{-|
  Copyright  :  (C) 2012-2016, University of Twente,
                    2016-2017, Myrtle Software Ltd,
                    2017-2018, Google Inc.
  License    :  BSD2 (see the file LICENSE)
  Maintainer :  Christiaan Baaij <christiaan.baaij@gmail.com>

  Transformations of the Normalization process
-}

{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TemplateHaskell #-}

module Clash.Normalize.Transformations
  ( caseLet
  , caseCon
  , caseCase
  , caseElemNonReachable
  , elemExistentials
  , inlineNonRep
  , inlineOrLiftNonRep
  , typeSpec
  , nonRepSpec
  , etaExpansionTL
  , nonRepANF
  , bindConstantVar
  , constantSpec
  , makeANF
  , deadCode
  , topLet
  , recToLetRec
  , inlineWorkFree
  , inlineHO
  , inlineSmall
  , simpleCSE
  , reduceConst
  , reduceNonRepPrim
  , caseFlat
  , disjointExpressionConsolidation
  , removeUnusedExpr
  , inlineCleanup
  , flattenLet
  , splitCastWork
  , inlineCast
  , caseCast
  , letCast
  , eliminateCastCast
  , argCastSpec
  , etaExpandSyn
  , appPropFast
  , separateArguments
  , separateLambda
  , xOptimize
  )
where

import           Control.Exception           (throw)
import           Control.Lens                (_2)
import qualified Control.Lens                as Lens
import qualified Control.Monad               as Monad
import           Control.Monad.State         (StateT (..), modify)
import           Control.Monad.State.Strict  (evalState)
import           Control.Monad.Writer        (lift, listen)
import           Control.Monad.Trans.Except  (runExcept)
import           Data.Coerce                 (coerce)
import qualified Data.Either                 as Either
import qualified Data.HashMap.Lazy           as HashMap
import qualified Data.HashMap.Strict         as HashMapS
import qualified Data.List                   as List
import           Data.List                   ((\\))
import qualified Data.Maybe                  as Maybe
import qualified Data.Monoid                 as Monoid
import qualified Data.Primitive.ByteArray    as BA
import qualified Data.Text                   as Text
import qualified Data.Vector.Primitive       as PV
import           Debug.Trace
import           GHC.Integer.GMP.Internals   (Integer (..), BigNat (..))

import           BasicTypes                  (InlineSpec (..))

import           Clash.Annotations.Primitive (extractPrim)
import           Clash.Core.DataCon          (DataCon (..))
import           Clash.Core.Name
  (Name (..), NameSort (..), mkUnsafeSystemName, nameOcc)
import           Clash.Core.FreeVars
  (localIdOccursIn, localIdsDoNotOccurIn, freeLocalIds, termFreeTyVars,
   typeFreeVars, localVarsDoNotOccurIn, localIdDoesNotOccurIn,
   countFreeOccurances)
import           Clash.Core.Literal          (Literal (..))
import           Clash.Core.Pretty           (showPpr)
import           Clash.Core.Subst
  (Subst, substTm, mkSubst, extendIdSubst, extendIdSubstList, extendTvSubst,
   extendTvSubstList, freshenTm, substTyInVar, deShadowTerm, deShadowAlt,
   deshadowLetExpr)
import           Clash.Core.Term
  ( LetBinding, Pat (..), Term (..), CoreContext (..), PrimInfo (..)
  , TickInfo(..) , WorkInfo(WorkConstant), Alt, TickInfo
  , isLambdaBodyCtx, isTickCtx, collectArgs
  , collectArgsTicks, collectTicks , partitionTicks
  )
import           Clash.Core.Type             (Type (..), TypeView (..), applyFunTy,
                                              isPolyFunCoreTy, isClassTy,
                                              normalizeType, splitFunForallTy,
                                              splitFunTy,
                                              tyView, mkPolyFunTy, coreView,
                                              LitTy (..), coreView1)
import           Clash.Core.TyCon            (TyConMap, tyConDataCons)
import           Clash.Core.Util
  (isCon, isFun, isLet, isPolyFun, isPrim,
   isSignalType, isVar, mkApps, mkLams, mkVec, piResultTy, termSize, termType,
   tyNatSize, patVars, isAbsurdAlt, altEqs, substInExistentialsList,
   solveNonAbsurds, patIds, isLocalVar, undefinedTm, stripTicks, mkTicks,
   shouldSplit, inverseTopSortLetBindings)
import           Clash.Core.Var
  (Id, TyVar, Var (..), isGlobalId, isLocalId, mkLocalId)
import           Clash.Core.VarEnv
  (InScopeSet, VarEnv, VarSet, elemVarSet,
   emptyVarEnv, extendInScopeSet, extendInScopeSetList, lookupVarEnv,
   notElemVarSet, unionVarEnvWith, unionInScope, unitVarEnv,
   unitVarSet, mkVarSet, mkInScopeSet, uniqAway, elemInScopeSet, elemVarEnv,
   foldlWithUniqueVarEnv', lookupVarEnvDirectly, extendVarEnv, unionVarEnv,
   eltsVarEnv, mkVarEnv, eltsVarSet)
import           Clash.Driver.Types          (Binding(..), DebugLevel (..))
import           Clash.Netlist.BlackBox.Types (Element(Err))
import           Clash.Netlist.BlackBox.Util (getUsedArguments)
import           Clash.Netlist.Types         (BlackBox(..), HWType (..), FilteredHWType(..))
import           Clash.Netlist.Util
  (coreTypeToHWType, representableType, splitNormalized, bindsExistentials)
import           Clash.Normalize.DEC
import           Clash.Normalize.PrimitiveReductions
import           Clash.Normalize.Types
import           Clash.Normalize.Util
import           Clash.Primitives.Types
  (Primitive(..), TemplateKind(TExpr), CompiledPrimMap, UsedArguments(..))
import           Clash.Rewrite.Combinators
import           Clash.Rewrite.Types
import           Clash.Rewrite.Util
import           Clash.Unique                (Unique, lookupUniqMap)
import           Clash.Util

inlineOrLiftNonRep :: HasCallStack => NormRewrite
inlineOrLiftNonRep :: NormRewrite
inlineOrLiftNonRep ctx :: TransformContext
ctx eLet :: Term
eLet@(Letrec _ body :: Term
body) =
    (LetBinding -> RewriteMonad NormalizeState Bool)
-> (Term -> LetBinding -> Bool) -> NormRewrite
forall extra.
(LetBinding -> RewriteMonad extra Bool)
-> (Term -> LetBinding -> Bool) -> Rewrite extra
inlineOrLiftBinders LetBinding -> RewriteMonad NormalizeState Bool
forall extra. LetBinding -> RewriteMonad extra Bool
nonRepTest Term -> LetBinding -> Bool
inlineTest TransformContext
ctx Term
eLet
  where
    bodyFreeOccs :: VarEnv Int
bodyFreeOccs = Term -> VarEnv Int
countFreeOccurances Term
body

    nonRepTest :: (Id, Term) -> RewriteMonad extra Bool
    nonRepTest :: LetBinding -> RewriteMonad extra Bool
nonRepTest (Id {varType :: forall a. Var a -> Kind
varType = Kind
ty}, _)
      = Bool -> Bool
not (Bool -> Bool)
-> RewriteMonad extra Bool -> RewriteMonad extra Bool
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ((CustomReprs
 -> TyConMap
 -> Kind
 -> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool
representableType ((CustomReprs
  -> TyConMap
  -> Kind
  -> State HWMap (Maybe (Either String FilteredHWType)))
 -> CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad
     extra
     (CustomReprs
      -> TyConMap
      -> Kind
      -> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
     extra (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
     extra
     (CustomReprs
      -> TyConMap
      -> Kind
      -> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
                                   RewriteMonad
  extra (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad extra CustomReprs
-> RewriteMonad extra (Bool -> TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad extra CustomReprs
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
                                   RewriteMonad extra (Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad extra Bool
-> RewriteMonad extra (TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad extra Bool
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Bool
False
                                   RewriteMonad extra (TyConMap -> Kind -> Bool)
-> RewriteMonad extra TyConMap -> RewriteMonad extra (Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
                                   RewriteMonad extra (Kind -> Bool)
-> RewriteMonad extra Kind -> RewriteMonad extra Bool
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Kind -> RewriteMonad extra Kind
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Kind
ty)
    nonRepTest _ = Bool -> RewriteMonad extra Bool
forall (m :: Type -> Type) a. Monad m => a -> m a
return Bool
False

    inlineTest :: Term -> (Id, Term) -> Bool
    inlineTest :: Term -> LetBinding -> Bool
inlineTest e :: Term
e (id_ :: Id
id_, e' :: Term
e') =
      -- We do __NOT__ inline:
      Bool -> Bool
not (Bool -> Bool) -> Bool -> Bool
forall a b. (a -> b) -> a -> b
$ [Bool] -> Bool
forall (t :: Type -> Type). Foldable t => t Bool -> Bool
or
        [ -- 1. recursive let-binders
          -- id_ `localIdOccursIn` e' -- <= already checked in inlineOrLiftBinders
          -- 2. join points (which are not void-wrappers)
          Id -> Term -> Bool
isJoinPointIn Id
id_ Term
e Bool -> Bool -> Bool
&& Bool -> Bool
not (Term -> Bool
isVoidWrapper Term
e')
          -- 3. binders that are used more than once in the body, because
          --    it makes CSE a whole lot more difficult.
          --
          -- XXX: Check whether we can extend this to the binders as well
        , Bool -> (Int -> Bool) -> Maybe Int -> Bool
forall b a. b -> (a -> b) -> Maybe a -> b
maybe Bool
False (Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
>1) (Id -> VarEnv Int -> Maybe Int
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
id_ VarEnv Int
bodyFreeOccs)
        ]

inlineOrLiftNonRep _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC inlineOrLiftNonRep #-}

{- [Note] join points and void wrappers
Join points are functions that only occur in tail-call positions within an
expression, and only when they occur in a tail-call position more than once.

Normally bindNonRep binds/inlines all non-recursive local functions. However,
doing so for join points would significantly increase compilation time, so we
avoid it. The only exception to this rule are so-called void wrappers. Void
wrappers are functions of the form:

> \(w :: Void) -> f a b c

i.e. a wrapper around the function 'f' where the argument 'w' is not used. We
do bind/line these join-points because these void-wrappers interfere with the
'disjoint expression consolidation' (DEC) and 'common sub-expression elimination'
(CSE) transformation, sometimes resulting in circuits that are twice as big
as they'd need to be.
-}

-- | Specialize functions on their type
typeSpec :: HasCallStack => NormRewrite
typeSpec :: NormRewrite
typeSpec ctx :: TransformContext
ctx e :: Term
e@(TyApp e1 :: Term
e1 ty :: Kind
ty)
  | (Var {},  args :: [Either Term Kind]
args) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e1
  , [TyVar] -> Bool
forall (t :: Type -> Type) a. Foldable t => t a -> Bool
null ([TyVar] -> Bool) -> [TyVar] -> Bool
forall a b. (a -> b) -> a -> b
$ Getting (Endo [TyVar]) Kind TyVar -> Kind -> [TyVar]
forall a s. Getting (Endo [a]) s a -> s -> [a]
Lens.toListOf Getting (Endo [TyVar]) Kind TyVar
Fold Kind TyVar
typeFreeVars Kind
ty
  , (_, []) <- [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
  = NormRewrite
specializeNorm TransformContext
ctx Term
e

typeSpec _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC typeSpec #-}

-- | Specialize functions on their non-representable argument
nonRepSpec :: HasCallStack => NormRewrite
nonRepSpec :: NormRewrite
nonRepSpec ctx :: TransformContext
ctx e :: Term
e@(App e1 :: Term
e1 e2 :: Term
e2)
  | (Var {}, args :: [Either Term Kind]
args) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e1
  , (_, [])     <- [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
  , [TyVar] -> Bool
forall (t :: Type -> Type) a. Foldable t => t a -> Bool
null ([TyVar] -> Bool) -> [TyVar] -> Bool
forall a b. (a -> b) -> a -> b
$ Getting (Endo [TyVar]) Term TyVar -> Term -> [TyVar]
forall a s. Getting (Endo [a]) s a -> s -> [a]
Lens.toListOf Getting (Endo [TyVar]) Term TyVar
Fold Term TyVar
termFreeTyVars Term
e2
  = do TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
       let e2Ty :: Kind
e2Ty = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e2
       let localVar :: Bool
localVar = Term -> Bool
isLocalVar Term
e2
       Bool
nonRepE2 <- Bool -> Bool
not (Bool -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ((CustomReprs
 -> TyConMap
 -> Kind
 -> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool
representableType ((CustomReprs
  -> TyConMap
  -> Kind
  -> State HWMap (Maybe (Either String FilteredHWType)))
 -> CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad
     NormalizeState
     (CustomReprs
      -> TyConMap
      -> Kind
      -> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
     NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
     NormalizeState
     (CustomReprs
      -> TyConMap
      -> Kind
      -> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
                                              RewriteMonad
  NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState CustomReprs
-> RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad NormalizeState CustomReprs
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
                                              RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Bool
False
                                              RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState TyConMap
-> RewriteMonad NormalizeState (Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
                                              RewriteMonad NormalizeState (Kind -> Bool)
-> RewriteMonad NormalizeState Kind
-> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Kind -> RewriteMonad NormalizeState Kind
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Kind
e2Ty)
       if Bool
nonRepE2 Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
localVar
         then do
           Term
e2' <- Term -> RewriteMonad NormalizeState Term
inlineInternalSpecialisationArgument Term
e2
           NormRewrite
specializeNorm TransformContext
ctx (Term -> Term -> Term
App Term
e1 Term
e2')
         else Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
  where
    -- | If the argument on which we're specialising ia an internal function,
    -- one created by the compiler, then inline that function before we
    -- specialise.
    --
    -- We need to do this because otherwise the specialisation history won't
    -- recognize the new specialisation argument as something the function has
    -- already been specialized on
    inlineInternalSpecialisationArgument
      :: Term
      -> NormalizeSession Term
    inlineInternalSpecialisationArgument :: Term -> RewriteMonad NormalizeState Term
inlineInternalSpecialisationArgument app :: Term
app
      | (Var f :: Id
f,fArgs :: [Either Term Kind]
fArgs,ticks :: [TickInfo]
ticks) <- Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
app
      = do
        Maybe Binding
fTmM <- Id -> VarEnv Binding -> Maybe Binding
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f (VarEnv Binding -> Maybe Binding)
-> RewriteMonad NormalizeState (VarEnv Binding)
-> RewriteMonad NormalizeState (Maybe Binding)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
-> RewriteMonad NormalizeState (VarEnv Binding)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
forall extra. Lens' (RewriteState extra) (VarEnv Binding)
bindings
        case Maybe Binding
fTmM of
          Just b :: Binding
b
            | Name Term -> NameSort
forall a. Name a -> NameSort
nameSort (Id -> Name Term
forall a. Var a -> Name a
varName (Binding -> Id
bindingId Binding
b)) NameSort -> NameSort -> Bool
forall a. Eq a => a -> a -> Bool
== NameSort
Internal
            -> (Any -> Any)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall extra a.
(Any -> Any) -> RewriteMonad extra a -> RewriteMonad extra a
censor (Any -> Any -> Any
forall a b. a -> b -> a
const Any
forall a. Monoid a => a
mempty)
                      (NormRewrite -> NormRewrite
forall m. Rewrite m -> Rewrite m
topdownR HasCallStack => NormRewrite
NormRewrite
appPropFast TransformContext
ctx
                        (Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (Binding -> Term
bindingTerm Binding
b) [TickInfo]
ticks) [Either Term Kind]
fArgs))
          _ -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
app
      | Bool
otherwise = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
app

nonRepSpec _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC nonRepSpec #-}

-- | Lift the let-bindings out of the subject of a Case-decomposition
caseLet :: HasCallStack => NormRewrite
caseLet :: NormRewrite
caseLet (TransformContext is0 :: InScopeSet
is0 _) (Case (Term -> (Term, [TickInfo])
collectTicks -> (Letrec xes :: [LetBinding]
xes e :: Term
e,ticks :: [TickInfo]
ticks)) ty :: Kind
ty alts :: [Alt]
alts) = do
  -- Note [CaseLet deshadow]
  -- Imagine
  --
  -- @
  -- case (let x = u in e) of {p -> a}
  -- @
  --
  -- where `a` has a free variable named `x`.
  --
  -- Simply transforming the above to:
  --
  -- @
  -- let x = u in case e of {p -> a}
  -- @
  --
  -- would be very bad, because now the let-binding captures the free x variable
  -- in a.
  --
  -- We must therefor rename `x` so that it doesn't capture the free variables
  -- in the alternative:
  --
  -- @
  -- let x1 = u[x:=x1] in case e[x:=x1] of {p -> a}
  -- @
  --
  -- It is safe to over-approximate the free variables in `a` by simply taking
  -- the current InScopeSet.
  let (xes1 :: [LetBinding]
xes1,e1 :: Term
e1) = HasCallStack =>
InScopeSet -> [LetBinding] -> Term -> ([LetBinding], Term)
InScopeSet -> [LetBinding] -> Term -> ([LetBinding], Term)
deshadowLetExpr InScopeSet
is0 [LetBinding]
xes Term
e
  Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec ((LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks)) [LetBinding]
xes1)
                  (Term -> Kind -> [Alt] -> Term
Case (Term -> [TickInfo] -> Term
mkTicks Term
e1 [TickInfo]
ticks) Kind
ty [Alt]
alts))

caseLet _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC caseLet #-}

-- | Remove non-reachable alternatives. For example, consider:
--
--    data STy ty where
--      SInt :: Int -> STy Int
--      SBool :: Bool -> STy Bool
--
--    f :: STy ty -> ty
--    f (SInt b) = b + 1
--    f (SBool True) = False
--    f (SBool False) = True
--    {-# NOINLINE f #-}
--
--    g :: STy Int -> Int
--    g = f
--
-- @f@ is always specialized on @STy Int@. The SBool alternatives are therefore
-- unreachable. Additional information can be found at:
-- https://github.com/clash-lang/clash-compiler/pull/465
caseElemNonReachable :: HasCallStack => NormRewrite
caseElemNonReachable :: NormRewrite
caseElemNonReachable _ case0 :: Term
case0@(Case scrut :: Term
scrut altsTy :: Kind
altsTy alts0 :: [Alt]
alts0) = do
  TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache

  let (altsAbsurd :: [Alt]
altsAbsurd, altsOther :: [Alt]
altsOther) = (Alt -> Bool) -> [Alt] -> ([Alt], [Alt])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition (TyConMap -> Alt -> Bool
isAbsurdAlt TyConMap
tcm) [Alt]
alts0
  case [Alt]
altsAbsurd of
    [] -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
case0
    _  -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a b. Monad m => (a -> m b) -> m a -> m b
=<< Term -> RewriteMonad NormalizeState Term
forall extra. Term -> RewriteMonad extra Term
caseOneAlt (Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
altsTy [Alt]
altsOther)

caseElemNonReachable _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC caseElemNonReachable #-}

