Integer
_ [] = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
nilCon) [Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
0))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
resTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Type -> Term
primCo Type
nilCoTy)
]
go Integer
n (Term
x:[Term]
xs) = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
consCon) [Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
n))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
resTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Type -> Term
primCo (Integer -> Type
consCoTy Integer
n))
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
x
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Integer -> [Term] -> Term
go (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1) [Term]
xs)]
nilCoTy :: Type
nilCoTy = [Type] -> Type
forall a. [a] -> a
head (Maybe [Type] -> [Type]
forall a. HasCallStack => Maybe a -> a
fromJust (Maybe [Type] -> [Type]) -> Maybe [Type] -> [Type]
forall a b. (a -> b) -> a -> b
$! DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
nilCon [(LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
0))
,Type
resTy])
consCoTy :: Integer -> Type
consCoTy Integer
n = [Type] -> Type
forall a. [a] -> a
head (Maybe [Type] -> [Type]
forall a. HasCallStack => Maybe a -> a
fromJust (Maybe [Type] -> [Type]) -> Maybe [Type] -> [Type]
forall a b. (a -> b) -> a -> b
$! DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
consCon
[(LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
n))
,Type
resTy
,(LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
appendToVec :: DataCon
-> Type
-> Term
-> Integer
-> [Term]
-> Term
appendToVec :: DataCon -> Type -> Term -> Integer -> [Term] -> Term
appendToVec DataCon
consCon Type
resTy Term
vec = Integer -> [Term] -> Term
go
where
go :: Integer -> [Term] -> Term
go Integer
_ [] = Term
vec
go Integer
n (Term
x:[Term]
xs) = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
consCon) [Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
n))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
resTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Type -> Term
primCo (Integer -> Type
consCoTy Integer
n))
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
x
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Integer -> [Term] -> Term
go (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1) [Term]
xs)]
consCoTy :: Integer -> Type
consCoTy Integer
n = [Type] -> Type
forall a. [a] -> a
head (Maybe [Type] -> [Type]
forall a. HasCallStack => Maybe a -> a
fromJust (Maybe [Type] -> [Type]) -> Maybe [Type] -> [Type]
forall a b. (a -> b) -> a -> b
$! DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
consCon
[(LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
n))
,Type
resTy
,(LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
extractElems
:: Supply
-> InScopeSet
-> DataCon
-> Type
-> Char
-> Integer
-> Term
-> (Supply, [(Term,[LetBinding])])
Supply
supply InScopeSet
inScope DataCon
consCon Type
resTy Char
s Integer
maxN Term
vec =
((Supply, InScopeSet) -> Supply)
-> ((Supply, InScopeSet), [(Term, [LetBinding])])
-> (Supply, [(Term, [LetBinding])])
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first (Supply, InScopeSet) -> Supply
forall a b. (a, b) -> a
fst (Integer
-> (Supply, InScopeSet)
-> Term
-> ((Supply, InScopeSet), [(Term, [LetBinding])])
go Integer
maxN (Supply
supply,InScopeSet
inScope) Term
vec)
where
go :: Integer -> (Supply,InScopeSet) -> Term
-> ((Supply,InScopeSet),[(Term,[LetBinding])])
go :: Integer
-> (Supply, InScopeSet)
-> Term
-> ((Supply, InScopeSet), [(Term, [LetBinding])])
go Integer
0 (Supply, InScopeSet)
uniqs Term
_ = ((Supply, InScopeSet)
uniqs,[])
go Integer
n (Supply, InScopeSet)
uniqs0 Term
e =
((Supply, InScopeSet)
uniqs3,(Term
elNVar,[(Id
elNId, Term
lhs),(Id
restNId, Term
rhs)])(Term, [LetBinding])
-> [(Term, [LetBinding])] -> [(Term, [LetBinding])]
forall a. a -> [a] -> [a]
:[(Term, [LetBinding])]
restVs)
where
tys :: [Type]
tys = [(LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
n)),Type
resTy,(LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))]
(Just [Type]
idTys) = DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
consCon [Type]
tys
restTy :: Type
restTy = [Type] -> Type
forall a. [a] -> a
last [Type]
idTys
((Supply, InScopeSet)
uniqs1,TyVar
mTV) = (Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), TyVar)
mkUniqSystemTyVar (Supply, InScopeSet)
uniqs0 (OccName
"m",Type
typeNatKind)
((Supply, InScopeSet)
uniqs2,[Id
elNId,Id
restNId,Id
co,Id
el,Id
rest]) =
((Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), Id))
-> (Supply, InScopeSet)