-- | Tries to eliminate existentials by using heuristics to determine what the
-- existential should be. For example, consider Vec:
--
--    data Vec :: Nat -> Type -> Type where
--      Nil       :: Vec 0 a
--      Cons x xs :: a -> Vec n a -> Vec (n + 1) a
--
-- Thus, 'null' (annotated with existentials) could look like:
--
--    null :: forall n . Vec n Bool -> Bool
--    null v =
--      case v of
--        Nil  {n ~ 0}                                     -> True
--        Cons {n1:Nat} {n~n1+1} (x :: a) (xs :: Vec n1 a) -> False
--
-- When it's applied to a vector of length 5, this becomes:
--
--    null :: Vec 5 Bool -> Bool
--    null v =
--      case v of
--        Nil  {5 ~ 0}                                     -> True
--        Cons {n1:Nat} {5~n1+1} (x :: a) (xs :: Vec n1 a) -> False
--
-- This function solves 'n1' and replaces every occurrence with its solution. A
-- very limited number of solutions are currently recognized: only adds (such
-- as in the example) will be solved.
elemExistentials :: HasCallStack => NormRewrite
elemExistentials :: NormRewrite
elemExistentials (TransformContext is0 :: InScopeSet
is0 _) (Case scrut :: Term
scrut altsTy :: Kind
altsTy alts0 :: [Alt]
alts0) = do
  TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache

  [Alt]
alts1 <- (Alt -> RewriteMonad NormalizeState Alt)
-> [Alt] -> RewriteMonad NormalizeState [Alt]
forall (t :: Type -> Type) (m :: Type -> Type) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet -> TyConMap -> Alt -> RewriteMonad NormalizeState Alt
go InScopeSet
is0 TyConMap
tcm) [Alt]
alts0
  Term -> RewriteMonad NormalizeState Term
forall extra. Term -> RewriteMonad extra Term
caseOneAlt (Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
altsTy [Alt]
alts1)

 where
    -- Eliminate free type variables if possible
    go :: InScopeSet -> TyConMap -> (Pat, Term) -> NormalizeSession (Pat, Term)
    go :: InScopeSet -> TyConMap -> Alt -> RewriteMonad NormalizeState Alt
go is2 :: InScopeSet
is2 tcm :: TyConMap
tcm alt :: Alt
alt@(DataPat dc :: DataCon
dc exts0 :: [TyVar]
exts0 xs0 :: [Id]
xs0, term0 :: Term
term0) =
      case TyConMap -> [(Kind, Kind)] -> [(TyVar, Kind)]
solveNonAbsurds TyConMap
tcm (TyConMap -> Alt -> [(Kind, Kind)]
altEqs TyConMap
tcm Alt
alt) of
        -- No equations solved:
        [] -> Alt -> RewriteMonad NormalizeState Alt
forall (m :: Type -> Type) a. Monad m => a -> m a
return Alt
alt
        -- One or more equations solved:
        sols :: [(TyVar, Kind)]
sols ->
          Alt -> RewriteMonad NormalizeState Alt
forall a extra. a -> RewriteMonad extra a
changed (Alt -> RewriteMonad NormalizeState Alt)
-> RewriteMonad NormalizeState Alt
-> RewriteMonad NormalizeState Alt
forall (m :: Type -> Type) a b. Monad m => (a -> m b) -> m a -> m b
=<< InScopeSet -> TyConMap -> Alt -> RewriteMonad NormalizeState Alt
go InScopeSet
is2 TyConMap
tcm (DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
exts1 [Id]
xs1, Term
term1)
          where
            -- Substitute solution in existentials and applied types
            is3 :: InScopeSet
is3   = InScopeSet -> [TyVar] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is2 [TyVar]
exts0
            xs1 :: [Id]
xs1   = (Id -> Id) -> [Id] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map (Subst -> Id -> Id
forall a. HasCallStack => Subst -> Var a -> Var a
substTyInVar (Subst -> [(TyVar, Kind)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is3) [(TyVar, Kind)]
sols)) [Id]
xs0
            exts1 :: [TyVar]
exts1 = HasCallStack => InScopeSet -> [TyVar] -> [(TyVar, Kind)] -> [TyVar]
InScopeSet -> [TyVar] -> [(TyVar, Kind)] -> [TyVar]
substInExistentialsList InScopeSet
is2 [TyVar]
exts0 [(TyVar, Kind)]
sols

            -- Substitute solution in term.
            is4 :: InScopeSet
is4       = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is3 [Id]
xs1
            subst :: Subst
subst     = Subst -> [(TyVar, Kind)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is4) [(TyVar, Kind)]
sols
            term1 :: Term
term1     = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "Replacing tyVar due to solved eq" Subst
subst Term
term0

    go _ _ alt :: Alt
alt = Alt -> RewriteMonad NormalizeState Alt
forall (m :: Type -> Type) a. Monad m => a -> m a
return Alt
alt

elemExistentials _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC elemExistentials #-}

-- | Move a Case-decomposition from the subject of a Case-decomposition to the alternatives
caseCase :: HasCallStack => NormRewrite
caseCase :: NormRewrite
caseCase (TransformContext is0 :: InScopeSet
is0 _) e :: Term
e@(Case (Term -> Term
stripTicks -> Case scrut :: Term
scrut alts1Ty :: Kind
alts1Ty alts1 :: [Alt]
alts1) alts2Ty :: Kind
alts2Ty alts2 :: [Alt]
alts2)
  = do
    Bool
ty1Rep <- (CustomReprs
 -> TyConMap
 -> Kind
 -> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool
representableType ((CustomReprs
  -> TyConMap
  -> Kind
  -> State HWMap (Maybe (Either String FilteredHWType)))
 -> CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad
     NormalizeState
     (CustomReprs
      -> TyConMap
      -> Kind
      -> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
     NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
     NormalizeState
     (CustomReprs
      -> TyConMap
      -> Kind
      -> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
                                RewriteMonad
  NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState CustomReprs
-> RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad NormalizeState CustomReprs
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
                                RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Bool
False
                                RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState TyConMap
-> RewriteMonad NormalizeState (Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
                                RewriteMonad NormalizeState (Kind -> Bool)
-> RewriteMonad NormalizeState Kind
-> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Kind -> RewriteMonad NormalizeState Kind
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Kind
alts1Ty
    if Bool -> Bool
not Bool
ty1Rep
      -- Deshadow to prevent accidental capture of free variables of inner
      -- case. Imagine:
      --
      --   case (case a of {x -> x}) of {_ -> x}
      --
      -- 'x' is introduced the inner 'case' and used (as a free variable) in
      -- the outer one. The goal of 'caseCase' is to rewrite cases such that
      -- their subjects aren't cases. This is achieved by 'pushing' the outer
      -- case to all the alternatives of the inner one. Naively doing so in
      -- this example would cause an accidental capture:
      --
      --   case a of {x -> case x of {_ -> x}}
      --
      -- Suddenly, the 'x' in the alternative of the inner case statement
      -- refers to the one introduced by the outer one, instead of being a
      -- free variable. To prevent this, we deshadow the alternatives of the
      -- original inner case. We now end up with:
      --
      --   case a of {x1 -> case x1 of {_ -> x}}
      --
      then let newAlts :: [Alt]
newAlts = (Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map
                           ((Term -> Term) -> Alt -> Alt
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (\altE :: Term
altE -> Term -> Kind -> [Alt] -> Term
Case Term
altE Kind
alts2Ty [Alt]
alts2))
                           ((Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map (HasCallStack => InScopeSet -> Alt -> Alt
InScopeSet -> Alt -> Alt
deShadowAlt InScopeSet
is0) [Alt]
alts1)
           in  Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
alts2Ty [Alt]
newAlts
      else Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

caseCase _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC caseCase #-}

-- | Inline function with a non-representable result if it's the subject
-- of a Case-decomposition
inlineNonRep :: HasCallStack => NormRewrite
inlineNonRep :: NormRewrite
inlineNonRep _ e :: Term
e@(Case scrut :: Term
scrut altsTy :: Kind
altsTy alts :: [Alt]
alts)
  | (Var f :: Id
f, args :: [Either Term Kind]
args,ticks :: [TickInfo]
ticks) <- Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
scrut
  , Id -> Bool
forall a. Var a -> Bool
isGlobalId Id
f
  = do
    (cf :: Id
cf,_)    <- Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
-> RewriteMonad NormalizeState (Id, SrcSpan)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
forall extra. Lens' (RewriteState extra) (Id, SrcSpan)
curFun
    Maybe Int
isInlined <- State NormalizeState (Maybe Int)
-> RewriteMonad NormalizeState (Maybe Int)
forall extra a. State extra a -> RewriteMonad extra a
zoomExtra (Id -> Id -> State NormalizeState (Maybe Int)
alreadyInlined Id
f Id
cf)
    Int
limit     <- Getting Int (RewriteState NormalizeState) Int
-> RewriteMonad NormalizeState Int
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use ((NormalizeState -> Const Int NormalizeState)
-> RewriteState NormalizeState
-> Const Int (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState -> Const Int NormalizeState)
 -> RewriteState NormalizeState
 -> Const Int (RewriteState NormalizeState))
-> ((Int -> Const Int Int)
    -> NormalizeState -> Const Int NormalizeState)
-> Getting Int (RewriteState NormalizeState) Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Int -> Const Int Int)
-> NormalizeState -> Const Int NormalizeState
Lens' NormalizeState Int
inlineLimit)
    TyConMap
tcm       <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
    let scrutTy :: Kind
scrutTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
scrut
        noException :: Bool
noException = Bool -> Bool
not (TyConMap -> Kind -> Bool
exception TyConMap
tcm Kind
scrutTy)
    if Bool
noException Bool -> Bool -> Bool
&& (Int -> Maybe Int -> Int
forall a. a -> Maybe a -> a
Maybe.fromMaybe 0 Maybe Int
isInlined) Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
limit
      then
        String
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall a. String -> a -> a
trace ([String] -> String
forall (t :: Type -> Type) a. Foldable t => t [a] -> [a]
concat [ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "InlineNonRep: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
f)
                      ," already inlined " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
limit String -> String -> String
forall a. [a] -> [a] -> [a]
++ " times in:"
                      , Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
cf)
                      , "\nType of the subject is: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Kind -> String
forall p. PrettyPrec p => p -> String
showPpr Kind
scrutTy
                      , "\nFunction " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
cf)
                      , " will not reach a normal form, and compilation"
                      , " might fail."
                      , "\nRun with '-fclash-inline-limit=N' to increase"
                      , " the inlining limit to N."
                      ])
              (Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e)
      else do
        Maybe Binding
bodyMaybe   <- Id -> VarEnv Binding -> Maybe Binding
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f (VarEnv Binding -> Maybe Binding)
-> RewriteMonad NormalizeState (VarEnv Binding)
-> RewriteMonad NormalizeState (Maybe Binding)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
-> RewriteMonad NormalizeState (VarEnv Binding)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
forall extra. Lens' (RewriteState extra) (VarEnv Binding)
bindings
        Bool
nonRepScrut <- Bool -> Bool
not (Bool -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ((CustomReprs
 -> TyConMap
 -> Kind
 -> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool
representableType ((CustomReprs
  -> TyConMap
  -> Kind
  -> State HWMap (Maybe (Either String FilteredHWType)))
 -> CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad
     NormalizeState
     (CustomReprs
      -> TyConMap
      -> Kind
      -> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
     NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
     NormalizeState
     (CustomReprs
      -> TyConMap
      -> Kind
      -> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
                                                  RewriteMonad
  NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState CustomReprs
-> RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad NormalizeState CustomReprs
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
                                                  RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Bool
False
                                                  RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState TyConMap
-> RewriteMonad NormalizeState (Kind -> Bool)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
                                                  RewriteMonad NormalizeState (Kind -> Bool)
-> RewriteMonad NormalizeState Kind
-> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Kind -> RewriteMonad NormalizeState Kind
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Kind
scrutTy)
        case (Bool
nonRepScrut, Maybe Binding
bodyMaybe) of
          (True,Just b :: Binding
b) -> do
            Bool
-> RewriteMonad NormalizeState () -> RewriteMonad NormalizeState ()
forall (f :: Type -> Type). Applicative f => Bool -> f () -> f ()
Monad.when Bool
noException (State NormalizeState () -> RewriteMonad NormalizeState ()
forall extra a. State extra a -> RewriteMonad extra a
zoomExtra (Id -> Id -> State NormalizeState ()
addNewInline Id
f Id
cf))

            let scrutBody0 :: Term
scrutBody0 = Term -> [TickInfo] -> Term
mkTicks (Binding -> Term
bindingTerm Binding
b) (Id -> TickInfo
mkInlineTick Id
f TickInfo -> [TickInfo] -> [TickInfo]
forall a. a -> [a] -> [a]
: [TickInfo]
ticks)
            let scrutBody1 :: Term
scrutBody1 = Term -> [Either Term Kind] -> Term
mkApps Term
scrutBody0 [Either Term Kind]
args

            Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> Kind -> [Alt] -> Term
Case Term
scrutBody1 Kind
altsTy [Alt]
alts

          _ -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
  where
    exception :: TyConMap -> Kind -> Bool
exception = TyConMap -> Kind -> Bool
isClassTy

inlineNonRep _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC inlineNonRep #-}

-- | Specialize a Case-decomposition (replace by the RHS of an alternative) if
-- the subject is (an application of) a DataCon; or if there is only a single
-- alternative that doesn't reference variables bound by the pattern.
--
-- Note [CaseCon deshadow]
--
-- Imagine:
--
-- @
-- case D (f a b) (g x y) of
--   D a b -> h a
-- @
--
-- rewriting this to:
--
-- @
-- let a = f a b
-- in  h a
-- @
--
-- is very bad because the newly introduced let-binding now captures the free
-- variable 'a' in 'f a b'.
--
-- instead me must rewrite to:
--
-- @
-- let a1 = f a b
-- in  h a1
-- @
caseCon :: HasCallStack => NormRewrite
caseCon :: NormRewrite
caseCon ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) e :: Term
e@(Case subj :: Term
subj ty :: Kind
ty alts :: [Alt]
alts) = do
 TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
 case Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
subj of
  -- The subject is an applied data constructor
  (Data dc :: DataCon
dc, args :: [Either Term Kind]
args, ticks :: [TickInfo]
ticks) -> case (Alt -> Bool) -> [Alt] -> Maybe Alt
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Maybe a
List.find (Pat -> Bool
equalCon (Pat -> Bool) -> (Alt -> Pat) -> Alt -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Pat
forall a b. (a, b) -> a
fst) [Alt]
alts of
    Just (DataPat _ tvs :: [TyVar]
tvs xs :: [Id]
xs, altE :: Term
altE) -> do
      let is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList (InScopeSet -> [TyVar] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [TyVar]
tvs) [Id]
xs
      let fvs :: UniqSet (Var Any)
fvs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
altE
          (binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
                    ([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs ([Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args)
          binds1 :: [LetBinding]
binds1 = (LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks)) [LetBinding]
binds
          altE1 :: Term
altE1 = case [LetBinding]
binds1 of
            [] -> Term
altE
            _  ->
              -- See Note [CaseCon deshadow]
              let
                ((is3 :: InScopeSet
is3,substIds :: [LetBinding]
substIds),binds2 :: [Maybe LetBinding]
binds2) = ((InScopeSet, [LetBinding])
 -> LetBinding -> ((InScopeSet, [LetBinding]), Maybe LetBinding))
-> (InScopeSet, [LetBinding])
-> [LetBinding]
-> ((InScopeSet, [LetBinding]), [Maybe LetBinding])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL (InScopeSet, [LetBinding])
-> LetBinding -> ((InScopeSet, [LetBinding]), Maybe LetBinding)
newBinder (InScopeSet
is1,[]) [LetBinding]
binds1
                subst :: Subst
subst = Subst -> [LetBinding] -> Subst
extendIdSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is3) [LetBinding]
substIds
                body :: Term
body  = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "caseCon0" Subst
subst Term
altE
              in
                case [Maybe LetBinding] -> [LetBinding]
forall a. [Maybe a] -> [a]
Maybe.catMaybes [Maybe LetBinding]
binds2 of
                  []     -> Term
body
                  binds3 :: [LetBinding]
binds3 -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds3 Term
body
      -- Use the original inScopeSet 'is0' here, not the extended inScopeSet
      -- 'is1', otherwise we'd make the "caseCon1" substitution substitute
      -- free variables that were shadowed by the pattern!
      let subst :: Subst
subst = Subst -> [(TyVar, Kind)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is0)
                ([(TyVar, Kind)] -> Subst) -> [(TyVar, Kind)] -> Subst
forall a b. (a -> b) -> a -> b
$ [TyVar] -> [Kind] -> [(TyVar, Kind)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TyVar]
tvs (Int -> [Kind] -> [Kind]
forall a. Int -> [a] -> [a]
drop ([TyVar] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length (DataCon -> [TyVar]
dcUnivTyVars DataCon
dc)) ([Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args))
      Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "caseCon1" Subst
subst Term
altE1)
    _ -> case [Alt]
alts of
           -- In Core, default patterns always come first, so we match against
           -- that if there is one, and we couldn't match with any of the data
           -- patterns.
           ((DefaultPat,altE :: Term
altE):_) -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
altE
           _ -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Kind -> Term
undefinedTm Kind
ty)
    where
      -- Check whether the pattern matches the data constructor
      equalCon :: Pat -> Bool
equalCon (DataPat dcPat :: DataCon
dcPat _ _) = DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== DataCon -> Int
dcTag DataCon
dcPat
      equalCon _                   = Bool
False