-> [(OccName, Type)]
-> ((Supply, InScopeSet), [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumR (Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), Id)
mkUniqSystemId (Supply, InScopeSet)
uniqs1 ([(OccName, Type)] -> ((Supply, InScopeSet), [Id]))
-> [(OccName, Type)] -> ((Supply, InScopeSet), [Id])
forall a b. (a -> b) -> a -> b
$ [OccName] -> [Type] -> [(OccName, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip
[OccName
"el" OccName -> OccName -> OccName
`T.append` (Char
s Char -> OccName -> OccName
`T.cons` String -> OccName
T.pack (Integer -> String
forall a. Show a => a -> String
show (Integer
maxNInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
n)))
,OccName
"rest" OccName -> OccName -> OccName
`T.append` (Char
s Char -> OccName -> OccName
`T.cons` String -> OccName
T.pack (Integer -> String
forall a. Show a => a -> String
show (Integer
maxNInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
n)))
,OccName
"_co_"
,OccName
"el"
,OccName
"rest"
]
(Type
resTyType -> [Type] -> [Type]
forall a. a -> [a] -> [a]
:Type
restTyType -> [Type] -> [Type]
forall a. a -> [a] -> [a]
:[Type]
idTys)
elNVar :: Term
elNVar = Id -> Term
Var Id
elNId
pat :: Pat
pat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
consCon [TyVar
mTV] [Id
co,Id
el,Id
rest]
lhs :: Term
lhs = Term -> Type -> [Alt] -> Term
Case Term
e Type
resTy [(Pat
pat,Id -> Term
Var Id
el)]
rhs :: Term
rhs = Term -> Type -> [Alt] -> Term
Case Term
e Type
restTy [(Pat
pat,Id -> Term
Var Id
rest)]
((Supply, InScopeSet)
uniqs3,[(Term, [LetBinding])]
restVs) = Integer
-> (Supply, InScopeSet)
-> Term
-> ((Supply, InScopeSet), [(Term, [LetBinding])])
go (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1) (Supply, InScopeSet)
uniqs2 (Id -> Term
Var Id
restNId)
extractTElems
:: Supply
-> InScopeSet
-> DataCon
-> DataCon
-> Type
-> Char
-> Integer
-> Term
-> (Supply,([Term],[LetBinding]))
Supply
supply InScopeSet
inScope DataCon
lrCon DataCon
brCon Type
resTy Char
s Integer
maxN Term
tree =
((Supply, InScopeSet) -> Supply)
-> ((Supply, InScopeSet), ([Term], [LetBinding]))
-> (Supply, ([Term], [LetBinding]))
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (b, d) (c, d)
first (Supply, InScopeSet) -> Supply
forall a b. (a, b) -> a
fst (Integer
-> [Int]
-> [Int]
-> (Supply, InScopeSet)
-> Term
-> ((Supply, InScopeSet), ([Term], [LetBinding]))
go Integer
maxN [Int
0..(Int
2Int -> Integer -> Int
forall a b. (Num a, Integral b) => a -> b -> a
^(Integer
maxNInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+Integer
1))Int -> Int -> Int
forall a. Num a => a -> a -> a
-Int
2] [Int
0..(Int
2Int -> Integer -> Int
forall a b. (Num a, Integral b) => a -> b -> a
^Integer
maxN Int -> Int -> Int
forall a. Num a => a -> a -> a
- Int
1)] (Supply
supply,InScopeSet
inScope) Term
tree)
where
go :: Integer
-> [Int]
-> [Int]
-> (Supply,InScopeSet)
-> Term
-> ((Supply,InScopeSet),([Term],[LetBinding]))
go :: Integer
-> [Int]
-> [Int]
-> (Supply, InScopeSet)
-> Term
-> ((Supply, InScopeSet), ([Term], [LetBinding]))
go Integer
0 [Int]
_ [Int]
ks (Supply, InScopeSet)
uniqs0 Term
e = ((Supply, InScopeSet)
uniqs1,([Term
elNVar],[(Id
elNId, Term
rhs)]))
where
tys :: [Type]
tys = [LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
0),Type
resTy]
(Just [Type]
idTys) = DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
lrCon [Type]
tys
((Supply, InScopeSet)
uniqs1,[Id
elNId,Id
co,Id
el]) =
((Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), Id))
-> (Supply, InScopeSet)
-> [(OccName, Type)]
-> ((Supply, InScopeSet), [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumR (Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), Id)
mkUniqSystemId (Supply, InScopeSet)
uniqs0 ([(OccName, Type)] -> ((Supply, InScopeSet), [Id]))
-> [(OccName, Type)] -> ((Supply, InScopeSet), [Id])
forall a b. (a -> b) -> a -> b
$ [OccName] -> [Type] -> [(OccName, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip
[ OccName
"el" OccName -> OccName -> OccName
`T.append` (Char
s Char -> OccName -> OccName
`T.cons` String -> OccName
T.pack (Int -> String
forall a. Show a => a -> String
show ([Int] -> Int
forall a. [a] -> a
head [Int]
ks)))
, OccName
"_co_"
, OccName
"el"
]
(Type
resTyType -> [Type] -> [Type]
forall a. a -> [a] -> [a]
:[Type]
idTys)
elNVar :: Term
elNVar = Id -> Term
Var Id
elNId
pat :: Pat
pat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
lrCon [] [Id
co,Id
el]
rhs :: Term
rhs = Term -> Type -> [Alt] -> Term
Case Term
e Type
resTy [(Pat
pat,Id -> Term
Var Id
el)]
go Integer
n [Int]
bs [Int]
ks (Supply, InScopeSet)
uniqs0 Term
e =
((Supply, InScopeSet)
uniqs4
,([Term]
lVars [Term] -> [Term] -> [Term]
forall a. [a] -> [a] -> [a]