      -- Decide whether the applied arguments of the data constructor should
      -- be let-bound, or substituted into the alternative. We decide this
      -- based on the fact on whether the argument has the potential to make
      -- the circuit larger than needed if we were to duplicate that argument.
      newBinder :: (InScopeSet, [LetBinding])
-> LetBinding -> ((InScopeSet, [LetBinding]), Maybe LetBinding)
newBinder (isN0 :: InScopeSet
isN0,substN :: [LetBinding]
substN) (x :: Id
x,arg :: Term
arg)
        | Term -> Bool
isWorkFree Term
arg
        = ((InScopeSet
isN0,(Id
x,Term
arg)LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:[LetBinding]
substN),Maybe LetBinding
forall a. Maybe a
Nothing)
        | Bool
otherwise
        = let x' :: Id
x'   = InScopeSet -> Id -> Id
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
isN0 Id
x
              isN1 :: InScopeSet
isN1 = InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
isN0 Id
x'
          in  ((InScopeSet
isN1,(Id
x,Id -> Term
Var Id
x')LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:[LetBinding]
substN),LetBinding -> Maybe LetBinding
forall a. a -> Maybe a
Just (Id
x',Term
arg))


  -- The subject is a literal
  (Literal l :: Literal
l,_,_) -> case (Alt -> Bool) -> [Alt] -> Maybe Alt
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Maybe a
List.find (Pat -> Bool
equalLit (Pat -> Bool) -> (Alt -> Pat) -> Alt -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Pat
forall a b. (a, b) -> a
fst) [Alt]
alts of
    Just (LitPat _,altE :: Term
altE) -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
altE
    _ -> Term -> Literal -> [Alt] -> RewriteMonad NormalizeState Term
matchLiteralContructor Term
e Literal
l [Alt]
alts
    where
      equalLit :: Pat -> Bool
equalLit (LitPat l' :: Literal
l')     = Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l'
      equalLit _               = Bool
False


  -- The subject is an applied primitive
  (Prim _,_,_) ->
    -- We try to reduce the applied primitive to WHNF
    Bool
-> TransformContext
-> Term
-> NormRewrite
-> RewriteMonad NormalizeState Term
forall extra.
Bool
-> TransformContext
-> Term
-> Rewrite extra
-> RewriteMonad extra Term
whnfRW Bool
True TransformContext
ctx Term
subj (NormRewrite -> RewriteMonad NormalizeState Term)
-> NormRewrite -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ \ctx1 :: TransformContext
ctx1 subj1 :: Term
subj1 -> case Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
subj1 of
      -- WHNF of subject is a literal, try `caseCon` with that
      (Literal l :: Literal
l,_,_) -> HasCallStack => NormRewrite
NormRewrite
caseCon TransformContext
ctx1 (Term -> Kind -> [Alt] -> Term
Case (Literal -> Term
Literal Literal
l) Kind
ty [Alt]
alts)
      -- WHNF of subject is a data-constructor, try `caseCon` with that
      (Data _,_,_) -> HasCallStack => NormRewrite
NormRewrite
caseCon TransformContext
ctx1 (Term -> Kind -> [Alt] -> Term
Case Term
subj1 Kind
ty [Alt]
alts)
#if MIN_VERSION_ghc(8,2,2)
      -- WHNF of subject is _|_, in the form of `absentError`: that means that
      -- the entire case-expression is evaluates to _|_
      (Prim pInfo :: PrimInfo
pInfo,_:msgOrCallStack :: Either Term Kind
msgOrCallStack:_,ticks :: [TickInfo]
ticks)
        | PrimInfo -> Text
primName PrimInfo
pInfo Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Control.Exception.Base.absentError" ->
        let e1 :: Term
e1 = Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (PrimInfo -> Term
Prim PrimInfo
pInfo) [TickInfo]
ticks)
                        [Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
ty,Either Term Kind
msgOrCallStack]
        in  Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e1
#endif
      -- WHNF of subject is _|_, in the form of `absentError`, `patError`,
      -- or `undefined`: that means the entire case-expression is _|_
      (Prim pInfo :: PrimInfo
pInfo,repTy :: Either Term Kind
repTy:_:msgOrCallStack :: Either Term Kind
msgOrCallStack:_,ticks :: [TickInfo]
ticks)
        | PrimInfo -> Text
primName PrimInfo
pInfo Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` ["Control.Exception.Base.patError"
#if !MIN_VERSION_ghc(8,2,2)
                                ,"Control.Exception.Base.absentError"
#endif
                                ,"GHC.Err.undefined"] ->
        let e1 :: Term
e1 = Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (PrimInfo -> Term
Prim PrimInfo
pInfo) [TickInfo]
ticks)
                        [Either Term Kind
repTy,Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
ty,Either Term Kind
msgOrCallStack]
        in  Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e1
      -- WHNF of subject is _|_, in the form of our internal _|_-values: that
      -- means the entire case-expression is _|_
      (Prim pInfo :: PrimInfo
pInfo,[_],ticks :: [TickInfo]
ticks)
        | PrimInfo -> Text
primName PrimInfo
pInfo Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [ "Clash.Transformations.undefined"
                                , "Clash.GHC.Evaluator.undefined"
                                , "EmptyCase"] ->
        let e1 :: Term
e1 = Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (PrimInfo -> Term
Prim PrimInfo
pInfo) [TickInfo]
ticks) [Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
ty]
        in Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e1
      -- WHNF of subject is non of the above, so either a variable reference,
      -- or a primitive for which the evaluator doesn't have any evaluation
      -- rules.
      _ -> do
        let subjTy :: Kind
subjTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
subj
        CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType))
tran <- Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
     NormalizeState
     (CustomReprs
      -> TyConMap
      -> Kind
      -> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
  RewriteEnv
  (CustomReprs
   -> TyConMap
   -> Kind
   -> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
        CustomReprs
reprs <- Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad NormalizeState CustomReprs
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
        case (State HWMap (Either String FilteredHWType)
-> HWMap -> Either String FilteredHWType
forall s a. State s a -> s -> a
`evalState` HWMap
forall k v. HashMap k v
HashMapS.empty) ((CustomReprs
 -> TyConMap
 -> Kind
 -> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Either String FilteredHWType)
coreTypeToHWType CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType))
tran CustomReprs
reprs TyConMap
tcm Kind
subjTy) of
          Right (FilteredHWType (Void (Just hty :: HWType
hty)) _areVoids :: [[(Bool, FilteredHWType)]]
_areVoids)
            | HWType
hty HWType -> [HWType] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [Int -> HWType
BitVector 0, Int -> HWType
Unsigned 0, Int -> HWType
Signed 0, Integer -> HWType
Index 1]
            -- If we know that the type of the subject is zero-bits wide and
            -- one of the Clash number types. Then the only valid alternative is
            -- the one that can match on the literal "0", so try 'caseCon' with
            -- that.
            -> HasCallStack => NormRewrite
NormRewrite
caseCon TransformContext
ctx1 (Term -> Kind -> [Alt] -> Term
Case (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral 0)) Kind
ty [Alt]
alts)
          _ -> do
            let ret :: RewriteMonad extra Term
ret = Term -> RewriteMonad extra Term
forall extra. Term -> RewriteMonad extra Term
caseOneAlt Term
e
            -- Otherwise check whether the entire case-expression has a single
            -- alternative, and pick that one.
            DebugLevel
lvl <- Getting DebugLevel RewriteEnv DebugLevel
-> RewriteMonad NormalizeState DebugLevel
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting DebugLevel RewriteEnv DebugLevel
Lens' RewriteEnv DebugLevel
dbgLevel
            if DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
> DebugLevel
DebugNone then do
              let subjIsConst :: Bool
subjIsConst = Term -> Bool
isConstant Term
subj
              -- In debug mode we always report missing evaluation rules for the
              -- primitive evaluator
              Bool
-> String
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
> DebugLevel
DebugNone Bool -> Bool -> Bool
&& Bool
subjIsConst)
                      ("Irreducible constant as case subject: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
subj String -> String -> String
forall a. [a] -> [a] -> [a]
++
                       "\nCan be reduced to: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
subj1) RewriteMonad NormalizeState Term
forall extra. RewriteMonad extra Term
ret
            else
              RewriteMonad NormalizeState Term
forall extra. RewriteMonad extra Term
ret


  -- The subject is a variable
  (Var v :: Id
v, [], _) | Kind -> Bool
isNum0 (Id -> Kind
forall a. Var a -> Kind
varType Id
v) ->
    -- If we know that the type of the subject is zero-bits wide and
    -- one of the Clash number types. Then the only valid alternative is
    -- the one that can match on the literal "0", so try 'caseCon' with
    -- that.
    HasCallStack => NormRewrite
NormRewrite
caseCon TransformContext
ctx (Term -> Kind -> [Alt] -> Term
Case (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral 0)) Kind
ty [Alt]
alts)
   where
    isNum0 :: Kind -> Bool
isNum0 (Kind -> TypeView
tyView -> TyConApp (TyConName -> Text
forall a. Name a -> Text
nameOcc -> Text
tcNm) [arg :: Kind
arg])
      | Text
tcNm Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem`
        ["Clash.Sized.Internal.BitVector.BitVector"
        ,"Clash.Sized.Internal.Unsigned.Unsigned"
        ,"Clash.Sized.Internal.Signed.Signed"
        ]
      = Integer -> Kind -> Bool
isLitX 0 Kind
arg
      | Text
tcNm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
==
        "Clash.Sized.Internal.Index.Index"
      = Integer -> Kind -> Bool
isLitX 1 Kind
arg
    isNum0 (TyConMap -> Kind -> Maybe Kind
coreView1 TyConMap
tcm -> Just t :: Kind
t) = Kind -> Bool
isNum0 Kind
t
    isNum0 _ = Bool
False

    isLitX :: Integer -> Kind -> Bool
isLitX n :: Integer
n (LitTy (NumTy m :: Integer
m)) = Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
m
    isLitX n :: Integer
n (TyConMap -> Kind -> Maybe Kind
coreView1 TyConMap
tcm -> Just t :: Kind
t) = Integer -> Kind -> Bool
isLitX Integer
n Kind
t
    isLitX _ _ = Bool
False

  -- Otherwise check whether the entire case-expression has a single
  -- alternative, and pick that one.
  _ -> Term -> RewriteMonad NormalizeState Term
forall extra. Term -> RewriteMonad extra Term
caseOneAlt Term
e

caseCon _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC caseCon #-}

{- [Note: Name re-creation]
The names of heap bound variables are safely generate with mkUniqSystemId in Clash.Core.Evaluator.newLetBinding.
But only their uniqs end up in the heap, not the complete names.
So we use mkUnsafeSystemName to recreate the same Name.
-}

matchLiteralContructor
  :: Term
  -> Literal
  -> [(Pat,Term)]
  -> NormalizeSession Term
matchLiteralContructor :: Term -> Literal -> [Alt] -> RewriteMonad NormalizeState Term
matchLiteralContructor c :: Term
c (IntegerLiteral l :: Integer
l) alts :: [Alt]
alts = [Alt] -> RewriteMonad NormalizeState Term
forall extra. [Alt] -> RewriteMonad extra Term
go ([Alt] -> [Alt]
forall a. [a] -> [a]
reverse [Alt]
alts)
 where
  go :: [Alt] -> RewriteMonad extra Term
go [(DefaultPat,e :: Term
e)] = Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
  go ((DataPat dc :: DataCon
dc [] xs :: [Id]
xs,e :: Term
e):alts' :: [Alt]
alts')
    | DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 1
    , Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= ((-2)Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(63::Int)) Bool -> Bool -> Bool
&&  Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(63::Int)
    = let fvs :: UniqSet (Var Any)
fvs       = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
          (binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
                    ([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
l)]
          e' :: Term
e' = case [LetBinding]
binds of
                 [] -> Term
e
                 _  -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
      in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
    | DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 2
    , Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(63::Int)
    = let !(Jp# !(BN# ba :: ByteArray#
ba)) = Integer
l
          ba' :: ByteArray
ba'       = ByteArray# -> ByteArray
BA.ByteArray ByteArray#
ba
          bv :: Vector a
bv        = Int -> Int -> ByteArray -> Vector a
forall a. Int -> Int -> ByteArray -> Vector a
PV.Vector 0 (ByteArray -> Int
BA.sizeofByteArray ByteArray
ba') ByteArray
ba'
          fvs :: UniqSet (Var Any)
fvs       = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
          (binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
                    ([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Vector Word8 -> Literal
ByteArrayLiteral Vector Word8
forall a. Vector a
bv)]
          e' :: Term
e' = case [LetBinding]
binds of
                 [] -> Term
e
                 _  -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
      in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
    | DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 3
    , Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< ((-2)Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(63::Int))
    = let !(Jn# !(BN# ba :: ByteArray#
ba)) = Integer
l
          ba' :: ByteArray
ba'       = ByteArray# -> ByteArray
BA.ByteArray ByteArray#
ba
          bv :: Vector a
bv        = Int -> Int -> ByteArray -> Vector a
forall a. Int -> Int -> ByteArray -> Vector a
PV.Vector 0 (ByteArray -> Int
BA.sizeofByteArray ByteArray
ba') ByteArray
ba'
          fvs :: UniqSet (Var Any)
fvs       = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
          (binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
                    ([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Vector Word8 -> Literal
ByteArrayLiteral Vector Word8
forall a. Vector a
bv)]
          e' :: Term
e' = case [LetBinding]
binds of
                 [] -> Term
e
                 _  -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
      in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
    | Bool
otherwise
    = [Alt] -> RewriteMonad extra Term
go [Alt]
alts'
  go ((LitPat l' :: Literal
l', e :: Term
e):alts' :: [Alt]
alts')
    | Integer -> Literal
IntegerLiteral Integer
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l'
    = Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
    | Bool
otherwise
    = [Alt] -> RewriteMonad extra Term
go [Alt]
alts'
  go _ = String -> RewriteMonad extra Term
forall a. HasCallStack => String -> a
error (String -> RewriteMonad extra Term)
-> String -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "Report as bug: caseCon error: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
c

matchLiteralContructor c :: Term
c (NaturalLiteral l :: Integer
l) alts :: [Alt]
alts = [Alt] -> RewriteMonad NormalizeState Term
forall extra. [Alt] -> RewriteMonad extra Term
go ([Alt] -> [Alt]
forall a. [a] -> [a]
reverse [Alt]
alts)
 where
  go :: [Alt] -> RewriteMonad extra Term
go [(DefaultPat,e :: Term
e)] = Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
  go ((DataPat dc :: DataCon
dc [] xs :: [Id]
xs,e :: Term
e):alts' :: [Alt]
alts')
    | DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 1
    , Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= 0 Bool -> Bool -> Bool
&& Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(64::Int)
    = let fvs :: UniqSet (Var Any)
fvs       = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
          (binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
                    ([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Integer -> Literal
WordLiteral Integer
l)]
          e' :: Term
e' = case [LetBinding]
binds of
                 [] -> Term
e
                 _  -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
      in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
    | DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 2
    , Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(64::Int)
    = let !(Jp# !(BN# ba :: ByteArray#
ba)) = Integer
l
          ba' :: ByteArray
ba'       = ByteArray# -> ByteArray
BA.ByteArray ByteArray#
ba
          bv :: Vector a
bv        = Int -> Int -> ByteArray -> Vector a
forall a. Int -> Int -> ByteArray -> Vector a
PV.Vector 0 (ByteArray -> Int
BA.sizeofByteArray ByteArray
ba') ByteArray
ba'
          fvs :: UniqSet (Var Any)
fvs       = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
          (binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
                    ([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Vector Word8 -> Literal
ByteArrayLiteral Vector Word8
forall a. Vector a
bv)]
          e' :: Term
e' = case [LetBinding]
binds of
                 [] -> Term
e
                 _  -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
      in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
    | Bool
otherwise
    = [Alt] -> RewriteMonad extra Term
go [Alt]
alts'
  go ((LitPat l' :: Literal
l', e :: Term
e):alts' :: [Alt]
alts')
    | Integer -> Literal
NaturalLiteral Integer
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l'
    = Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
    | Bool
otherwise
    = [Alt] -> RewriteMonad extra Term
go [Alt]
alts'
  go _ = String -> RewriteMonad extra Term
forall a. HasCallStack => String -> a
error (String -> RewriteMonad extra Term)
-> String -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "Report as bug: caseCon error: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
c

matchLiteralContructor _ _ ((DefaultPat,e :: Term
e):_) = Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
matchLiteralContructor c :: Term
c _ _ =
  String -> RewriteMonad NormalizeState Term
forall a. HasCallStack => String -> a
error (String -> RewriteMonad NormalizeState Term)
-> String -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "Report as bug: caseCon error: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
c
{-# SCC matchLiteralContructor #-}

caseOneAlt :: Term -> RewriteMonad extra Term
caseOneAlt :: Term -> RewriteMonad extra Term
caseOneAlt e :: Term
e@(Case _ _ [(pat :: Pat
pat,altE :: Term
altE)]) = case Pat
pat of
  DefaultPat -> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
altE
  LitPat _ -> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
altE
  DataPat _ tvs :: [TyVar]
tvs xs :: [Id]
xs
    | ([TyVar] -> [Var Any]
forall a b. Coercible a b => a -> b
coerce [TyVar]
tvs [Var Any] -> [Var Any] -> [Var Any]
forall a. [a] -> [a] -> [a]
++ [Id] -> [Var Any]
forall a b. Coercible a b => a -> b
coerce [Id]
xs) [Var Any] -> Term -> Bool
forall a. [Var a] -> Term -> Bool
`localVarsDoNotOccurIn` Term
altE
    -> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
altE
    | Bool
otherwise
    -> Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

caseOneAlt (Case _ _ alts :: [Alt]
alts@((_,alt :: Term
alt):_:_))
  | (Alt -> Bool) -> [Alt] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
all ((Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
alt) (Term -> Bool) -> (Alt -> Term) -> Alt -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Term
forall a b. (a, b) -> b
snd) ([Alt] -> [Alt]
forall a. [a] -> [a]
tail [Alt]
alts)
  = Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
alt

caseOneAlt e :: Term
e = Term -> RewriteMonad extra Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC caseOneAlt #-}

-- | Bring an application of a DataCon or Primitive in ANF, when the argument is
-- is considered non-representable
nonRepANF :: HasCallStack => NormRewrite
nonRepANF :: NormRewrite
nonRepANF ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) e :: Term
e@(App appConPrim :: Term
appConPrim arg :: Term
arg)
  | (conPrim :: Term
conPrim, _) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e
  , Term -> Bool
isCon Term
conPrim Bool -> Bool -> Bool
|| Term -> Bool
isPrim Term
conPrim
  = do
    Bool
untranslatable <- Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
arg
    case (Bool
untranslatable,Term -> Term
stripTicks Term
arg) of
      (True,Letrec binds :: [LetBinding]
binds body :: Term
body) ->
        -- This is a situation similar to Note [CaseLet deshadow]
        let (binds1 :: [LetBinding]
binds1,body1 :: Term
body1) = HasCallStack =>
InScopeSet -> [LetBinding] -> Term -> ([LetBinding], Term)
InScopeSet -> [LetBinding] -> Term -> ([LetBinding], Term)
deshadowLetExpr InScopeSet
is0 [LetBinding]
binds Term
body
        in  Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
binds1 (Term -> Term -> Term
App Term
appConPrim Term
body1))
      (True,Case {})  -> NormRewrite
specializeNorm TransformContext
ctx Term
e
      (True,Lam {})   -> NormRewrite
specializeNorm TransformContext
ctx Term
e
      (True,TyLam {}) -> NormRewrite
specializeNorm TransformContext
ctx Term
e
      _               -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

nonRepANF _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC nonRepANF #-}

-- | Ensure that top-level lambda's eventually bind a let-expression of which
-- the body is a variable-reference.
topLet :: HasCallStack => NormRewrite
topLet :: NormRewrite
topLet (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) e :: Term
e
  | (CoreContext -> Bool) -> Context -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
all (\c :: CoreContext
c -> CoreContext -> Bool
isLambdaBodyCtx CoreContext
c Bool -> Bool -> Bool
|| CoreContext -> Bool
isTickCtx CoreContext
c) Context
ctx Bool -> Bool -> Bool
&& Bool -> Bool
not (Term -> Bool
isLet Term
e) Bool -> Bool -> Bool
&& Bool -> Bool
not (Term -> Bool
isTick Term
e)
  = do
  Bool
untranslatable <- Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
e
  if Bool
untranslatable
    then Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
    else do TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
            Id
argId <- InScopeSet
-> TyConMap -> Name Any -> Term -> RewriteMonad NormalizeState Id
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is0 TyConMap
tcm (Text -> Int -> Name Any
forall a. Text -> Int -> Name a
mkUnsafeSystemName "result" 0) Term
e
            Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [(Id
argId, Term
e)] (Id -> Term
Var Id
argId))
 where
  isTick :: Term -> Bool
isTick Tick{} = Bool
True
  isTick _ = Bool
False

topLet (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) e :: Term
e@(Letrec binds :: [LetBinding]
binds body :: Term
body)
  | (CoreContext -> Bool) -> Context -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
all (\c :: CoreContext
c -> CoreContext -> Bool
isLambdaBodyCtx CoreContext
c Bool -> Bool -> Bool
|| CoreContext -> Bool
isTickCtx CoreContext
c) Context
ctx
  = do
    let localVar :: Bool
localVar = Term -> Bool
isLocalVar Term
body
    Bool
untranslatable <- Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
body
    if Bool
localVar Bool -> Bool -> Bool
|| Bool
untranslatable
      then Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
      else do
        TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
        let is2 :: InScopeSet
is2 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
binds)
        Id
argId <- InScopeSet
-> TyConMap -> Name Any -> Term -> RewriteMonad NormalizeState Id
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is2 TyConMap
tcm (Text -> Int -> Name Any
forall a. Text -> Int -> Name a
mkUnsafeSystemName "result" 0) Term
body
        Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec ([LetBinding]
binds [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++ [(Id
argId,Term
body)]) (Id -> Term
Var Id
argId))

topLet _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC topLet #-}

-- Misc rewrites

-- | Remove unused let-bindings
deadCode :: HasCallStack => NormRewrite
deadCode :: NormRewrite
deadCode _ e :: Term
e@(Letrec binds :: [LetBinding]
binds body :: Term
body) = do
  let bodyFVs :: UniqSet (Var Any)
bodyFVs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
body
      used :: VarEnv LetBinding
used    = (VarEnv LetBinding -> Var Any -> VarEnv LetBinding)
-> VarEnv LetBinding -> [Var Any] -> VarEnv LetBinding
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' VarEnv LetBinding -> Var Any -> VarEnv LetBinding
collectUsed VarEnv LetBinding
forall a. VarEnv a
emptyVarEnv (UniqSet (Var Any) -> [Var Any]
eltsVarSet UniqSet (Var Any)
bodyFVs)
  case VarEnv LetBinding -> [LetBinding]
forall a. VarEnv a -> [a]
eltsVarEnv VarEnv LetBinding
used of
    [] -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
body
    qqL :: [LetBinding]
qqL | [LetBinding] -> [LetBinding] -> Bool
forall a b. [a] -> [b] -> Bool
neLength [LetBinding]
qqL [LetBinding]
binds
        -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
qqL Term
body)
        | Bool
otherwise
        -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
 where
  bindsEnv :: VarEnv LetBinding
bindsEnv = [(Id, LetBinding)] -> VarEnv LetBinding
forall a b. [(Var a, b)] -> VarEnv b
mkVarEnv ((LetBinding -> (Id, LetBinding))
-> [LetBinding] -> [(Id, LetBinding)]
forall a b. (a -> b) -> [a] -> [b]
map (\(x :: Id
x,e0 :: Term
e0) -> (Id
x,(Id
x,Term
e0))) [LetBinding]
binds)

  collectUsed :: VarEnv LetBinding -> Var Any -> VarEnv LetBinding
collectUsed env :: VarEnv LetBinding
env v :: Var Any
v =
    if Var Any
v Var Any -> VarEnv LetBinding -> Bool
forall a b. Var a -> VarEnv b -> Bool
`elemVarEnv` VarEnv LetBinding
env then
      VarEnv LetBinding
env
    else
      case Var Any -> VarEnv LetBinding -> Maybe LetBinding
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Var Any
v VarEnv LetBinding
bindsEnv of
        Just (x :: Id
x,e0 :: Term
e0) ->
          let eFVs :: UniqSet (Var Any)
eFVs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e0
          in  (VarEnv LetBinding -> Var Any -> VarEnv LetBinding)
-> VarEnv LetBinding -> [Var Any] -> VarEnv LetBinding
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' VarEnv LetBinding -> Var Any -> VarEnv LetBinding
collectUsed
                          (Id -> LetBinding -> VarEnv LetBinding -> VarEnv LetBinding
forall b a. Var b -> a -> VarEnv a -> VarEnv a
extendVarEnv Id
x (Id
x,Term
e0) VarEnv LetBinding
env)
                          (UniqSet (Var Any) -> [Var Any]
eltsVarSet UniqSet (Var Any)
eFVs)
        Nothing -> VarEnv LetBinding
env

deadCode _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC deadCode #-}

removeUnusedExpr :: HasCallStack => NormRewrite
removeUnusedExpr :: NormRewrite
removeUnusedExpr _ e :: Term
e@(Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (p :: Term
p@(Prim pInfo :: PrimInfo
pInfo),args :: [Either Term Kind]
args,ticks :: [TickInfo]
ticks)) = do
  Maybe GuardedCompiledPrimitive
bbM <- Text
-> HashMap Text GuardedCompiledPrimitive
-> Maybe GuardedCompiledPrimitive
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
HashMap.lookup (PrimInfo -> Text
primName PrimInfo
pInfo) (HashMap Text GuardedCompiledPrimitive
 -> Maybe GuardedCompiledPrimitive)
-> RewriteMonad
     NormalizeState (HashMap Text GuardedCompiledPrimitive)
-> RewriteMonad NormalizeState (Maybe GuardedCompiledPrimitive)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
  (HashMap Text GuardedCompiledPrimitive)
  (RewriteState NormalizeState)
  (HashMap Text GuardedCompiledPrimitive)
-> RewriteMonad
     NormalizeState (HashMap Text GuardedCompiledPrimitive)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use ((NormalizeState
 -> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState)
-> RewriteState NormalizeState
-> Const
     (HashMap Text GuardedCompiledPrimitive)
     (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState
  -> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState)
 -> RewriteState NormalizeState
 -> Const
      (HashMap Text GuardedCompiledPrimitive)
      (RewriteState NormalizeState))
-> ((HashMap Text GuardedCompiledPrimitive
     -> Const
          (HashMap Text GuardedCompiledPrimitive)
          (HashMap Text GuardedCompiledPrimitive))
    -> NormalizeState
    -> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState)
-> Getting
     (HashMap Text GuardedCompiledPrimitive)
     (RewriteState NormalizeState)
     (HashMap Text GuardedCompiledPrimitive)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(HashMap Text GuardedCompiledPrimitive
 -> Const
      (HashMap Text GuardedCompiledPrimitive)
      (HashMap Text GuardedCompiledPrimitive))
-> NormalizeState
-> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState
Lens' NormalizeState (HashMap Text GuardedCompiledPrimitive)
primitives)
  let
    usedArgs0 :: Maybe [Int]
usedArgs0 =
      case Maybe (Maybe CompiledPrimitive) -> Maybe CompiledPrimitive
forall (m :: Type -> Type) a. Monad m => m (m a) -> m a
Monad.join (GuardedCompiledPrimitive -> Maybe CompiledPrimitive
forall a. PrimitiveGuard a -> Maybe a
extractPrim (GuardedCompiledPrimitive -> Maybe CompiledPrimitive)
-> Maybe GuardedCompiledPrimitive
-> Maybe (Maybe CompiledPrimitive)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Maybe GuardedCompiledPrimitive
bbM) of
        Just (BlackBoxHaskell{UsedArguments
usedArguments :: forall a b c d. Primitive a b c d -> UsedArguments
usedArguments :: UsedArguments
usedArguments}) ->
          case UsedArguments
usedArguments of
            UsedArguments used :: [Int]
used -> [Int] -> Maybe [Int]
forall a. a -> Maybe a
Just [Int]
used
            IgnoredArguments ignored :: [Int]
ignored -> [Int] -> Maybe [Int]
forall a. a -> Maybe a
Just ([0..[Either Term Kind] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Int
forall a. Num a => a -> a -> a
- 1] [Int] -> [Int] -> [Int]
forall a. Eq a => [a] -> [a] -> [a]
\\ [Int]
ignored)
        Just (BlackBox pNm :: Text
pNm _ _ _ _ _ _ _ _ inc :: [((Text, Text), BlackBox)]
inc r :: Maybe BlackBox
r ri :: Maybe BlackBox
ri templ :: BlackBox
templ) -> [Int] -> Maybe [Int]
forall a. a -> Maybe a
Just ([Int] -> Maybe [Int]) -> [Int] -> Maybe [Int]
forall a b. (a -> b) -> a -> b
$
          if | Text -> Bool
isFromInt Text
pNm -> [0,1,2]
             | PrimInfo -> Text
primName PrimInfo
pInfo Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [ "Clash.Annotations.BitRepresentation.Deriving.dontApplyInHDL"
                                     , "Clash.Sized.Vector.splitAt"
                                     ] -> [0,1]
             | Bool
otherwise -> [[Int]] -> [Int]
forall (t :: Type -> Type) a. Foldable t => t [a] -> [a]
concat [ [Int] -> (BlackBox -> [Int]) -> Maybe BlackBox -> [Int]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [] BlackBox -> [Int]
getUsedArguments Maybe BlackBox
r
                                   , [Int] -> (BlackBox -> [Int]) -> Maybe BlackBox -> [Int]
forall b a. b -> (a -> b) -> Maybe a -> b
maybe [] BlackBox -> [Int]
getUsedArguments Maybe BlackBox
ri
                                   , BlackBox -> [Int]
getUsedArguments BlackBox
templ
                                   , (((Text, Text), BlackBox) -> [Int])
-> [((Text, Text), BlackBox)] -> [Int]
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> [b]) -> t a -> [b]
concatMap (BlackBox -> [Int]
getUsedArguments (BlackBox -> [Int])
-> (((Text, Text), BlackBox) -> BlackBox)
-> ((Text, Text), BlackBox)
-> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Text, Text), BlackBox) -> BlackBox
forall a b. (a, b) -> b
snd) [((Text, Text), BlackBox)]
inc ]
        _ ->
          Maybe [Int]
forall a. Maybe a
Nothing

  case Maybe [Int]
usedArgs0 of
    Nothing ->
      Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
    Just usedArgs1 :: [Int]
usedArgs1 -> do
      TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
      (args1 :: [Either Term Kind]
args1, Any -> Bool
Monoid.getAny -> Bool
hasChanged) <- RewriteMonad NormalizeState [Either Term Kind]
-> RewriteMonad NormalizeState ([Either Term Kind], Any)
forall w (m :: Type -> Type) a. MonadWriter w m => m a -> m (a, w)
listen (TyConMap
-> Int
-> [Int]
-> [Either Term Kind]
-> RewriteMonad NormalizeState [Either Term Kind]
forall (t :: Type -> Type) b extra.
Foldable t =>
TyConMap
-> Int
-> t Int
-> [Either Term b]
-> RewriteMonad extra [Either Term b]
go TyConMap
tcm 0 [Int]
usedArgs1 [Either Term Kind]
args)
      if Bool
hasChanged then
        Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks Term
p [TickInfo]
ticks) [Either Term Kind]
args1)
      else
        Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

  where
    arity :: Int
arity = [Kind] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length ([Kind] -> Int)
-> (([Either TyVar Kind], Kind) -> [Kind])
-> ([Either TyVar Kind], Kind)
-> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Either TyVar Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights ([Either TyVar Kind] -> [Kind])
-> (([Either TyVar Kind], Kind) -> [Either TyVar Kind])
-> ([Either TyVar Kind], Kind)
-> [Kind]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ([Either TyVar Kind], Kind) -> [Either TyVar Kind]
forall a b. (a, b) -> a
fst (([Either TyVar Kind], Kind) -> Int)
-> ([Either TyVar Kind], Kind) -> Int
forall a b. (a -> b) -> a -> b
$ Kind -> ([Either TyVar Kind], Kind)
splitFunForallTy (PrimInfo -> Kind
primType PrimInfo
pInfo)

    go :: TyConMap
-> Int
-> t Int
-> [Either Term b]
-> RewriteMonad extra [Either Term b]
go _ _ _ [] = [Either Term b] -> RewriteMonad extra [Either Term b]
forall (m :: Type -> Type) a. Monad m => a -> m a
return []
    go tcm :: TyConMap
tcm !Int
n used :: t Int
used (Right ty :: b
ty:args' :: [Either Term b]
args') = do
      [Either Term b]
args'' <- TyConMap
-> Int
-> t Int
-> [Either Term b]
-> RewriteMonad extra [Either Term b]
go TyConMap
tcm Int
n t Int
used [Either Term b]
args'
      [Either Term b] -> RewriteMonad extra [Either Term b]
forall (m :: Type -> Type) a. Monad m => a -> m a
return (b -> Either Term b
forall a b. b -> Either a b
Right b
ty Either Term b -> [Either Term b] -> [Either Term b]
forall a. a -> [a] -> [a]
: [Either Term b]
args'')
    go tcm :: TyConMap
tcm !Int
n used :: t Int
used (Left tm :: Term
tm : args' :: [Either Term b]
args') = do
      [Either Term b]
args'' <- TyConMap
-> Int
-> t Int
-> [Either Term b]
-> RewriteMonad extra [Either Term b]
go TyConMap
tcm (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
+1) t Int
used [Either Term b]
args'
      case Term
tm of
        TyApp (Prim p0 :: PrimInfo
p0) _
          | PrimInfo -> Text
primName PrimInfo
p0 Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Transformations.removedArg"
          -> [Either Term b] -> RewriteMonad extra [Either Term b]
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term -> Either Term b
forall a b. a -> Either a b
Left Term
tm Either Term b -> [Either Term b] -> [Either Term b]
forall a. a -> [a] -> [a]
: [Either Term b]
args'')
        _ -> do
          let ty :: Kind
ty = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
tm
              p' :: Term
p' = Kind -> Term
removedTm Kind
ty
          if Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
arity Bool -> Bool -> Bool
&& Int
n Int -> t Int -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`notElem` t Int
used
             then [Either Term b] -> RewriteMonad extra [Either Term b]
forall a extra. a -> RewriteMonad extra a
changed (Term -> Either Term b
forall a b. a -> Either a b
Left Term
p' Either Term b -> [Either Term b] -> [Either Term b]
forall a. a -> [a] -> [a]
: [Either Term b]
args'')
             else [Either Term b] -> RewriteMonad extra [Either Term b]
forall (m :: Type -> Type) a. Monad m => a -> m a
return  (Term -> Either Term b
forall a b. a -> Either a b
Left Term
tm Either Term b -> [Either Term b] -> [Either Term b]
forall a. a -> [a] -> [a]
: [Either Term b]
args'')

removeUnusedExpr _ e :: Term
e@(Case _ _ [(DataPat _ [] xs :: [Id]
xs,altExpr :: Term
altExpr)]) =
  if [Id]
xs [Id] -> Term -> Bool
`localIdsDoNotOccurIn` Term
altExpr
     then Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
altExpr
     else Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

-- Replace any expression that creates a Vector of size 0 within the application
-- of the Cons constructor, by the Nil constructor.
removeUnusedExpr _ e :: Term
e@(Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (Data dc :: DataCon
dc, [_,Right aTy :: Kind
aTy,Right nTy :: Kind
nTy,_,Left a :: Term
a,Left nil :: Term
nil],ticks :: [TickInfo]
ticks))
  | Name DataCon -> Text
forall a. Name a -> Text
nameOcc (DataCon -> Name DataCon
dcName DataCon
dc) Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Vector.Cons"
  = do
    TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
    case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
      Right 0
        | (con :: Term
con, _) <- Term -> (Term, [Either Term Kind])
collectArgs Term
nil
        , Bool -> Bool
not (Term -> Bool
isCon Term
con)
        -> let eTy :: Kind
eTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e
               (TyConApp vecTcNm :: TyConName
vecTcNm _) = Kind -> TypeView
tyView Kind
eTy
               (Just vecTc :: TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap TyConName
vecTcNm TyConMap
tcm
               [nilCon :: DataCon
nilCon,consCon :: DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
               v :: Term
v = Term -> [TickInfo] -> Term
mkTicks (DataCon -> DataCon -> Kind -> Integer -> [Term] -> Term
mkVec DataCon
nilCon DataCon
consCon Kind
aTy 1 [Term
a]) [TickInfo]
ticks
           in  Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
v
      _ -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

removeUnusedExpr _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC removeUnusedExpr #-}