++ [Term]
rVars,(Id
ltNId, Term
ltRhs)LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:
(Id
rtNId, Term
rtRhs)LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:
([LetBinding]
lBinds [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++ [LetBinding]
rBinds)))
where
tys :: [Type]
tys = [LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
n),Type
resTy,LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1))]
(Just [Type]
idTys) = DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
brCon [Type]
tys
((Supply, InScopeSet)
uniqs1,TyVar
mTV) = (Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), TyVar)
mkUniqSystemTyVar (Supply, InScopeSet)
uniqs0 (OccName
"m",Type
typeNatKind)
(Int
b0:[Int]
bL,Int
b1:[Int]
bR) = Int -> [Int] -> ([Int], [Int])
forall a. Int -> [a] -> ([a], [a])
splitAt ([Int] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Int]
bs Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2) [Int]
bs
brTy :: Type
brTy = [Type] -> Type
forall a. [a] -> a
last [Type]
idTys
((Supply, InScopeSet)
uniqs2,[Id
ltNId,Id
rtNId,Id
co,Id
lt,Id
rt]) =
((Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), Id))
-> (Supply, InScopeSet)
-> [(OccName, Type)]
-> ((Supply, InScopeSet), [Id])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumR (Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), Id)
mkUniqSystemId (Supply, InScopeSet)
uniqs1 ([(OccName, Type)] -> ((Supply, InScopeSet), [Id]))
-> [(OccName, Type)] -> ((Supply, InScopeSet), [Id])
forall a b. (a -> b) -> a -> b
$ [OccName] -> [Type] -> [(OccName, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip
[OccName
"lt" OccName -> OccName -> OccName
`T.append` (Char
s Char -> OccName -> OccName
`T.cons` String -> OccName
T.pack (Int -> String
forall a. Show a => a -> String
show Int
b0))
,OccName
"rt" OccName -> OccName -> OccName
`T.append` (Char
s Char -> OccName -> OccName
`T.cons` String -> OccName
T.pack (Int -> String
forall a. Show a => a -> String
show Int
b1))
,OccName
"_co_"
,OccName
"lt"
,OccName
"rt"
]
(Type
brTyType -> [Type] -> [Type]
forall a. a -> [a] -> [a]
:Type
brTyType -> [Type] -> [Type]
forall a. a -> [a] -> [a]
:[Type]
idTys)
ltVar :: Term
ltVar = Id -> Term
Var Id
ltNId
rtVar :: Term
rtVar = Id -> Term
Var Id
rtNId
pat :: Pat
pat = DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
brCon [TyVar
mTV] [Id
co,Id
lt,Id
rt]
ltRhs :: Term
ltRhs = Term -> Type -> [Alt] -> Term
Case Term
e Type
brTy [(Pat
pat,Id -> Term
Var Id
lt)]
rtRhs :: Term
rtRhs = Term -> Type -> [Alt] -> Term
Case Term
e Type
brTy [(Pat
pat,Id -> Term
Var Id
rt)]
([Int]
kL,[Int]
kR) = Int -> [Int] -> ([Int], [Int])
forall a. Int -> [a] -> ([a], [a])
splitAt ([Int] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Int]
ks Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2) [Int]
ks
((Supply, InScopeSet)
uniqs3,([Term]
lVars,[LetBinding]
lBinds)) = Integer
-> [Int]
-> [Int]
-> (Supply, InScopeSet)
-> Term
-> ((Supply, InScopeSet), ([Term], [LetBinding]))
go (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1) [Int]
bL [Int]
kL (Supply, InScopeSet)
uniqs2 Term
ltVar
((Supply, InScopeSet)
uniqs4,([Term]
rVars,[LetBinding]
rBinds)) = Integer
-> [Int]
-> [Int]
-> (Supply, InScopeSet)
-> Term
-> ((Supply, InScopeSet), ([Term], [LetBinding]))
go (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1) [Int]
bR [Int]
kR (Supply, InScopeSet)
uniqs3 Term
rtVar
mkRTree :: DataCon
-> DataCon
-> Type
-> Integer
-> [Term]
-> Term
mkRTree :: DataCon -> DataCon -> Type -> Integer -> [Term] -> Term
mkRTree DataCon
lrCon DataCon
brCon Type
resTy = Integer -> [Term] -> Term
go
where
go :: Integer -> [Term] -> Term
go Integer
_ [Term
x] = Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
lrCon) [Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
0))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
resTy
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Type -> Term
primCo Type
lrCoTy)
,Term -> Either Term Type
forall a b. a -> Either a b
Left Term
x
]
go Integer
n [Term]
xs =
let ([Term]
xsL,[Term]
xsR) = Int -> [Term] -> ([Term], [Term])
forall a. Int -> [a] -> ([a], [a])
splitAt ([Term] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Term]
xs Int -> Int -> Int
forall a. Integral a => a -> a -> a
`div` Int
2) [Term]
xs
in Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
brCon) [Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
n))
,Type -> Either Term Type
forall a b. b -> Either a b
Right Type
resTy
,Type -> Either Term Type
forall a b. b -> Either a b
Right (LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Type -> Term
primCo (Integer -> Type
brCoTy Integer
n))