-- | Inline let-bindings when the RHS is either a local variable reference or
-- is constant (except clock or reset generators)
bindConstantVar :: HasCallStack => NormRewrite
bindConstantVar :: NormRewrite
bindConstantVar = (Term -> LetBinding -> RewriteMonad NormalizeState Bool)
-> NormRewrite
forall extra.
(Term -> LetBinding -> RewriteMonad extra Bool) -> Rewrite extra
inlineBinders Term -> LetBinding -> RewriteMonad NormalizeState Bool
forall p. p -> LetBinding -> RewriteMonad NormalizeState Bool
test
  where
    test :: p -> LetBinding -> RewriteMonad NormalizeState Bool
test _ (i :: Id
i,Term -> Term
stripTicks -> Term
e) = case Term -> Bool
isLocalVar Term
e of
      -- Don't inline `let x = x in x`, it throws  us in an infinite loop
      True -> Bool -> RewriteMonad NormalizeState Bool
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id
i Id -> Term -> Bool
`localIdDoesNotOccurIn` Term
e)
      _    -> Term -> RewriteMonad NormalizeState Bool
forall extra. Term -> RewriteMonad extra Bool
isWorkFreeIsh Term
e RewriteMonad NormalizeState Bool
-> (Bool -> RewriteMonad NormalizeState Bool)
-> RewriteMonad NormalizeState Bool
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
        True -> Getting Word (RewriteState NormalizeState) Word
-> RewriteMonad NormalizeState Word
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use ((NormalizeState -> Const Word NormalizeState)
-> RewriteState NormalizeState
-> Const Word (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState -> Const Word NormalizeState)
 -> RewriteState NormalizeState
 -> Const Word (RewriteState NormalizeState))
-> ((Word -> Const Word Word)
    -> NormalizeState -> Const Word NormalizeState)
-> Getting Word (RewriteState NormalizeState) Word
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Word -> Const Word Word)
-> NormalizeState -> Const Word NormalizeState
Lens' NormalizeState Word
inlineConstantLimit) RewriteMonad NormalizeState Word
-> (Word -> RewriteMonad NormalizeState Bool)
-> RewriteMonad NormalizeState Bool
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
          0 -> Bool -> RewriteMonad NormalizeState Bool
forall (m :: Type -> Type) a. Monad m => a -> m a
return Bool
True
          n :: Word
n -> Bool -> RewriteMonad NormalizeState Bool
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term -> Word
termSize Term
e Word -> Word -> Bool
forall a. Ord a => a -> a -> Bool
<= Word
n)
        _ -> Bool -> RewriteMonad NormalizeState Bool
forall (m :: Type -> Type) a. Monad m => a -> m a
return Bool
False
{-# SCC bindConstantVar #-}

-- | Push a cast over a case into it's alternatives.
caseCast :: HasCallStack => NormRewrite
caseCast :: NormRewrite
caseCast _ (Cast (Term -> Term
stripTicks -> Case subj :: Term
subj ty :: Kind
ty alts :: [Alt]
alts) ty1 :: Kind
ty1 ty2 :: Kind
ty2) = do
  let alts' :: [Alt]
alts' = (Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map (\(p :: Pat
p,e :: Term
e) -> (Pat
p, Term -> Kind -> Kind -> Term
Cast Term
e Kind
ty1 Kind
ty2)) [Alt]
alts
  Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> Kind -> [Alt] -> Term
Case Term
subj Kind
ty [Alt]
alts')
caseCast _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC caseCast #-}


-- | Push a cast over a Letrec into it's body
letCast :: HasCallStack => NormRewrite
letCast :: NormRewrite
letCast _ (Cast (Term -> Term
stripTicks -> Letrec binds :: [LetBinding]
binds body :: Term
body) ty1 :: Kind
ty1 ty2 :: Kind
ty2) =
  Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds (Term -> Kind -> Kind -> Term
Cast Term
body Kind
ty1 Kind
ty2)
letCast _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC letCast #-}


-- | Push cast over an argument to a function into that function
--
-- This is done by specializing on the casted argument.
-- Example:
-- @
--   y = f (cast a)
--     where f x = g x
-- @
-- transforms to:
-- @
--   y = f' a
--     where f' x' = (\x -> g x) (cast x')
-- @
--
-- The reason d'etre for this transformation is that we hope to end up with
-- and expression where two casts are "back-to-back" after which we can
-- eliminate them in 'eliminateCastCast'.
argCastSpec :: HasCallStack => NormRewrite
argCastSpec :: NormRewrite
argCastSpec ctx :: TransformContext
ctx e :: Term
e@(App _ (Term -> Term
stripTicks -> Cast e' :: Term
e' _ _)) =
  if Term -> Bool
isWorkFree Term
e' then
    RewriteMonad NormalizeState Term
go
  else
    RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall a. a -> a
warn RewriteMonad NormalizeState Term
go
 where
  go :: RewriteMonad NormalizeState Term
go = NormRewrite
specializeNorm TransformContext
ctx Term
e
  warn :: a -> a
warn = String -> a -> a
forall a. String -> a -> a
trace ([String] -> String
unwords
    [ "WARNING:", $(curLoc), "specializing a function on a non work-free"
    , "cast. Generated HDL implementation might contain duplicate work."
    , "Please report this as a bug.", "\n\nExpression where this occured:"
    , "\n\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
e
    ])
argCastSpec _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC argCastSpec #-}

-- | Only inline casts that just contain a 'Var', because these are guaranteed work-free.
-- These are the result of the 'splitCastWork' transformation.
inlineCast :: HasCallStack => NormRewrite
inlineCast :: NormRewrite
inlineCast = (Term -> LetBinding -> RewriteMonad NormalizeState Bool)
-> NormRewrite
forall extra.
(Term -> LetBinding -> RewriteMonad extra Bool) -> Rewrite extra
inlineBinders Term -> LetBinding -> RewriteMonad NormalizeState Bool
forall (m :: Type -> Type) p a. Monad m => p -> (a, Term) -> m Bool
test
  where
    test :: p -> (a, Term) -> m Bool
test _ (_, (Cast (Term -> Term
stripTicks -> Var {}) _ _)) = Bool -> m Bool
forall (m :: Type -> Type) a. Monad m => a -> m a
return Bool
True
    test _ _ = Bool -> m Bool
forall (m :: Type -> Type) a. Monad m => a -> m a
return Bool
False
{-# SCC inlineCast #-}

-- | Eliminate two back to back casts where the type going in and coming out are the same
--
-- @
--   (cast :: b -> a) $ (cast :: a -> b) x   ==> x
-- @
eliminateCastCast :: HasCallStack => NormRewrite
eliminateCastCast :: NormRewrite
eliminateCastCast _ c :: Term
c@(Cast (Term -> Term
stripTicks -> Cast e :: Term
e tyA :: Kind
tyA tyB :: Kind
tyB) tyB' :: Kind
tyB' tyC :: Kind
tyC) = do
  TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
  let ntyA :: Kind
ntyA  = TyConMap -> Kind -> Kind
normalizeType TyConMap
tcm Kind
tyA
      ntyB :: Kind
ntyB  = TyConMap -> Kind -> Kind
normalizeType TyConMap
tcm Kind
tyB
      ntyB' :: Kind
ntyB' = TyConMap -> Kind -> Kind
normalizeType TyConMap
tcm Kind
tyB'
      ntyC :: Kind
ntyC  = TyConMap -> Kind -> Kind
normalizeType TyConMap
tcm Kind
tyC
  if Kind
ntyB Kind -> Kind -> Bool
forall a. Eq a => a -> a -> Bool
== Kind
ntyB' Bool -> Bool -> Bool
&& Kind
ntyA Kind -> Kind -> Bool
forall a. Eq a => a -> a -> Bool
== Kind
ntyC then Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
                                   else RewriteMonad NormalizeState Term
forall b. RewriteMonad NormalizeState b
throwError
  where throwError :: RewriteMonad NormalizeState b
throwError = do
          (nm :: Id
nm,sp :: SrcSpan
sp) <- Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
-> RewriteMonad NormalizeState (Id, SrcSpan)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
forall extra. Lens' (RewriteState extra) (Id, SrcSpan)
curFun
          ClashException -> RewriteMonad NormalizeState b
forall a e. Exception e => e -> a
throw (SrcSpan -> String -> Maybe String -> ClashException
ClashException SrcSpan
sp ($(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ Id -> String
forall p. PrettyPrec p => p -> String
showPpr Id
nm
                  String -> String -> String
forall a. [a] -> [a] -> [a]
++ ": Found 2 nested casts whose types don't line up:\n"
                  String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
c)
                Maybe String
forall a. Maybe a
Nothing)

eliminateCastCast _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC eliminateCastCast #-}

-- | Make a cast work-free by splitting the work of to a separate binding
--
-- @
-- let x = cast (f a b)
-- ==>
-- let x  = cast x'
--     x' = f a b
-- @
splitCastWork :: HasCallStack => NormRewrite
splitCastWork :: NormRewrite
splitCastWork ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) unchanged :: Term
unchanged@(Letrec vs :: [LetBinding]
vs e' :: Term
e') = do
  (vss' :: [[LetBinding]]
vss', Any -> Bool
Monoid.getAny -> Bool
hasChanged) <- RewriteMonad NormalizeState [[LetBinding]]
-> RewriteMonad NormalizeState ([[LetBinding]], Any)
forall w (m :: Type -> Type) a. MonadWriter w m => m a -> m (a, w)
listen ((LetBinding -> RewriteMonad NormalizeState [LetBinding])
-> [LetBinding] -> RewriteMonad NormalizeState [[LetBinding]]
forall (t :: Type -> Type) (m :: Type -> Type) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet
-> LetBinding -> RewriteMonad NormalizeState [LetBinding]
forall extra.
InScopeSet -> LetBinding -> RewriteMonad extra [LetBinding]
splitCastLetBinding InScopeSet
is0) [LetBinding]
vs)
  let vs' :: [LetBinding]
vs' = [[LetBinding]] -> [LetBinding]
forall (t :: Type -> Type) a. Foldable t => t [a] -> [a]
concat [[LetBinding]]
vss'
  if Bool
hasChanged then Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
vs' Term
e')
                else Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
unchanged
  where
    splitCastLetBinding
      :: InScopeSet
      -> LetBinding
      -> RewriteMonad extra [LetBinding]
    splitCastLetBinding :: InScopeSet -> LetBinding -> RewriteMonad extra [LetBinding]
splitCastLetBinding isN :: InScopeSet
isN x :: LetBinding
x@(nm :: Id
nm, e :: Term
e) = case Term -> Term
stripTicks Term
e of
      Cast (Var {}) _ _  -> [LetBinding] -> RewriteMonad extra [LetBinding]
forall (m :: Type -> Type) a. Monad m => a -> m a
return [LetBinding
x]  -- already work-free
      Cast (Cast {}) _ _ -> [LetBinding] -> RewriteMonad extra [LetBinding]
forall (m :: Type -> Type) a. Monad m => a -> m a
return [LetBinding
x]  -- casts will be eliminated
      Cast e0 :: Term
e0 ty1 :: Kind
ty1 ty2 :: Kind
ty2 -> do
        TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
        Id
nm' <- InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad extra Id
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
isN TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx (Name Term -> Text
forall a. Name a -> Text
nameOcc (Name Term -> Text) -> Name Term -> Text
forall a b. (a -> b) -> a -> b
$ Id -> Name Term
forall a. Var a -> Name a
varName Id
nm)) Term
e0
        [LetBinding] -> RewriteMonad extra [LetBinding]
forall a extra. a -> RewriteMonad extra a
changed [(Id
nm',Term
e0)
                ,(Id
nm, Term -> Kind -> Kind -> Term
Cast (Id -> Term
Var Id
nm') Kind
ty1 Kind
ty2)
                ]
      _ -> [LetBinding] -> RewriteMonad extra [LetBinding]
forall (m :: Type -> Type) a. Monad m => a -> m a
return [LetBinding
x]

splitCastWork _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC splitCastWork #-}


-- | Inline work-free functions, i.e. fully applied functions that evaluate to
-- a constant
inlineWorkFree :: HasCallStack => NormRewrite
inlineWorkFree :: NormRewrite
inlineWorkFree _ e :: Term
e@(Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (Var f :: Id
f,args :: [Either Term Kind]
args@(_:_),ticks :: [TickInfo]
ticks))
  = do
    TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
    let eTy :: Kind
eTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e
    Bool
argsHaveWork <- [Bool] -> Bool
forall (t :: Type -> Type). Foldable t => t Bool -> Bool
or ([Bool] -> Bool)
-> RewriteMonad NormalizeState [Bool]
-> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> (Either Term Kind -> RewriteMonad NormalizeState Bool)
-> [Either Term Kind] -> RewriteMonad NormalizeState [Bool]
forall (t :: Type -> Type) (m :: Type -> Type) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM ((Term -> RewriteMonad NormalizeState Bool)
-> (Kind -> RewriteMonad NormalizeState Bool)
-> Either Term Kind
-> RewriteMonad NormalizeState Bool
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either Term -> RewriteMonad NormalizeState Bool
forall (m :: Type -> Type).
MonadReader RewriteEnv m =>
Term -> m Bool
expressionHasWork
                                        (RewriteMonad NormalizeState Bool
-> Kind -> RewriteMonad NormalizeState Bool
forall a b. a -> b -> a
const (Bool -> RewriteMonad NormalizeState Bool
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Bool
False)))
                                [Either Term Kind]
args
    Bool
untranslatable <- Bool -> Kind -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Kind -> RewriteMonad extra Bool
isUntranslatableType Bool
True Kind
eTy
    let isSignal :: Bool
isSignal = TyConMap -> Kind -> Bool
isSignalType TyConMap
tcm Kind
eTy
    let lv :: Bool
lv = Id -> Bool
forall a. Var a -> Bool
isLocalId Id
f
    if Bool
untranslatable Bool -> Bool -> Bool
|| Bool
isSignal Bool -> Bool -> Bool
|| Bool
argsHaveWork Bool -> Bool -> Bool
|| Bool
lv
      then Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
      else do
        VarEnv Binding
bndrs <- Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
-> RewriteMonad NormalizeState (VarEnv Binding)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
forall extra. Lens' (RewriteState extra) (VarEnv Binding)
bindings
        case Id -> VarEnv Binding -> Maybe Binding
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f VarEnv Binding
bndrs of
          -- Don't inline recursive expressions
          Just b :: Binding
b -> do
            Bool
isRecBndr <- Id -> RewriteMonad NormalizeState Bool
isRecursiveBndr Id
f
            if Bool
isRecBndr
               then Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
               else do
                 let tm :: Term
tm = Term -> [TickInfo] -> Term
mkTicks (Binding -> Term
bindingTerm Binding
b) (Id -> TickInfo
mkInlineTick Id
f TickInfo -> [TickInfo] -> [TickInfo]
forall a. a -> [a] -> [a]
: [TickInfo]
ticks)
                 Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> [Either Term Kind] -> Term
mkApps Term
tm [Either Term Kind]
args

          _ -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
  where
    -- an expression is has work when it contains free local variables,
    -- or has a Signal type, i.e. it does not evaluate to a work-free
    -- constant.
    expressionHasWork :: Term -> m Bool
expressionHasWork e' :: Term
e' = do
      let fvIds :: [Id]
fvIds = Getting (Endo [Id]) Term Id -> Term -> [Id]
forall a s. Getting (Endo [a]) s a -> s -> [a]
Lens.toListOf Getting (Endo [Id]) Term Id
Fold Term Id
freeLocalIds Term
e'
      TyConMap
tcm   <- Getting TyConMap RewriteEnv TyConMap -> m TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
      let e'Ty :: Kind
e'Ty     = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e'
          isSignal :: Bool
isSignal = TyConMap -> Kind -> Bool
isSignalType TyConMap
tcm Kind
e'Ty
      Bool -> m Bool
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Bool -> Bool
not ([Id] -> Bool
forall (t :: Type -> Type) a. Foldable t => t a -> Bool
null [Id]
fvIds) Bool -> Bool -> Bool
|| Bool
isSignal)

inlineWorkFree _ e :: Term
e@(Var f :: Id
f) = do
  TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
  let fTy :: Kind
fTy      = Id -> Kind
forall a. Var a -> Kind
varType Id
f
      closed :: Bool
closed   = Bool -> Bool
not (TyConMap -> Kind -> Bool
isPolyFunCoreTy TyConMap
tcm Kind
fTy)
      isSignal :: Bool
isSignal = TyConMap -> Kind -> Bool
isSignalType TyConMap
tcm Kind
fTy
  Bool
untranslatable <- Bool -> Kind -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Kind -> RewriteMonad extra Bool
isUntranslatableType Bool
True Kind
fTy
  UniqSet (Var Any)
topEnts <- Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
-> RewriteMonad NormalizeState (UniqSet (Var Any))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
Lens' RewriteEnv (UniqSet (Var Any))
topEntities
  let gv :: Bool
gv = Id -> Bool
forall a. Var a -> Bool
isGlobalId Id
f
  if Bool
closed Bool -> Bool -> Bool
&& Id
f Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`notElemVarSet` UniqSet (Var Any)
topEnts Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
untranslatable Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
isSignal Bool -> Bool -> Bool
&& Bool
gv
    then do
      VarEnv Binding
bndrs <- Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
-> RewriteMonad NormalizeState (VarEnv Binding)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
forall extra. Lens' (RewriteState extra) (VarEnv Binding)
bindings
      case Id -> VarEnv Binding -> Maybe Binding
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f VarEnv Binding
bndrs of
        -- Don't inline recursive expressions
        Just top :: Binding
top -> do
          Bool
isRecBndr <- Id -> RewriteMonad NormalizeState Bool
isRecursiveBndr Id
f
          if Bool
isRecBndr
             then Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
             else do
              let topB :: Term
topB = Binding -> Term
bindingTerm Binding
top
              Word
sizeLimit <- Getting Word (RewriteState NormalizeState) Word
-> RewriteMonad NormalizeState Word
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use ((NormalizeState -> Const Word NormalizeState)
-> RewriteState NormalizeState
-> Const Word (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState -> Const Word NormalizeState)
 -> RewriteState NormalizeState
 -> Const Word (RewriteState NormalizeState))
-> ((Word -> Const Word Word)
    -> NormalizeState -> Const Word NormalizeState)
-> Getting Word (RewriteState NormalizeState) Word
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Word -> Const Word Word)
-> NormalizeState -> Const Word NormalizeState
Lens' NormalizeState Word
inlineWFCacheLimit)
              -- caching only worth it from a certain size onwards, otherwise
              -- the caching mechanism itself brings more of an overhead.
              if Term -> Word
termSize Term
topB Word -> Word -> Bool
forall a. Ord a => a -> a -> Bool
< Word
sizeLimit then
                Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
topB
              else do
                Binding
b <- Bool -> Id -> Binding -> NormalizeSession Binding
normalizeTopLvlBndr Bool
False Id
f Binding
top
                Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Binding -> Term
bindingTerm Binding
b)
        _ -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
    else Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

inlineWorkFree _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC inlineWorkFree #-}