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Integer -> [Term] -> Term
go (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1) [Term]
xsL)
,Term -> Either Term Type
forall a b. a -> Either a b
Left (Integer -> [Term] -> Term
go (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1) [Term]
xsR)]
lrCoTy :: Type
lrCoTy = [Type] -> Type
forall a. [a] -> a
head (Maybe [Type] -> [Type]
forall a. HasCallStack => Maybe a -> a
fromJust (Maybe [Type] -> [Type]) -> Maybe [Type] -> [Type]
forall a b. (a -> b) -> a -> b
$! DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
lrCon [(LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
0))
,Type
resTy])
brCoTy :: Integer -> Type
brCoTy Integer
n = [Type] -> Type
forall a. [a] -> a
head (Maybe [Type] -> [Type]
forall a. HasCallStack => Maybe a -> a
fromJust (Maybe [Type] -> [Type]) -> Maybe [Type] -> [Type]
forall a b. (a -> b) -> a -> b
$! DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys DataCon
brCon
[(LitTy -> Type
LitTy (Integer -> LitTy
NumTy Integer
n))
,Type
resTy
,(LitTy -> Type
LitTy (Integer -> LitTy
NumTy (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
-Integer
1)))])
isSignalType :: TyConMap -> Type -> Bool
isSignalType :: TyConMap -> Type -> Bool
isSignalType TyConMap
tcm Type
ty = HashSet TyConName -> Type -> Bool
go HashSet TyConName
forall a. HashSet a
HashSet.empty Type
ty
where
go :: HashSet TyConName -> Type -> Bool
go HashSet TyConName
tcSeen (Type -> TypeView
tyView -> TyConApp TyConName
tcNm [Type]
args) = case TyConName -> OccName
forall a. Name a -> OccName
nameOcc TyConName
tcNm of
OccName
"Clash.Signal.Internal.Signal" -> Bool
True
OccName
"Clash.Signal.BiSignal.BiSignalIn" -> Bool
True
OccName
"Clash.Signal.Internal.BiSignalOut" -> Bool
True
OccName
_ | TyConName
tcNm TyConName -> HashSet TyConName -> Bool
forall a. (Eq a, Hashable a) => a -> HashSet a -> Bool
`HashSet.member` HashSet TyConName
tcSeen -> Bool
False
| Bool
otherwise -> case TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap TyConName
tcNm TyConMap
tcm of
Just TyCon
tc -> let dcs :: [DataCon]
dcs = TyCon -> [DataCon]
tyConDataCons TyCon
tc
dcInsArgTys :: [Type]
dcInsArgTys = [[Type]] -> [Type]
forall (t :: Type -> Type) a. Foldable t => t [a] -> [a]
concat
([[Type]] -> [Type]) -> [[Type]] -> [Type]
forall a b. (a -> b) -> a -> b
$ (DataCon -> Maybe [Type]) -> [DataCon] -> [[Type]]
forall a b. (a -> Maybe b) -> [a] -> [b]
mapMaybe (DataCon -> [Type] -> Maybe [Type]
`dataConInstArgTys` [Type]
args) [DataCon]
dcs
tcSeen' :: HashSet TyConName
tcSeen' = TyConName -> HashSet TyConName -> HashSet TyConName
forall a. (Eq a, Hashable a) => a -> HashSet a -> HashSet a
HashSet.insert TyConName
tcNm HashSet TyConName
tcSeen
in (Type -> Bool) -> [Type] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
any (HashSet TyConName -> Type -> Bool
go HashSet TyConName
tcSeen') [Type]
dcInsArgTys
Maybe TyCon
Nothing -> Bool -> String -> Bool -> Bool
forall a. Bool -> String -> a -> a
traceIf Bool
True ($(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"isSignalType: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ TyConName -> String
forall a. Show a => a -> String
show TyConName
tcNm
String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
" not found.") Bool
False
go HashSet TyConName
_ Type
_ = Bool
False
isEnable
:: TyConMap
-> Type
-> Bool
isEnable :: TyConMap -> Type -> Bool
isEnable TyConMap
m Type
ty0
| TyConApp (TyConName -> OccName
forall a. Name a -> OccName
nameOcc -> OccName
"Clash.Signal.Internal.Enable") [Type]
_ <- Type -> TypeView
tyView Type
ty0 = Bool
True
| Just Type
ty1 <- TyConMap -> Type -> Maybe Type
coreView1 TyConMap
m Type
ty0 = TyConMap -> Type -> Bool
isEnable TyConMap
m Type
ty1
isEnable TyConMap
_ Type
_ = Bool
False
isClockOrReset
:: TyConMap
-> Type
-> Bool
isClockOrReset :: TyConMap -> Type -> Bool
isClockOrReset TyConMap
m (TyConMap -> Type -> Maybe Type
coreView1 TyConMap
m -> Just Type
ty) = TyConMap -> Type -> Bool
isClockOrReset TyConMap
m Type
ty
isClockOrReset TyConMap
_ (Type -> TypeView
tyView -> TyConApp TyConName
tcNm [Type]
_) = case TyConName -> OccName
forall a. Name a -> OccName
nameOcc TyConName
tcNm of
OccName
"Clash.Signal.Internal.Clock" -> Bool
True
OccName
"Clash.Signal.Internal.Reset" -> Bool
True
OccName
_ -> Bool
False
isClockOrReset TyConMap
_ Type
_ = Bool
False
tyNatSize :: TyConMap
-> Type
-> Except String Integer
tyNatSize :: TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
m (TyConMap -> Type -> Maybe Type
coreView1 TyConMap
m -> Just Type
ty) = TyConMap -> Type -> Except String Integer
tyNatSize TyConMap
m Type
ty
tyNatSize TyConMap
_ (LitTy (NumTy Integer
i)) = Integer -> Except String Integer