-- | Inline small functions
inlineSmall :: HasCallStack => NormRewrite
inlineSmall :: NormRewrite
inlineSmall _ e :: Term
e@(Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (Var f :: Id
f,args :: [Either Term Kind]
args,ticks :: [TickInfo]
ticks)) = do
  Bool
untranslatable <- Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
True Term
e
  UniqSet (Var Any)
topEnts <- Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
-> RewriteMonad NormalizeState (UniqSet (Var Any))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
Lens' RewriteEnv (UniqSet (Var Any))
topEntities
  let lv :: Bool
lv = Id -> Bool
forall a. Var a -> Bool
isLocalId Id
f
  if Bool
untranslatable Bool -> Bool -> Bool
|| Id
f Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
topEnts Bool -> Bool -> Bool
|| Bool
lv
    then Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
    else do
      VarEnv Binding
bndrs <- Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
-> RewriteMonad NormalizeState (VarEnv Binding)
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting
  (VarEnv Binding) (RewriteState NormalizeState) (VarEnv Binding)
forall extra. Lens' (RewriteState extra) (VarEnv Binding)
bindings
      Word
sizeLimit <- Getting Word (RewriteState NormalizeState) Word
-> RewriteMonad NormalizeState Word
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use ((NormalizeState -> Const Word NormalizeState)
-> RewriteState NormalizeState
-> Const Word (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState -> Const Word NormalizeState)
 -> RewriteState NormalizeState
 -> Const Word (RewriteState NormalizeState))
-> ((Word -> Const Word Word)
    -> NormalizeState -> Const Word NormalizeState)
-> Getting Word (RewriteState NormalizeState) Word
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Word -> Const Word Word)
-> NormalizeState -> Const Word NormalizeState
Lens' NormalizeState Word
inlineFunctionLimit)
      case Id -> VarEnv Binding -> Maybe Binding
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f VarEnv Binding
bndrs of
        -- Don't inline recursive expressions
        Just b :: Binding
b -> do
          Bool
isRecBndr <- Id -> RewriteMonad NormalizeState Bool
isRecursiveBndr Id
f
          if Bool -> Bool
not Bool
isRecBndr Bool -> Bool -> Bool
&& Binding -> InlineSpec
bindingSpec Binding
b InlineSpec -> InlineSpec -> Bool
forall a. Eq a => a -> a -> Bool
/= InlineSpec
NoInline Bool -> Bool -> Bool
&& Term -> Word
termSize (Binding -> Term
bindingTerm Binding
b) Word -> Word -> Bool
forall a. Ord a => a -> a -> Bool
< Word
sizeLimit
             then do
               let tm :: Term
tm = Term -> [TickInfo] -> Term
mkTicks (Binding -> Term
bindingTerm Binding
b) (Id -> TickInfo
mkInlineTick Id
f TickInfo -> [TickInfo] -> [TickInfo]
forall a. a -> [a] -> [a]
: [TickInfo]
ticks)
               Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> [Either Term Kind] -> Term
mkApps Term
tm [Either Term Kind]
args
             else Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

        _ -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

inlineSmall _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC inlineSmall #-}

-- | Specialise functions on arguments which are constant, except when they
-- are clock, reset generators.
constantSpec :: HasCallStack => NormRewrite
constantSpec :: NormRewrite
constantSpec ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 tfCtx :: Context
tfCtx) e :: Term
e@(App e1 :: Term
e1 e2 :: Term
e2)
  | (Var {}, args :: [Either Term Kind]
args) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e1
  , (_, []) <- [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
  , [TyVar] -> Bool
forall (t :: Type -> Type) a. Foldable t => t a -> Bool
null ([TyVar] -> Bool) -> [TyVar] -> Bool
forall a b. (a -> b) -> a -> b
$ Getting (Endo [TyVar]) Term TyVar -> Term -> [TyVar]
forall a s. Getting (Endo [a]) s a -> s -> [a]
Lens.toListOf Getting (Endo [TyVar]) Term TyVar
Fold Term TyVar
termFreeTyVars Term
e2
  = do ConstantSpecInfo
specInfo<- TransformContext
-> Term -> RewriteMonad NormalizeState ConstantSpecInfo
constantSpecInfo TransformContext
ctx Term
e2
       if ConstantSpecInfo -> Bool
csrFoundConstant ConstantSpecInfo
specInfo then
         let newBindings :: [LetBinding]
newBindings = ConstantSpecInfo -> [LetBinding]
csrNewBindings ConstantSpecInfo
specInfo in
         if [LetBinding] -> Bool
forall (t :: Type -> Type) a. Foldable t => t a -> Bool
null [LetBinding]
newBindings then
           -- Whole of e2 is constant
           NormRewrite
specializeNorm TransformContext
ctx (Term -> Term -> Term
App Term
e1 Term
e2)
         else do
           -- Parts of e2 are constant
           let is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 (LetBinding -> Id
forall a b. (a, b) -> a
fst (LetBinding -> Id) -> [LetBinding] -> [Id]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> ConstantSpecInfo -> [LetBinding]
csrNewBindings ConstantSpecInfo
specInfo)
           [LetBinding] -> Term -> Term
Letrec [LetBinding]
newBindings
            (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> NormRewrite
specializeNorm
                  (InScopeSet -> Context -> TransformContext
TransformContext InScopeSet
is1 Context
tfCtx)
                  (Term -> Term -> Term
App Term
e1 (ConstantSpecInfo -> Term
csrNewTerm ConstantSpecInfo
specInfo))

       else
        -- e2 has no constant parts
        Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
constantSpec _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC constantSpec #-}


-- Experimental

-- | Propagate arguments of application inwards; except for 'Lam' where the
-- argument becomes let-bound. 'appPropFast' tries to propagate as many arguments
-- as possible, down as many levels as possible; and should be called in a
-- top-down traversal.
--
-- The idea is that this reduces the number of traversals, which hopefully leads
-- to shorter compile times.
--
-- Note [AppProp no shadowing]
--
-- Case 1.
--
-- Imagine:
--
-- @
-- (case x of
--    D a b -> h a) (f x y)
-- @
--
-- rewriting this to:
--
-- @
-- let b = f x y
-- in  case x of
--       D a b -> h a b
-- @
--
-- is very bad because 'b' in 'h a b' is now bound by the pattern instead of the
-- newly introduced let-binding
--
-- instead me must deshadow w.r.t. the new variable and rewrite to:
--
-- @
-- let b = f x y
-- in  case x of
--       D a b1 -> h a b
-- @
--
-- Case 2.
--
-- Imagine
--
-- @
-- (\x -> e) u
-- @
--
-- where @u@ has a free variable named @x@, rewriting this to:
--
-- @
-- let x = u
-- in  e
-- @
--
-- would be very bad, because the let-binding suddenly captures the free
-- variable in @u@. To prevent this from happening we over-approximate and check
-- whether @x@ is in the current InScopeSet, and deshadow if that's the case,
-- i.e. we then rewrite to:
--
-- let x1 = u
-- in  e [x:=x1]
--
-- Case 3.
--
-- The same for:
--
-- @
-- (let x = w in e) u
-- @
--
-- where @u@ again has a free variable @x@, rewriting this to:
--
-- @
-- let x = w in (e u)
-- @
--
-- would be bad because the let-binding now captures the free variable in @u@.
--
-- To prevent this from happening, we unconditionally deshadow the function part
-- of the application w.r.t. the free variables in the argument part of the
-- application. It is okay to over-approximate in this case and deshadow w.r.t
-- the current InScopeSet.
appPropFast :: HasCallStack => NormRewrite
appPropFast :: NormRewrite
appPropFast ctx :: TransformContext
ctx@(TransformContext is :: InScopeSet
is _) = \case
  e :: Term
e@App {}
    | let (fun :: Term
fun,args :: [Either Term Kind]
args,ticks :: [TickInfo]
ticks) = Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
e
    -> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is (HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
is Term
fun) [Either Term Kind]
args [TickInfo]
ticks
  e :: Term
e@TyApp {}
    | let (fun :: Term
fun,args :: [Either Term Kind]
args,ticks :: [TickInfo]
ticks) = Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
e
    -> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is (HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
is Term
fun) [Either Term Kind]
args [TickInfo]
ticks
  e :: Term
e          -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
 where
  go :: InScopeSet -> Term -> [Either Term Type] -> [TickInfo]
     -> NormalizeSession Term
  go :: InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go is0 :: InScopeSet
is0 (Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (fun :: Term
fun,args0 :: [Either Term Kind]
args0@(_:_),ticks0 :: [TickInfo]
ticks0)) args1 :: [Either Term Kind]
args1 ticks1 :: [TickInfo]
ticks1 =
    InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is0 Term
fun ([Either Term Kind]
args0 [Either Term Kind] -> [Either Term Kind] -> [Either Term Kind]
forall a. [a] -> [a] -> [a]
++ [Either Term Kind]
args1) ([TickInfo]
ticks0 [TickInfo] -> [TickInfo] -> [TickInfo]
forall a. [a] -> [a] -> [a]
++ [TickInfo]
ticks1)

  go is0 :: InScopeSet
is0 (Lam v :: Id
v e :: Term
e) (Left arg :: Term
arg:args :: [Either Term Kind]
args) ticks :: [TickInfo]
ticks = do
    RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
    if Term -> Bool
isWorkFree Term
arg Bool -> Bool -> Bool
|| Term -> Bool
isVar Term
arg
      then do
        let subst :: Subst
subst = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
is0) Id
v Term
arg
        (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is0 (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "appPropFast.AppLam" Subst
subst Term
e) [Either Term Kind]
args []
      else do
        let is1 :: InScopeSet
is1 = InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is0 Id
v
        [LetBinding] -> Term -> Term
Letrec [(Id
v, Term
arg)] (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is1 (HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
is1 Term
e) [Either Term Kind]
args [TickInfo]
ticks

  go is0 :: InScopeSet
is0 (Letrec vs :: [LetBinding]
vs e :: Term
e) args :: [Either Term Kind]
args@(_:_) ticks :: [TickInfo]
ticks = do
    RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
    let vbs :: [Id]
vbs  = (LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
vs
        is1 :: InScopeSet
is1  = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [Id]
vbs
    -- XXX: 'vs' should already be deshadowed w.r.t. 'is0'
    [LetBinding] -> Term -> Term
Letrec [LetBinding]
vs (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is1 Term
e [Either Term Kind]
args [TickInfo]
ticks

  go is0 :: InScopeSet
is0 (TyLam tv :: TyVar
tv e :: Term
e) (Right t :: Kind
t:args :: [Either Term Kind]
args) ticks :: [TickInfo]
ticks = do
    RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
    let subst :: Subst
subst = Subst -> TyVar -> Kind -> Subst
extendTvSubst (InScopeSet -> Subst
mkSubst InScopeSet
is0) TyVar
tv Kind
t
    (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is0 (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "appPropFast.TyAppTyLam" Subst
subst Term
e) [Either Term Kind]
args []

  go is0 :: InScopeSet
is0 (Case scrut :: Term
scrut ty0 :: Kind
ty0 alts :: [Alt]
alts) args0 :: [Either Term Kind]
args0@(_:_) ticks :: [TickInfo]
ticks = do
    RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
    let isA1 :: InScopeSet
isA1 = InScopeSet -> InScopeSet -> InScopeSet
unionInScope
                 InScopeSet
is0
                 ((UniqSet (Var Any) -> InScopeSet
mkInScopeSet (UniqSet (Var Any) -> InScopeSet)
-> ([Alt] -> UniqSet (Var Any)) -> [Alt] -> InScopeSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Var Any] -> UniqSet (Var Any)
forall a. [Var a] -> UniqSet (Var Any)
mkVarSet ([Var Any] -> UniqSet (Var Any))
-> ([Alt] -> [Var Any]) -> [Alt] -> UniqSet (Var Any)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Alt -> [Var Any]) -> [Alt] -> [Var Any]
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> [b]) -> t a -> [b]
concatMap (Pat -> [Var Any]
forall a. Pat -> [Var a]
patVars (Pat -> [Var Any]) -> (Alt -> Pat) -> Alt -> [Var Any]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Pat
forall a b. (a, b) -> a
fst)) [Alt]
alts)
    (ty1 :: Kind
ty1,vs :: [LetBinding]
vs,args1 :: [Either Term Kind]
args1) <- InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> RewriteMonad
     NormalizeState (Kind, [LetBinding], [Either Term Kind])
forall (m :: Type -> Type).
(MonadReader RewriteEnv m, MonadUnique m, MonadFail m) =>
InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg InScopeSet
isA1 Kind
ty0 [] [Either Term Kind]
args0
    case [LetBinding]
vs of
      [] -> (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term) -> ([Alt] -> Term) -> [Alt] -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
ty1 ([Alt] -> Term)
-> RewriteMonad NormalizeState [Alt]
-> RewriteMonad NormalizeState Term
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> (Alt -> RewriteMonad NormalizeState Alt)
-> [Alt] -> RewriteMonad NormalizeState [Alt]
forall (t :: Type -> Type) (m :: Type -> Type) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet
-> [Either Term Kind] -> Alt -> RewriteMonad NormalizeState Alt
goAlt InScopeSet
is0 [Either Term Kind]
args1) [Alt]
alts
      _  -> do
        let vbs :: [Id]
vbs   = (LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
vs
            is1 :: InScopeSet
is1   = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [Id]
vbs
            alts1 :: [Alt]
alts1 = (Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map (HasCallStack => InScopeSet -> Alt -> Alt
InScopeSet -> Alt -> Alt
deShadowAlt InScopeSet
is1) [Alt]
alts
        [LetBinding] -> Term -> Term
Letrec [LetBinding]
vs (Term -> Term) -> ([Alt] -> Term) -> [Alt] -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term) -> ([Alt] -> Term) -> [Alt] -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
ty1 ([Alt] -> Term)
-> RewriteMonad NormalizeState [Alt]
-> RewriteMonad NormalizeState Term
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> (Alt -> RewriteMonad NormalizeState Alt)
-> [Alt] -> RewriteMonad NormalizeState [Alt]
forall (t :: Type -> Type) (m :: Type -> Type) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet
-> [Either Term Kind] -> Alt -> RewriteMonad NormalizeState Alt
goAlt InScopeSet
is1 [Either Term Kind]
args1) [Alt]
alts1

  go is0 :: InScopeSet
is0 (Tick sp :: TickInfo
sp e :: Term
e) args :: [Either Term Kind]
args ticks :: [TickInfo]
ticks = do
    RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
    InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is0 Term
e [Either Term Kind]
args (TickInfo
spTickInfo -> [TickInfo] -> [TickInfo]
forall a. a -> [a] -> [a]
:[TickInfo]
ticks)

  go _ fun :: Term
fun args :: [Either Term Kind]
args ticks :: [TickInfo]
ticks = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks Term
fun [TickInfo]
ticks) [Either Term Kind]
args)

  goAlt :: InScopeSet
-> [Either Term Kind] -> Alt -> RewriteMonad NormalizeState Alt
goAlt is0 :: InScopeSet
is0 args0 :: [Either Term Kind]
args0 (p :: Pat
p,e :: Term
e) = do
    let (tvs :: [TyVar]
tvs,ids :: [Id]
ids) = Pat -> ([TyVar], [Id])
patIds Pat
p
        is1 :: InScopeSet
is1       = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList (InScopeSet -> [TyVar] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [TyVar]
tvs) [Id]
ids
    (Pat
p,) (Term -> Alt)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Alt
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is1 Term
e [Either Term Kind]
args0 []

  goCaseArg :: InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg isA :: InScopeSet
isA ty0 :: Kind
ty0 ls0 :: [LetBinding]
ls0 (Right t :: Kind
t:args0 :: [Either Term Kind]
args0) = do
    TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> m TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
    let ty1 :: Kind
ty1 = HasCallStack => TyConMap -> Kind -> Kind -> Kind
TyConMap -> Kind -> Kind -> Kind
piResultTy TyConMap
tcm Kind
ty0 Kind
t
    (ty2 :: Kind
ty2,ls1 :: [LetBinding]
ls1,args1 :: [Either Term Kind]
args1) <- InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg InScopeSet
isA Kind
ty1 [LetBinding]
ls0 [Either Term Kind]
args0
    (Kind, [LetBinding], [Either Term Kind])
-> m (Kind, [LetBinding], [Either Term Kind])
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Kind
ty2,[LetBinding]
ls1,Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
tEither Term Kind -> [Either Term Kind] -> [Either Term Kind]
forall a. a -> [a] -> [a]
:[Either Term Kind]
args1)

  goCaseArg isA0 :: InScopeSet
isA0 ty0 :: Kind
ty0 ls0 :: [LetBinding]
ls0 (Left arg :: Term
arg:args0 :: [Either Term Kind]
args0) = do
    TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> m TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
    let argTy :: Kind
argTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
arg
        ty1 :: Kind
ty1   = TyConMap -> Kind -> Kind -> Kind
applyFunTy TyConMap
tcm Kind
ty0 Kind
argTy
    case Term -> Bool
isWorkFree Term
arg Bool -> Bool -> Bool
|| Term -> Bool
isVar Term
arg of
      True -> do
        (ty2 :: Kind
ty2,ls1 :: [LetBinding]
ls1,args1 :: [Either Term Kind]
args1) <- InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg InScopeSet
isA0 Kind
ty1 [LetBinding]
ls0 [Either Term Kind]
args0
        (Kind, [LetBinding], [Either Term Kind])
-> m (Kind, [LetBinding], [Either Term Kind])
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Kind
ty2,[LetBinding]
ls1,Term -> Either Term Kind
forall a b. a -> Either a b
Left Term
argEither Term Kind -> [Either Term Kind] -> [Either Term Kind]
forall a. a -> [a] -> [a]
:[Either Term Kind]
args1)
      False -> do
        Id
boundArg <- InScopeSet -> TyConMap -> Name Term -> Term -> m Id
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
isA0 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "app_arg") Term
arg
        let isA1 :: InScopeSet
isA1 = InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
isA0 Id
boundArg
        (ty2 :: Kind
ty2,ls1 :: [LetBinding]
ls1,args1 :: [Either Term Kind]
args1) <- InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg InScopeSet
isA1 Kind
ty1 [LetBinding]
ls0 [Either Term Kind]
args0
        (Kind, [LetBinding], [Either Term Kind])
-> m (Kind, [LetBinding], [Either Term Kind])
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Kind
ty2,(Id
boundArg,Term
arg)LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:[LetBinding]
ls1,Term -> Either Term Kind
forall a b. a -> Either a b
Left (Id -> Term
Var Id
boundArg)Either Term Kind -> [Either Term Kind] -> [Either Term Kind]
forall a. a -> [a] -> [a]
:[Either Term Kind]
args1)

  goCaseArg _ ty :: Kind
ty ls :: [LetBinding]
ls [] = (Kind, [LetBinding], [Either Term Kind])
-> m (Kind, [LetBinding], [Either Term Kind])
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Kind
ty,[LetBinding]
ls,[])
{-# SCC appPropFast #-}