forall (m :: Type -> Type) a. Monad m => a -> m a
return Integer
i
tyNatSize TyConMap
_ Type
ty = String -> Except String Integer
forall (m :: Type -> Type) e a. Monad m => e -> ExceptT e m a
throwE (String -> Except String Integer)
-> String -> Except String Integer
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"Cannot reduce to an integer:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Type -> String
forall p. PrettyPrec p => p -> String
showPpr Type
ty
mkUniqSystemTyVar
:: (Supply, InScopeSet)
-> (OccName, Kind)
-> ((Supply, InScopeSet), TyVar)
mkUniqSystemTyVar :: (Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), TyVar)
mkUniqSystemTyVar (Supply
supply,InScopeSet
inScope) (OccName
nm, Type
ki) =
((Supply
supply',InScopeSet -> TyVar -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
inScope TyVar
v'), TyVar
v')
where
(Int
u,Supply
supply') = Supply -> (Int, Supply)
freshId Supply
supply
v :: TyVar
v = Type -> TyName -> TyVar
mkTyVar Type
ki (OccName -> Int -> TyName
forall a. OccName -> Int -> Name a
mkUnsafeSystemName OccName
nm Int
u)
v' :: TyVar
v' = InScopeSet -> TyVar -> TyVar
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope TyVar
v
mkUniqSystemId
:: (Supply, InScopeSet)
-> (OccName, Type)
-> ((Supply,InScopeSet), Id)
mkUniqSystemId :: (Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), Id)
mkUniqSystemId (Supply
supply,InScopeSet
inScope) (OccName
nm, Type
ty) =
((Supply
supply',InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
inScope Id
v'), Id
v')
where
(Int
u,Supply
supply') = Supply -> (Int, Supply)
freshId Supply
supply
v :: Id
v = Type -> TmName -> Id
mkLocalId Type
ty (OccName -> Int -> TmName
forall a. OccName -> Int -> Name a
mkUnsafeSystemName OccName
nm Int
u)
v' :: Id
v' = InScopeSet -> Id -> Id
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope Id
v
mkUniqInternalId
:: (Supply, InScopeSet)
-> (OccName, Type)
-> ((Supply,InScopeSet), Id)
mkUniqInternalId :: (Supply, InScopeSet)
-> (OccName, Type) -> ((Supply, InScopeSet), Id)
mkUniqInternalId (Supply
supply,InScopeSet
inScope) (OccName
nm, Type
ty) =
((Supply
supply',InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
inScope Id
v'), Id
v')
where
(Int
u,Supply
supply') = Supply -> (Int, Supply)
freshId Supply
supply
v :: Id
v = Type -> TmName -> Id
mkLocalId Type
ty (OccName -> Int -> TmName
forall a. OccName -> Int -> Name a
mkUnsafeInternalName OccName
nm Int
u)
v' :: Id
v' = InScopeSet -> Id -> Id
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
inScope Id
v
dataConInstArgTysE
:: HasCallStack
=> InScopeSet
-> TyConMap
-> DataCon
-> [Type]
-> Maybe [Type]
dataConInstArgTysE :: InScopeSet -> TyConMap -> DataCon -> [Type] -> Maybe [Type]
dataConInstArgTysE InScopeSet
is0 TyConMap
tcm (MkData { [Type]
dcArgTys :: DataCon -> [Type]
dcArgTys :: [Type]
dcArgTys, [TyVar]
dcExtTyVars :: DataCon -> [TyVar]
dcExtTyVars :: [TyVar]
dcExtTyVars, [TyVar]
dcUnivTyVars :: DataCon -> [TyVar]
dcUnivTyVars :: [TyVar]
dcUnivTyVars }) [Type]
inst_tys = do
let is1 :: InScopeSet
is1 = InScopeSet -> [TyVar] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [TyVar]
dcExtTyVars
is2 :: InScopeSet
is2 = InScopeSet -> InScopeSet -> InScopeSet
unionInScope InScopeSet
is1 (VarSet -> InScopeSet
mkInScopeSet ([Type] -> VarSet
forall (f :: Type -> Type). Foldable f => f Type -> VarSet
tyFVsOfTypes [Type]
inst_tys))
subst :: Subst
subst = Subst -> [(TyVar, Type)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is2) ([TyVar] -> [Type] -> [(TyVar, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TyVar]
dcUnivTyVars [Type]
inst_tys)
[TyVar] -> [Type] -> Maybe [Type]
go
(HasCallStack => InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substGlobalsInExistentials InScopeSet
is0 [TyVar]
dcExtTyVars ([TyVar] -> [Type] -> [(TyVar, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TyVar]
dcUnivTyVars [Type]
inst_tys))
((Type -> Type) -> [Type] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst) [Type]
dcArgTys)
where
go
:: [TyVar]
-> [Type]
-> Maybe [Type]
go :: [TyVar] -> [Type] -> Maybe [Type]
go [TyVar]
exts0 [Type]
args0 =
let eqs :: [(Type, Type)]
eqs = [Maybe (Type, Type)] -> [(Type, Type)]
forall a. [Maybe a] -> [a]
catMaybes ((Type -> Maybe (Type, Type)) -> [Type] -> [Maybe (Type, Type)]
forall a b. (a -> b) -> [a] -> [b]
map (TyConMap -> Type -> Maybe (Type, Type)
typeEq TyConMap
tcm) [Type]
args0) in
case TyConMap -> [(Type, Type)] -> [(TyVar, Type)]
solveNonAbsurds TyConMap
tcm [(Type, Type)]
eqs of
[] ->
[Type] -> Maybe [Type]
forall a. a -> Maybe a
Just [Type]
args0
[(TyVar, Type)]
sols ->
[TyVar] -> [Type] -> Maybe [Type]
go [TyVar]
exts1 [Type]
args1