-- | Flatten ridiculous case-statements generated by GHC
--
-- For case-statements in haskell of the form:
--
-- @
-- f :: Unsigned 4 -> Unsigned 4
-- f x = case x of
--   0 -> 3
--   1 -> 2
--   2 -> 1
--   3 -> 0
-- @
--
-- GHC generates Core that looks like:
--
-- @
-- f = \(x :: Unsigned 4) -> case x == fromInteger 3 of
--                             False -> case x == fromInteger 2 of
--                               False -> case x == fromInteger 1 of
--                                 False -> case x == fromInteger 0 of
--                                   False -> error "incomplete case"
--                                   True  -> fromInteger 3
--                                 True -> fromInteger 2
--                               True -> fromInteger 1
--                             True -> fromInteger 0
-- @
--
-- Which would result in a priority decoder circuit where a normal decoder
-- circuit was desired.
--
-- This transformation transforms the above Core to the saner:
--
-- @
-- f = \(x :: Unsigned 4) -> case x of
--        _ -> error "incomplete case"
--        0 -> fromInteger 3
--        1 -> fromInteger 2
--        2 -> fromInteger 1
--        3 -> fromInteger 0
-- @
caseFlat :: HasCallStack => NormRewrite
caseFlat :: NormRewrite
caseFlat _ e :: Term
e@(Case (Term -> Maybe (Term, Term)
collectEqArgs -> Just (scrut' :: Term
scrut',_)) ty :: Kind
ty _)
  = do
       case Term -> Term -> Maybe [Alt]
collectFlat Term
scrut' Term
e of
         Just alts' :: [Alt]
alts' -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> Kind -> [Alt] -> Term
Case Term
scrut' Kind
ty ([Alt] -> Alt
forall a. [a] -> a
last [Alt]
alts' Alt -> [Alt] -> [Alt]
forall a. a -> [a] -> [a]
: [Alt] -> [Alt]
forall a. [a] -> [a]
init [Alt]
alts'))
         Nothing    -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

caseFlat _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC caseFlat #-}

collectFlat :: Term -> Term -> Maybe [(Pat,Term)]
collectFlat :: Term -> Term -> Maybe [Alt]
collectFlat scrut :: Term
scrut (Case (Term -> Maybe (Term, Term)
collectEqArgs -> Just (scrut' :: Term
scrut', val :: Term
val)) _ty :: Kind
_ty [lAlt :: Alt
lAlt,rAlt :: Alt
rAlt])
  | Term
scrut' Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
scrut
  = case Term -> (Term, [Either Term Kind])
collectArgs Term
val of
      (Prim p :: PrimInfo
p,args' :: [Either Term Kind]
args') | Text -> Bool
isFromInt (PrimInfo -> Text
primName PrimInfo
p) ->
        Either Term Kind -> Maybe [Alt]
forall b. Either Term b -> Maybe [Alt]
go ([Either Term Kind] -> Either Term Kind
forall a. [a] -> a
last [Either Term Kind]
args')
      (Data dc :: DataCon
dc,args' :: [Either Term Kind]
args')    | Name DataCon -> Text
forall a. Name a -> Text
nameOcc (DataCon -> Name DataCon
dcName DataCon
dc) Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "GHC.Types.I#" ->
        Either Term Kind -> Maybe [Alt]
forall b. Either Term b -> Maybe [Alt]
go ([Either Term Kind] -> Either Term Kind
forall a. [a] -> a
last [Either Term Kind]
args')
      _ -> Maybe [Alt]
forall a. Maybe a
Nothing
  where
    go :: Either Term b -> Maybe [Alt]
go (Left (Literal i :: Literal
i)) = case (Alt
lAlt,Alt
rAlt) of
              ((pl :: Pat
pl,el :: Term
el),(pr :: Pat
pr,er :: Term
er))
                | Pat -> Bool
isFalseDcPat Pat
pl Bool -> Bool -> Bool
|| Pat -> Bool
isTrueDcPat Pat
pr ->
                   case Term -> Term -> Maybe [Alt]
collectFlat Term
scrut Term
el of
                     Just alts' :: [Alt]
alts' -> [Alt] -> Maybe [Alt]
forall a. a -> Maybe a
Just ((Literal -> Pat
LitPat Literal
i, Term
er) Alt -> [Alt] -> [Alt]
forall a. a -> [a] -> [a]
: [Alt]
alts')
                     Nothing    -> [Alt] -> Maybe [Alt]
forall a. a -> Maybe a
Just [(Literal -> Pat
LitPat Literal
i, Term
er)
                                        ,(Pat
DefaultPat, Term
el)
                                        ]
                | Bool
otherwise ->
                   case Term -> Term -> Maybe [Alt]
collectFlat Term
scrut Term
er of
                     Just alts' :: [Alt]
alts' -> [Alt] -> Maybe [Alt]
forall a. a -> Maybe a
Just ((Literal -> Pat
LitPat Literal
i, Term
el) Alt -> [Alt] -> [Alt]
forall a. a -> [a] -> [a]
: [Alt]
alts')
                     Nothing    -> [Alt] -> Maybe [Alt]
forall a. a -> Maybe a
Just [(Literal -> Pat
LitPat Literal
i, Term
el)
                                        ,(Pat
DefaultPat, Term
er)
                                        ]
    go _ = Maybe [Alt]
forall a. Maybe a
Nothing

    isFalseDcPat :: Pat -> Bool
isFalseDcPat (DataPat p :: DataCon
p _ _)
      = ((Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "GHC.Types.False") (Text -> Bool) -> (DataCon -> Text) -> DataCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name DataCon -> Text
forall a. Name a -> Text
nameOcc (Name DataCon -> Text)
-> (DataCon -> Name DataCon) -> DataCon -> Text
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DataCon -> Name DataCon
dcName) DataCon
p
    isFalseDcPat _ = Bool
False

    isTrueDcPat :: Pat -> Bool
isTrueDcPat (DataPat p :: DataCon
p _ _)
      = ((Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "GHC.Types.True") (Text -> Bool) -> (DataCon -> Text) -> DataCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name DataCon -> Text
forall a. Name a -> Text
nameOcc (Name DataCon -> Text)
-> (DataCon -> Name DataCon) -> DataCon -> Text
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DataCon -> Name DataCon
dcName) DataCon
p
    isTrueDcPat _ = Bool
False

collectFlat _ _ = Maybe [Alt]
forall a. Maybe a
Nothing
{-# SCC collectFlat #-}

collectEqArgs :: Term -> Maybe (Term,Term)
collectEqArgs :: Term -> Maybe (Term, Term)
collectEqArgs (Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (Prim p :: PrimInfo
p, args :: [Either Term Kind]
args, ticks :: [TickInfo]
ticks))
  | Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.BitVector.eq#"
    = let [_,_,Left scrut :: Term
scrut,Left val :: Term
val] = [Either Term Kind]
args
      in (Term, Term) -> Maybe (Term, Term)
forall a. a -> Maybe a
Just (Term -> [TickInfo] -> Term
mkTicks Term
scrut [TickInfo]
ticks,Term
val)
  | Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.Index.eq#"  Bool -> Bool -> Bool
||
    Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.Signed.eq#" Bool -> Bool -> Bool
||
    Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.Unsigned.eq#"
    = let [_,Left scrut :: Term
scrut,Left val :: Term
val] = [Either Term Kind]
args
      in (Term, Term) -> Maybe (Term, Term)
forall a. a -> Maybe a
Just (Term -> [TickInfo] -> Term
mkTicks Term
scrut [TickInfo]
ticks,Term
val)
  | Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Transformations.eqInt"
    = let [Left scrut :: Term
scrut,Left val :: Term
val] = [Either Term Kind]
args
      in  (Term, Term) -> Maybe (Term, Term)
forall a. a -> Maybe a
Just (Term -> [TickInfo] -> Term
mkTicks Term
scrut [TickInfo]
ticks,Term
val)
 where
  nm :: Text
nm = PrimInfo -> Text
primName PrimInfo
p

collectEqArgs _ = Maybe (Term, Term)
forall a. Maybe a
Nothing

type NormRewriteW = Transform (StateT ([LetBinding],InScopeSet) (RewriteMonad NormalizeState))

-- | See Note [ANF InScopeSet]
tellBinders :: Monad m => [LetBinding] -> StateT ([LetBinding],InScopeSet) m ()
tellBinders :: [LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders bs :: [LetBinding]
bs = (([LetBinding], InScopeSet) -> ([LetBinding], InScopeSet))
-> StateT ([LetBinding], InScopeSet) m ()
forall s (m :: Type -> Type). MonadState s m => (s -> s) -> m ()
modify (([LetBinding]
bs [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++) ([LetBinding] -> [LetBinding])
-> (InScopeSet -> InScopeSet)
-> ([LetBinding], InScopeSet)
-> ([LetBinding], InScopeSet)
forall (a :: Type -> Type -> Type) b c b' c'.
Arrow a =>
a b c -> a b' c' -> a (b, b') (c, c')
*** (InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
`extendInScopeSetList` ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
bs)))

-- | See Note [ANF InScopeSet]; only extends the inscopeset
notifyBinders :: Monad m => [LetBinding] -> StateT ([LetBinding],InScopeSet) m ()
notifyBinders :: [LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
notifyBinders bs :: [LetBinding]
bs = (([LetBinding], InScopeSet) -> ([LetBinding], InScopeSet))
-> StateT ([LetBinding], InScopeSet) m ()
forall s (m :: Type -> Type). MonadState s m => (s -> s) -> m ()
modify ((InScopeSet -> InScopeSet)
-> ([LetBinding], InScopeSet) -> ([LetBinding], InScopeSet)
forall (a :: Type -> Type -> Type) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
`extendInScopeSetList` ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
bs)))

-- | Is the given type IO-like
isSimIOTy
  :: TyConMap
  -> Type
  -- ^ Type to check for IO-likeness
  -> Bool
isSimIOTy :: TyConMap -> Kind -> Bool
isSimIOTy tcm :: TyConMap
tcm ty :: Kind
ty = case Kind -> TypeView
tyView (TyConMap -> Kind -> Kind
coreView TyConMap
tcm Kind
ty) of
  TyConApp tcNm :: TyConName
tcNm args :: [Kind]
args
    | TyConName -> Text
forall a. Name a -> Text
nameOcc TyConName
tcNm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Explicit.SimIO.SimIO"
    -> Bool
True
    | TyConName -> Text
forall a. Name a -> Text
nameOcc TyConName
tcNm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "GHC.Prim.(#,#)"
    , [_,_,st :: Kind
st,_] <- [Kind]
args
    -> TyConMap -> Kind -> Bool
isStateTokenTy TyConMap
tcm Kind
st
  FunTy _ res :: Kind
res -> TyConMap -> Kind -> Bool
isSimIOTy TyConMap
tcm Kind
res
  _ -> Bool
False

-- | Is the given type the state token
isStateTokenTy
  :: TyConMap
  -> Type
  -- ^ Type to check for state tokenness
  -> Bool
isStateTokenTy :: TyConMap -> Kind -> Bool
isStateTokenTy tcm :: TyConMap
tcm ty :: Kind
ty = case Kind -> TypeView
tyView (TyConMap -> Kind -> Kind
coreView TyConMap
tcm Kind
ty) of
  TyConApp tcNm :: TyConName
tcNm _ -> TyConName -> Text
forall a. Name a -> Text
nameOcc TyConName
tcNm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "GHC.Prim.State#"
  _ -> Bool
False

-- | Turn an expression into a modified ANF-form. As opposed to standard ANF,
-- constants do not become let-bound.
makeANF :: HasCallStack => NormRewrite
makeANF :: NormRewrite
makeANF (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) (Lam bndr :: Id
bndr e :: Term
e) = do
  Term
e' <- HasCallStack => NormRewrite
NormRewrite
makeANF (InScopeSet -> Context -> TransformContext
TransformContext (InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is0 Id
bndr)
                                  (Id -> CoreContext
LamBody Id
bndrCoreContext -> Context -> Context
forall a. a -> [a] -> [a]
:Context
ctx))
                Term
e
  Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id -> Term -> Term
Lam Id
bndr Term
e')

makeANF _ e :: Term
e@(TyLam {}) = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

makeANF ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) e0 :: Term
e0
  = do
    -- We need to freshen all binders in `e` because we're shuffling them around
    -- into a single let-binder, because even when binders don't shadow, they
    -- don't have to be unique within an expression. And so lifting them all
    -- to a single let-binder will cause issues when they're not unique.
    --
    -- We cannot make freshening part of collectANF, because when we generate
    -- new binders, we need to make sure those names do not conflict with _any_
    -- of the existing binders in the expression.
    --
    -- See also Note [ANF InScopeSet]
    let (is2 :: InScopeSet
is2,e1 :: Term
e1) = InScopeSet -> Term -> (InScopeSet, Term)
freshenTm InScopeSet
is0 Term
e0
    ((e2 :: Term
e2,(bndrs :: [LetBinding]
bndrs,_)),Any -> Bool
Monoid.getAny -> Bool
hasChanged) <-
      RewriteMonad NormalizeState (Term, ([LetBinding], InScopeSet))
-> RewriteMonad
     NormalizeState ((Term, ([LetBinding], InScopeSet)), Any)
forall w (m :: Type -> Type) a. MonadWriter w m => m a -> m (a, w)
listen (StateT
  ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
-> ([LetBinding], InScopeSet)
-> RewriteMonad NormalizeState (Term, ([LetBinding], InScopeSet))
forall s (m :: Type -> Type) a. StateT s m a -> s -> m (a, s)
runStateT (Transform
  (StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
-> Transform
     (StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
forall (m :: Type -> Type). Monad m => Transform m -> Transform m
bottomupR HasCallStack =>
Transform
  (StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
Transform
  (StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
collectANF TransformContext
ctx Term
e1) ([],InScopeSet
is2))
    case [LetBinding]
bndrs of
      [] -> if Bool
hasChanged then Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e2 else Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e0
      _  -> do
        let (e3 :: Term
e3,ticks :: [TickInfo]
ticks) = Term -> (Term, [TickInfo])
collectTicks Term
e2
            (srcTicks :: [TickInfo]
srcTicks,nmTicks :: [TickInfo]
nmTicks) = [TickInfo] -> ([TickInfo], [TickInfo])
partitionTicks [TickInfo]
ticks
        -- Ensure that `AppendName` ticks still scope over the entire expression
        Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [TickInfo] -> Term
mkTicks ([LetBinding] -> Term -> Term
Letrec [LetBinding]
bndrs (Term -> [TickInfo] -> Term
mkTicks Term
e3 [TickInfo]
srcTicks)) [TickInfo]
nmTicks)
{-# SCC makeANF #-}

-- | Note [ANF InScopeSet]
--
-- The InScopeSet contains:
--
--    1. All the free variables of the expression we are traversing
--
--    2. All the bound variables of the expression we are traversing
--
--    3. The newly created let-bindings as we recurse back up the traversal
--
-- All of these are needed to created let-bindings that
--
--    * Do not shadow
--    * Are not shadowed
--    * Nor conflict with each other (i.e. have the same unique)
--
-- Initially we start with the local InScopeSet and add the global variables:
--
-- @
-- is1 <- unionInScope is0 <$> Lens.use globalInScope
-- @
--
-- Which will gives us the (superset of) free variables of the expression. Then
-- we call  'freshenTm'
--
-- @
-- let (is2,e1) = freshenTm is1 e0
-- @
--
-- Which extends the InScopeSet with all the bound variables in 'e1', the
-- version of 'e0' where all binders are unique (not just deshadowed).
--
-- So we start out with an InScopeSet that satisfies points 1 and 2, now every
-- time we create a new binder we must add it to the InScopeSet to satisfy
-- point 3.
--
-- Note [ANF no let-bind]
--
-- | Do not let-bind:
--
-- 1. Arguments with an untranslatable type: untranslatable expressions
--    should be propagated down as far as possible
--
-- 2. Local variables or constants: they don't add any work, so no reason
--    to let-bind to enable sharing
--
-- 3. IO actions, the translation of IO actions to sequential HDL constructs
--    depends on IO actions to be propagated down as far as possible.
collectANF :: HasCallStack => NormRewriteW
collectANF :: Transform
  (StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
collectANF ctx :: TransformContext
ctx e :: Term
e@(App appf :: Term
appf arg :: Term
arg)
  | (conVarPrim :: Term
conVarPrim, _) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e
  , Term -> Bool
isCon Term
conVarPrim Bool -> Bool -> Bool
|| Term -> Bool
isPrim Term
conVarPrim Bool -> Bool -> Bool
|| Term -> Bool
isVar Term
conVarPrim
  = do
    Bool
untranslatable <- RewriteMonad NormalizeState Bool
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Bool
forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
arg)
    let localVar :: Bool
localVar   = Term -> Bool
isLocalVar Term
arg
    Bool
constantNoCR   <- RewriteMonad NormalizeState Bool
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Bool
forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Term -> RewriteMonad NormalizeState Bool
forall extra. Term -> RewriteMonad extra Bool
isConstantNotClockReset Term
arg)
    -- See Note [ANF no let-bind]
    case (Bool
untranslatable,Bool
localVar Bool -> Bool -> Bool
|| Bool
constantNoCR, Term -> Bool
isSimBind Term
conVarPrim,Term
arg) of
      (False,False,False,_) -> do
        TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
        -- See Note [ANF InScopeSet]
        InScopeSet
is1   <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
        Id
argId <- RewriteMonad NormalizeState Id
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad NormalizeState Id
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "app_arg") Term
arg)
        -- See Note [ANF InScopeSet]
        [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [(Id
argId,Term
arg)]
        Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term -> Term -> Term
App Term
appf (Id -> Term
Var Id
argId))
      (True,False,_,Letrec binds :: [LetBinding]
binds body :: Term
body) -> do
        [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [LetBinding]
binds
        Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term -> Term -> Term
App Term
appf Term
body)
      _ -> Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
 where
  isSimBind :: Term -> Bool
isSimBind (Prim p :: PrimInfo
p) = PrimInfo -> Text
primName PrimInfo
p Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Explicit.SimIO.bindSimIO#"
  isSimBind _ = Bool
False

collectANF _ (Letrec binds :: [LetBinding]
binds body :: Term
body) = do
  TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
  let isSimIO :: Bool
isSimIO = TyConMap -> Kind -> Bool
isSimIOTy TyConMap
tcm (TyConMap -> Term -> Kind
termType TyConMap
tcm Term
body)
  Bool
untranslatable <- RewriteMonad NormalizeState Bool
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Bool
forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
body)
  let localVar :: Bool
localVar = Term -> Bool
isLocalVar Term
body
  -- See Note [ANF no let-bind]
  if Bool
localVar Bool -> Bool -> Bool
|| Bool
untranslatable Bool -> Bool -> Bool
|| Bool
isSimIO
    then do
      [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [LetBinding]
binds
      Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
body
    else do
      -- See Note [ANF InScopeSet]
      InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
      Id
argId <- RewriteMonad NormalizeState Id
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Any -> Term -> RewriteMonad NormalizeState Id
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (Text -> Int -> Name Any
forall a. Text -> Int -> Name a
mkUnsafeSystemName "result" 0) Term
body)
      -- See Note [ANF InScopeSet]
      [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [(Id
argId,Term
body)]
      [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [LetBinding]
binds
      Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id -> Term
Var Id
argId)