where
exts1 :: [TyVar]
exts1 = HasCallStack => InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
InScopeSet -> [TyVar] -> [(TyVar, Type)] -> [TyVar]
substInExistentialsList InScopeSet
is0 [TyVar]
exts0 [(TyVar, Type)]
sols
is2 :: InScopeSet
is2 = InScopeSet -> [TyVar] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [TyVar]
exts1
subst :: Subst
subst = Subst -> [(TyVar, Type)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is2) [(TyVar, Type)]
sols
args1 :: [Type]
args1 = (Type -> Type) -> [Type] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst) [Type]
args0
dataConInstArgTys :: DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys :: DataCon -> [Type] -> Maybe [Type]
dataConInstArgTys (MkData { [Type]
dcArgTys :: [Type]
dcArgTys :: DataCon -> [Type]
dcArgTys, [TyVar]
dcUnivTyVars :: [TyVar]
dcUnivTyVars :: DataCon -> [TyVar]
dcUnivTyVars, [TyVar]
dcExtTyVars :: [TyVar]
dcExtTyVars :: DataCon -> [TyVar]
dcExtTyVars }) [Type]
inst_tys =
let tyvars :: [TyVar]
tyvars = [TyVar]
dcUnivTyVars [TyVar] -> [TyVar] -> [TyVar]
forall a. [a] -> [a] -> [a]
++ [TyVar]
dcExtTyVars in
if [TyVar] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [TyVar]
tyvars Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== [Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Type]
inst_tys then
[Type] -> Maybe [Type]
forall a. a -> Maybe a
Just ((Type -> Type) -> [Type] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (HasCallStack => [TyVar] -> [Type] -> Type -> Type
[TyVar] -> [Type] -> Type -> Type
substTyWith [TyVar]
tyvars [Type]
inst_tys) [Type]
dcArgTys)
else
Maybe [Type]
forall a. Maybe a
Nothing
primCo
:: Type
-> Term
primCo :: Type -> Term
primCo Type
ty = PrimInfo -> Term
Prim (OccName -> Type -> WorkInfo -> PrimInfo
PrimInfo OccName
"_CO_" Type
ty WorkInfo
WorkNever)
undefinedTm
:: Type
-> Term
undefinedTm :: Type -> Term
undefinedTm = Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim (OccName -> Type -> WorkInfo -> PrimInfo
PrimInfo OccName
"Clash.Transformations.undefined" Type
undefinedTy WorkInfo
WorkNever))
substArgTys
:: DataCon
-> [Type]
-> [Type]
substArgTys :: DataCon -> [Type] -> [Type]
substArgTys DataCon
dc [Type]
args =
let univTVs :: [TyVar]
univTVs = DataCon -> [TyVar]
dcUnivTyVars DataCon
dc
extTVs :: [TyVar]
extTVs = DataCon -> [TyVar]
dcExtTyVars DataCon
dc
argsFVs :: VarSet
argsFVs = (VarSet -> VarSet -> VarSet) -> VarSet -> [VarSet] -> VarSet
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' VarSet -> VarSet -> VarSet
unionVarSet VarSet
emptyVarSet
((Type -> VarSet) -> [Type] -> [VarSet]
forall a b. (a -> b) -> [a] -> [b]
map (Getting VarSet Type TyVar -> (TyVar -> VarSet) -> Type -> VarSet
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting VarSet Type TyVar
Fold Type TyVar
typeFreeVars TyVar -> VarSet
forall a. Var a -> VarSet
unitVarSet) [Type]
args)
is :: InScopeSet
is = VarSet -> InScopeSet
mkInScopeSet (VarSet
argsFVs VarSet -> VarSet -> VarSet
`unionVarSet` [TyVar] -> VarSet
forall a. [Var a] -> VarSet
mkVarSet [TyVar]
extTVs)
subst :: Subst
subst = Subst -> [(TyVar, Type)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is) ([TyVar]
univTVs [TyVar] -> [Type] -> [(TyVar, Type)]
forall a b. [a] -> [b] -> [(a, b)]
`zipEqual` [Type]
args)
in (Type -> Type) -> [Type] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst) (DataCon -> [Type]
dcArgTys DataCon
dc)
tyLitShow
:: TyConMap
-> Type
-> Except String String
tyLitShow :: TyConMap -> Type -> Except String String
tyLitShow TyConMap
m (TyConMap -> Type -> Maybe Type
coreView1 TyConMap
m -> Just Type
ty) = TyConMap -> Type -> Except String String
tyLitShow TyConMap
m Type
ty
tyLitShow TyConMap
_ (LitTy (SymTy String
s)) = String -> Except String String
forall (m :: Type -> Type) a. Monad m => a -> m a
return String
s
tyLitShow TyConMap
_ (LitTy (NumTy Integer
s)) = String -> Except String String
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Integer -> String
forall a. Show a => a -> String
show Integer
s)
tyLitShow TyConMap
_ Type
ty = String -> Except String String
forall (m :: Type -> Type) e a. Monad m => e -> ExceptT e m a
throwE (String -> Except String String) -> String -> Except String String
forall a b. (a -> b) -> a -> b
$ $(String
curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"Cannot reduce to a string:\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Type -> String
forall p. PrettyPrec p => p -> String
showPpr Type
ty
shouldSplit
:: TyConMap
-> Type
-> Maybe (Term,[Type])
shouldSplit :: TyConMap -> Type -> Maybe (Term, [Type])
shouldSplit TyConMap
tcm (Type -> TypeView
tyView -> TyConApp (TyConName -> OccName
forall a. Name a -> OccName
nameOcc -> OccName