-- TODO: The code below special-cases ANF for the ':-' constructor for the
-- 'Signal' type. The 'Signal' type is essentially treated as a "transparent"
-- type by the Clash compiler, so observing its constructor leads to all kinds
-- of problems. In this case that "Clash.Rewrite.Util.mkSelectorCase" will
-- try to project the LHS and RHS of the ':-' constructor, however,
-- 'mkSelectorCase' uses 'coreView1' to find the "real" data-constructor.
-- 'coreView1' however looks through the 'Signal' type, and hence 'mkSelector'
-- finds the data constructors for the element type of Signal. This resulted in
-- error #24 (https://github.com/christiaanb/clash2/issues/24), where we
-- try to get the first field out of the 'Vec's 'Nil' constructor.
--
-- Ultimately we should stop treating Signal as a "transparent" type and deal
-- handling of the Signal type, and the involved co-recursive functions,
-- properly. At the moment, Clash cannot deal with this recursive type and the
-- recursive functions involved, hence the need for special-casing code. After
-- everything is done properly, we should remove the two lines below.
collectANF _ e :: Term
e@(Case _ _ [(DataPat dc :: DataCon
dc _ _,_)])
  | Name DataCon -> Text
forall a. Name a -> Text
nameOcc (DataCon -> Name DataCon
dcName DataCon
dc) Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Signal.Internal.:-" = Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

collectANF ctx :: TransformContext
ctx (Case subj :: Term
subj ty :: Kind
ty alts :: [Alt]
alts) = do
    let localVar :: Bool
localVar = Term -> Bool
isLocalVar Term
subj
    let isConstantSubj :: Bool
isConstantSubj = Term -> Bool
isConstant Term
subj

    (subj' :: Term
subj',subjBinders :: [LetBinding]
subjBinders) <- if Bool
localVar Bool -> Bool -> Bool
|| Bool
isConstantSubj
      then (Term, [LetBinding])
-> StateT
     ([LetBinding], InScopeSet)
     (RewriteMonad NormalizeState)
     (Term, [LetBinding])
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term
subj,[])
      else do
        TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
        -- See Note [ANF InScopeSet]
        InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
        Id
argId <- RewriteMonad NormalizeState Id
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad NormalizeState Id
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "case_scrut") Term
subj)
        -- See Note [ANF InScopeSet]
        [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
notifyBinders [(Id
argId,Term
subj)]
        (Term, [LetBinding])
-> StateT
     ([LetBinding], InScopeSet)
     (RewriteMonad NormalizeState)
     (Term, [LetBinding])
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id -> Term
Var Id
argId,[(Id
argId,Term
subj)])

    TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
    let isSimIOAlt :: Bool
isSimIOAlt = TyConMap -> Kind -> Bool
isSimIOTy TyConMap
tcm Kind
ty

    [Alt]
alts' <- (Alt
 -> StateT
      ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt)
-> [Alt]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) [Alt]
forall (t :: Type -> Type) (m :: Type -> Type) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Bool
-> Term
-> Alt
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
doAlt Bool
isSimIOAlt Term
subj') [Alt]
alts
    [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [LetBinding]
subjBinders

    case [Alt]
alts' of
      [(DataPat _ [] xs :: [Id]
xs,altExpr :: Term
altExpr)]
        | [Id]
xs [Id] -> Term -> Bool
`localIdsDoNotOccurIn` Term
altExpr Bool -> Bool -> Bool
|| Bool
isSimIOAlt
        -> Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
altExpr
      _ -> Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term -> Kind -> [Alt] -> Term
Case Term
subj' Kind
ty [Alt]
alts')
  where
    doAlt
      :: Bool -> Term -> (Pat,Term)
      -> StateT ([LetBinding],InScopeSet) (RewriteMonad NormalizeState)
                (Pat,Term)
    doAlt :: Bool
-> Term
-> Alt
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
doAlt isSimIOAlt :: Bool
isSimIOAlt subj' :: Term
subj' alt :: Alt
alt@(DataPat dc :: DataCon
dc exts :: [TyVar]
exts xs :: [Id]
xs,altExpr :: Term
altExpr) | Bool -> Bool
not ([TyVar] -> [Id] -> Bool
forall a. [TyVar] -> [Var a] -> Bool
bindsExistentials [TyVar]
exts [Id]
xs) = do
      let lv :: Bool
lv = Term -> Bool
isLocalVar Term
altExpr
      [LetBinding]
patSels <- (Id
 -> Int
 -> StateT
      ([LetBinding], InScopeSet)
      (RewriteMonad NormalizeState)
      LetBinding)
-> [Id]
-> [Int]
-> StateT
     ([LetBinding], InScopeSet)
     (RewriteMonad NormalizeState)
     [LetBinding]
forall (m :: Type -> Type) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
Monad.zipWithM (Term
-> DataCon
-> Id
-> Int
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) LetBinding
doPatBndr Term
subj' DataCon
dc) [Id]
xs [0..]
      let altExprIsConstant :: Bool
altExprIsConstant = Term -> Bool
isConstant Term
altExpr
      let usesXs :: Term -> Bool
usesXs (Var n :: Id
n) = (Id -> Bool) -> [Id] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
any (Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
n) [Id]
xs
          usesXs _       = Bool
False
      -- See [ANF no let-bind]
      if [Bool] -> Bool
forall (t :: Type -> Type). Foldable t => t Bool -> Bool
or [Bool
isSimIOAlt, Bool
lv Bool -> Bool -> Bool
&& (Bool -> Bool
not (Term -> Bool
usesXs Term
altExpr) Bool -> Bool -> Bool
|| [Alt] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Alt]
alts Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 1), Bool
altExprIsConstant]
        then do
          -- See Note [ANF InScopeSet]
          [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [LetBinding]
patSels
          Alt
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: Type -> Type) a. Monad m => a -> m a
return Alt
alt
        else do
          TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
          -- See Note [ANF InScopeSet]
          InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
          Id
altId <- RewriteMonad NormalizeState Id
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad NormalizeState Id
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "case_alt") Term
altExpr)
          -- See Note [ANF InScopeSet]
          [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders ([LetBinding]
patSels [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++ [(Id
altId,Term
altExpr)])
          Alt
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: Type -> Type) a. Monad m => a -> m a
return (DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
exts [Id]
xs,Id -> Term
Var Id
altId)
    doAlt _ _ alt :: Alt
alt@(DataPat {}, _) = Alt
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: Type -> Type) a. Monad m => a -> m a
return Alt
alt
    doAlt isSimIOAlt :: Bool
isSimIOAlt _ alt :: Alt
alt@(pat :: Pat
pat,altExpr :: Term
altExpr) = do
      let lv :: Bool
lv = Term -> Bool
isLocalVar Term
altExpr
      let altExprIsConstant :: Bool
altExprIsConstant = Term -> Bool
isConstant Term
altExpr
      -- See [ANF no let-bind]
      if Bool
isSimIOAlt Bool -> Bool -> Bool
|| Bool
lv Bool -> Bool -> Bool
|| Bool
altExprIsConstant
        then Alt
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: Type -> Type) a. Monad m => a -> m a
return Alt
alt
        else do
          TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
          -- See Note [ANF InScopeSet]
          InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
          Id
altId <- RewriteMonad NormalizeState Id
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad NormalizeState Id
forall (m :: Type -> Type) a.
(MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "case_alt") Term
altExpr)
          [LetBinding]
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: Type -> Type).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [(Id
altId,Term
altExpr)]
          Alt
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Pat
pat,Id -> Term
Var Id
altId)

    doPatBndr
      :: Term -> DataCon -> Id -> Int
      -> StateT ([LetBinding],InScopeSet) (RewriteMonad NormalizeState)
                LetBinding
    doPatBndr :: Term
-> DataCon
-> Id
-> Int
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) LetBinding
doPatBndr subj' :: Term
subj' dc :: DataCon
dc pId :: Id
pId i :: Int
i
      = do
        TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
        -- See Note [ANF InScopeSet]
        InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: Type -> Type) a.
MonadState s m =>
Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
        Term
patExpr <- RewriteMonad NormalizeState Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (t :: (Type -> Type) -> Type -> Type) (m :: Type -> Type) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (String
-> InScopeSet
-> TyConMap
-> Term
-> Int
-> Int
-> RewriteMonad NormalizeState Term
forall (m :: Type -> Type).
(HasCallStack, Functor m, MonadUnique m) =>
String -> InScopeSet -> TyConMap -> Term -> Int -> Int -> m Term
mkSelectorCase ($(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "doPatBndr") InScopeSet
is1 TyConMap
tcm Term
subj' (DataCon -> Int
dcTag DataCon
dc) Int
i)
        -- No need to 'tellBinders' here because 'pId' is already in the ANF
        -- InScopeSet.
        --
        -- See also Note [ANF InScopeSet]
        LetBinding
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) LetBinding
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Id
pId,Term
patExpr)

collectANF _ e :: Term
e = Term
-> StateT
     ([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC collectANF #-}

-- | Eta-expand top-level lambda's (DON'T use in a traversal!)
etaExpansionTL :: HasCallStack => NormRewrite
etaExpansionTL :: NormRewrite
etaExpansionTL (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) (Lam bndr :: Id
bndr e :: Term
e) = do
  Term
e' <- HasCallStack => NormRewrite
NormRewrite
etaExpansionTL
          (InScopeSet -> Context -> TransformContext
TransformContext (InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is0 Id
bndr) (Id -> CoreContext
LamBody Id
bndrCoreContext -> Context -> Context
forall a. a -> [a] -> [a]
:Context
ctx))
          Term
e
  Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Id -> Term -> Term
Lam Id
bndr Term
e'

etaExpansionTL (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) (Letrec xes :: [LetBinding]
xes e :: Term
e) = do
  let bndrs :: [Id]
bndrs = (LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
xes
  Term
e' <- HasCallStack => NormRewrite
NormRewrite
etaExpansionTL
          (InScopeSet -> Context -> TransformContext
TransformContext (InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [Id]
bndrs)
                            ([Id] -> CoreContext
LetBody [Id]
bndrsCoreContext -> Context -> Context
forall a. a -> [a] -> [a]
:Context
ctx))
          Term
e
  case Term -> ([Id], Term)
stripLambda Term
e' of
    (bs :: [Id]
bs@(_:_),e2 :: Term
e2) -> do
      let e3 :: Term
e3 = [LetBinding] -> Term -> Term
Letrec [LetBinding]
xes Term
e2
      Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [Id] -> Term
mkLams Term
e3 [Id]
bs)
    _ -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return ([LetBinding] -> Term -> Term
Letrec [LetBinding]
xes Term
e')
  where
    stripLambda :: Term -> ([Id],Term)
    stripLambda :: Term -> ([Id], Term)
stripLambda (Lam bndr :: Id
bndr e0 :: Term
e0) =
      let (bndrs :: [Id]
bndrs,e1 :: Term
e1) = Term -> ([Id], Term)
stripLambda Term
e0
      in  (Id
bndrId -> [Id] -> [Id]
forall a. a -> [a] -> [a]
:[Id]
bndrs,Term
e1)
    stripLambda e' :: Term
e' = ([],Term
e')

etaExpansionTL (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) e :: Term
e
  = do
    TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
    if TyConMap -> Term -> Bool
isFun TyConMap
tcm Term
e
      then do
        let argTy :: Kind
argTy = ( (Kind, Kind) -> Kind
forall a b. (a, b) -> a
fst
                    ((Kind, Kind) -> Kind) -> (Term -> (Kind, Kind)) -> Term -> Kind
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Kind, Kind) -> Maybe (Kind, Kind) -> (Kind, Kind)
forall a. a -> Maybe a -> a
Maybe.fromMaybe (String -> (Kind, Kind)
forall a. HasCallStack => String -> a
error (String -> (Kind, Kind)) -> String -> (Kind, Kind)
forall a b. (a -> b) -> a -> b
$ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "etaExpansion splitFunTy")
                    (Maybe (Kind, Kind) -> (Kind, Kind))
-> (Term -> Maybe (Kind, Kind)) -> Term -> (Kind, Kind)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Kind -> Maybe (Kind, Kind)
splitFunTy TyConMap
tcm
                    (Kind -> Maybe (Kind, Kind))
-> (Term -> Kind) -> Term -> Maybe (Kind, Kind)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Term -> Kind
termType TyConMap
tcm
                    ) Term
e
        Id
newId <- InScopeSet -> Text -> Kind -> RewriteMonad NormalizeState Id
forall (m :: Type -> Type).
MonadUnique m =>
InScopeSet -> Text -> Kind -> m Id
mkInternalVar InScopeSet
is0 "arg" Kind
argTy
        Term
e' <- HasCallStack => NormRewrite
NormRewrite
etaExpansionTL (InScopeSet -> Context -> TransformContext
TransformContext (InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is0 Id
newId)
                                               (Id -> CoreContext
LamBody Id
newIdCoreContext -> Context -> Context
forall a. a -> [a] -> [a]
:Context
ctx))
                             (Term -> Term -> Term
App Term
e (Id -> Term
Var Id
newId))
        Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Id -> Term -> Term
Lam Id
newId Term
e')
      else Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC etaExpansionTL #-}

-- | Eta-expand functions with a Synthesize annotation, needed to allow such
-- functions to appear as arguments to higher-order primitives.
etaExpandSyn :: HasCallStack => NormRewrite
etaExpandSyn :: NormRewrite
etaExpandSyn (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) e :: Term
e@(Term -> (Term, [Either Term Kind])
collectArgs -> (Var f :: Id
f, _)) = do
  UniqSet (Var Any)
topEnts <- Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
-> RewriteMonad NormalizeState (UniqSet (Var Any))
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
Lens' RewriteEnv (UniqSet (Var Any))
topEntities
  TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: Type -> Type) a.
MonadReader s m =>
Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
  let isTopEnt :: Bool
isTopEnt = Id
f Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
topEnts
      isAppFunCtx :: Context -> Bool
isAppFunCtx =
        \case
          AppFun:_ -> Bool
True
          TickC _:c :: Context
c -> Context -> Bool
isAppFunCtx Context
c
          _ -> Bool
False
      argTyM :: Maybe Kind
argTyM = ((Kind, Kind) -> Kind) -> Maybe (Kind, Kind) -> Maybe Kind
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (Kind, Kind) -> Kind
forall a b. (a, b) -> a
fst (TyConMap -> Kind -> Maybe (Kind, Kind)
splitFunTy TyConMap
tcm (TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e))
  case Maybe Kind
argTyM of
    Just argTy :: Kind
argTy | Bool
isTopEnt Bool -> Bool -> Bool
&& Bool -> Bool
not (Context -> Bool
isAppFunCtx Context
ctx) -> do
      Id
newId <- InScopeSet -> Text -> Kind -> RewriteMonad NormalizeState Id
forall (m :: Type -> Type).
MonadUnique m =>
InScopeSet -> Text -> Kind -> m Id
mkInternalVar InScopeSet
is0 "arg" Kind
argTy
      Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Id -> Term -> Term
Lam Id
newId (Term -> Term -> Term
App Term
e (Id -> Term
Var Id
newId)))
    _ -> Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e

etaExpandSyn _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: Type -> Type) a. Monad m => a -> m a
return Term
e
{-# SCC etaExpandSyn #-}

isClassConstraint :: Type -> Bool
isClassConstraint :: Kind -> Bool
isClassConstraint (Kind -> TypeView
tyView -> TyConApp nm0 :: TyConName
nm0 _) =
  if -- Constraint tuple:
     | "GHC.Classes.(%" Text -> Text -> Bool
`Text.isInfixOf` Text
nm1 -> Bool
True
     -- Constraint class:
     | "C:" Text -> Text -> Bool
`Text.isInfixOf` Text
nm2 -> Bool
True
     | Bool
otherwise -> Bool
False
 where
  nm1 :: Text
nm1 = TyConName -> Text
forall a. Name a -> Text
nameOcc TyConName
nm0
  nm2 :: Text
nm2 = (Text, Text) -> Text
forall a b. (a, b) -> b
snd (Text -> Text -> (Text, Text)
Text.breakOnEnd "." Text
nm1)

isClassConstraint _ = Bool
False


-- | Turn a  normalized recursive function, where the recursive calls only pass
-- along the unchanged original arguments, into let-recursive function. This
-- means that all recursive calls are replaced by the same variable reference as
-- found in the body of the top-level let-expression.
recToLetRec :: HasCallStack => NormRewrite
recToLetRec :: NormRewrite
recToLetRec (