"Clash.Explicit.SimIO.SimIO") [Type
tyArg]) =
TyConMap -> Type -> Maybe (Term, [Type])
shouldSplit TyConMap
tcm Type
tyArg
shouldSplit TyConMap
tcm Type
ty = TyConMap -> TypeView -> Maybe (Term, [Type])
shouldSplit0 TyConMap
tcm (Type -> TypeView
tyView (TyConMap -> Type -> Type
coreView TyConMap
tcm Type
ty))
shouldSplit0
:: TyConMap
-> TypeView
-> Maybe (Term,[Type])
shouldSplit0 :: TyConMap -> TypeView -> Maybe (Term, [Type])
shouldSplit0 TyConMap
tcm (TyConApp TyConName
tcNm [Type]
tyArgs)
| Just TyCon
tc <- TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap TyConName
tcNm TyConMap
tcm
, [DataCon
dc] <- TyCon -> [DataCon]
tyConDataCons TyCon
tc
, let dcArgs :: [Type]
dcArgs = DataCon -> [Type] -> [Type]
substArgTys DataCon
dc [Type]
tyArgs
, let dcArgVs :: [TypeView]
dcArgVs = (Type -> TypeView) -> [Type] -> [TypeView]
forall a b. (a -> b) -> [a] -> [b]
map (Type -> TypeView
tyView (Type -> TypeView) -> (Type -> Type) -> Type -> TypeView
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Type -> Type
coreView TyConMap
tcm) [Type]
dcArgs
= if (TypeView -> Bool) -> [TypeView] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
any TypeView -> Bool
shouldSplitTy [TypeView]
dcArgVs Bool -> Bool -> Bool
&& Bool -> Bool
not (TyConName -> [Type] -> Bool
forall a. Name a -> [Type] -> Bool
isHidden TyConName
tcNm [Type]
tyArgs) then
(Term, [Type]) -> Maybe (Term, [Type])
forall a. a -> Maybe a
Just (Term -> [Either Term Type] -> Term
mkApps (DataCon -> Term
Data DataCon
dc) ((Type -> Either Term Type) -> [Type] -> [Either Term Type]
forall a b. (a -> b) -> [a] -> [b]
map Type -> Either Term Type
forall a b. b -> Either a b
Right [Type]
tyArgs), [Type]
dcArgs)
else
Maybe (Term, [Type])
forall a. Maybe a
Nothing
where
shouldSplitTy :: TypeView -> Bool
shouldSplitTy :: TypeView -> Bool
shouldSplitTy TypeView
ty = Maybe (Term, [Type]) -> Bool
forall a. Maybe a -> Bool
isJust (TyConMap -> TypeView -> Maybe (Term, [Type])
shouldSplit0 TyConMap
tcm TypeView
ty) Bool -> Bool -> Bool
|| TypeView -> Bool
splitTy TypeView
ty
isHidden :: Name a -> [Type] -> Bool
isHidden :: Name a -> [Type] -> Bool
isHidden Name a
nm [Type
a1, Type
a2] | TyConApp TyConName
a2Nm [Type]
_ <- Type -> TypeView
tyView Type
a2 =
Name a -> OccName
forall a. Name a -> OccName
nameOcc Name a
nm OccName -> OccName -> Bool
forall a. Eq a => a -> a -> Bool
== OccName
"GHC.Classes.(%,%)"
Bool -> Bool -> Bool
&& TypeView -> Bool
splitTy (Type -> TypeView
tyView (Type -> Type
stripIP Type
a1))
Bool -> Bool -> Bool
&& TyConName -> OccName
forall a. Name a -> OccName
nameOcc TyConName
a2Nm OccName -> OccName -> Bool
forall a. Eq a => a -> a -> Bool
== OccName
"Clash.Signal.Internal.KnownDomain"
isHidden Name a
_ [Type]
_ = Bool
False
splitTy :: TypeView -> Bool
splitTy (TyConApp TyConName
tcNm0 [Type]
_)
= TyConName -> OccName
forall a. Name a -> OccName
nameOcc TyConName
tcNm0 OccName -> [OccName] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [ OccName
"Clash.Signal.Internal.Clock"
, OccName
"Clash.Signal.Internal.Reset"
, OccName
"Clash.Signal.Internal.Enable"
, OccName
"Clash.Explicit.SimIO.File"
, OccName
"GHC.IO.Handle.Types.Handle"
]
splitTy TypeView
_ = Bool
False
shouldSplit0 TyConMap
_ TypeView
_ = Maybe (Term, [Type])
forall a. Maybe a
Nothing
splitShouldSplit
:: TyConMap
-> [Type]
-> [Type]
splitShouldSplit :: TyConMap -> [Type] -> [Type]
splitShouldSplit TyConMap
tcm = (Type -> [Type] -> [Type]) -> [Type] -> [Type] -> [Type]
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Type -> [Type] -> [Type]
go []
where
go :: Type -> [Type] -> [Type]
go Type
ty [Type]
rest = case TyConMap -> Type -> Maybe (Term, [Type])
shouldSplit TyConMap
tcm Type
ty of
Just (Term
_,[Type]
tys) -> TyConMap -> [Type] -> [Type]
splitShouldSplit TyConMap
tcm [Type]
tys [Type] -> [Type] -> [Type]
forall a. [a] -> [a] -> [a]
++ [Type]
rest
Maybe (Term, [Type])
Nothing -> Type
ty Type -> [Type] -> [Type]
forall a. a -> [a] -> [a]
: [Type]
rest
stripIP :: Type -> Type
stripIP :: Type -> Type
stripIP t :: Type
t@(Type -> TypeView
tyView -> TyConApp TyConName
tcNm [Type
_a1, Type
a2]) =
if TyConName -> Int
forall a. Name a -> Int
nameUniq TyConName
tcNm Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Unique -> Int
getKey Unique
ipClassKey then Type
a2 else Type
t
stripIP Type
t = Type
t
inverseTopSortLetBindings
:: HasCallStack
=> Term
-> Term
inverseTopSortLetBindings :: Term -> Term
inverseTopSortLetBindings (Letrec [LetBinding]
bndrs0 Term
res) =
let (Graph
graph,Int -> (LetBinding, Int, [Int])
nodeMap,Int -> Maybe Int
_) =
[(LetBinding, Int, [Int])]
-> (Graph, Int -> (LetBinding, Int, [Int]), Int -> Maybe Int)
forall key node.
Ord key =>
[(node, key, [key])]
-> (Graph, Int -> (node, key, [key]), key -> Maybe Int)
Graph.graphFromEdges
((LetBinding -> (LetBinding, Int, [Int]))
-> [LetBinding] -> [(LetBinding, Int, [Int])]
forall a b. (a -> b) -> [a] -> [b]
map (\(Id
i,Term
e) -> let fvs :: [Int]
fvs = (Id -> Int) -> [Id] -> [Int]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap Id -> Int
forall a. Var a -> Int
varUniq
(Set Id -> [Id]
forall a. Set a -> [a]
Set.elems (Getting (Set Id) Term Id -> Term -> Set Id
forall a s. Getting (Set a) s a -> s -> Set a
Lens.setOf Getting (Set Id) Term Id
Fold Term Id
freeLocalIds Term
e) )
in ((Id
i,Term
e),Id -> Int
forall a. Var a -> Int
varUniq Id
i,[Int]
fvs)) [LetBinding]
bndrs0)
nodes :: [Int]
nodes = Graph -> [Int]
postOrd Graph
graph
bndrs1 :: [LetBinding]
bndrs1 = (Int -> LetBinding) -> [Int] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((\(LetBinding
x,Int
_,[Int]
_) -> LetBinding
x) ((LetBinding, Int, [Int]) -> LetBinding)
-> (Int -> (LetBinding, Int, [Int])) -> Int -> LetBinding
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Int -> (LetBinding, Int, [Int])
nodeMap) [Int]
nodes
in [LetBinding] -> Term -> Term
Letrec [LetBinding]
bndrs1 Term
res
where
postOrd :: Graph.Graph -> [Graph.Vertex]
postOrd :: Graph -> [Int]
postOrd Graph
g = Forest Int -> [Int] -> [Int]
forall a. Forest a -> [a] -> [a]
postorderF (Graph -> Forest Int
Graph.dff Graph
g) []
postorderF :: Graph.Forest a -> [a] -> [a]
postorderF :: Forest a -> [a] -> [a]
postorderF Forest a
ts = (([a] -> [a]) -> ([a] -> [a]) -> [a] -> [a])
-> ([a] -> [a]) -> [[a] -> [a]] -> [a] -> [a]
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr ([a] -> [a]) -> ([a] -> [a]) -> [a] -> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
(.) [a] -> [a]
forall a. a -> a
id ((Tree a -> [a] -> [a]) -> Forest a -> [[a] -> [a]]
forall a b. (a -> b) -> [a] -> [b]
map Tree a -> [a] -> [a]
forall a. Tree a -> [a] -> [a]
postorder Forest a
ts)
postorder :: Graph.Tree a -> [a] -> [a]
postorder :: Tree a -> [a] -> [a]
postorder (Graph.Node a
a Forest a
ts) = Forest a -> [a] -> [a]
forall a. Forest a -> [a] -> [a]
postorderF Forest a
ts ([a] -> [a]) -> ([a] -> [a]) -> [a] -> [a]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (a
a a -> [a] -> [a]
forall a. a -> [a] -> [a]
:)
inverseTopSortLetBindings Term
e = Term
e
{-# SCC inverseTopSortLetBindings #-}
sccLetBindings
:: HasCallStack
=> [LetBinding]
-> [Graph.SCC LetBinding]
sccLetBindings :: [LetBinding] -> [SCC LetBinding]
sccLetBindings =
[(LetBinding, Int, [Int])] -> [SCC LetBinding]
forall key node. Ord key => [(node, key, [key])] -> [SCC node]
Graph.stronglyConnComp ([(LetBinding, Int, [Int])] -> [SCC LetBinding])
-> ([LetBinding] -> [(LetBinding, Int, [Int])])
-> [LetBinding]
-> [SCC LetBinding]
forall b c a. (b -> c) -> (a -> b) -> a -> c
.
((LetBinding -> (LetBinding, Int, [Int]))
-> [LetBinding] -> [(LetBinding, Int, [Int])]
forall a b. (a -> b) -> [a] -> [b]
map (\(Id
i,Term
e) -> let fvs :: [Int]
fvs = (Id -> Int) -> [Id] -> [Int]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap Id -> Int
forall a. Var a -> Int
varUniq
(Set Id -> [Id]
forall a. Set a -> [a]
Set.elems (Getting (Set Id) Term Id -> Term -> Set Id
forall a s. Getting (Set a) s a -> s -> Set a
Lens.setOf Getting (Set Id) Term Id
Fold Term Id
freeLocalIds Term
e) )
in ((Id
i,Term
e),Id -> Int
forall a. Var a -> Int
varUniq Id
i,[Int]
fvs)))
{-# SCC sccLetBindings #-}