{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE MultiWayIf #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE ViewPatterns #-}
module Clash.Normalize.Transformations
( appProp
, caseLet
, caseCon
, caseCase
, caseElemNonReachable
, elemExistentials
, inlineNonRep
, inlineOrLiftNonRep
, typeSpec
, nonRepSpec
, etaExpansionTL
, nonRepANF
, bindConstantVar
, constantSpec
, makeANF
, deadCode
, topLet
, recToLetRec
, inlineWorkFree
, inlineHO
, inlineSmall
, simpleCSE
, reduceConst
, reduceNonRepPrim
, caseFlat
, disjointExpressionConsolidation
, removeUnusedExpr
, inlineCleanup
, flattenLet
, splitCastWork
, inlineCast
, caseCast
, letCast
, eliminateCastCast
, argCastSpec
, etaExpandSyn
, appPropFast
)
where
import Control.Concurrent.Supply (splitSupply)
import Control.Exception (throw)
import Control.Lens (_2)
import qualified Control.Lens as Lens
import qualified Control.Monad as Monad
import Control.Monad.State (StateT (..), modify)
import Control.Monad.State.Strict (evalState)
import Control.Monad.Writer (lift, listen)
import Control.Monad.Trans.Except (runExcept)
import Data.Bits ((.&.), complement)
import Data.Coerce (coerce)
import qualified Data.Either as Either
import qualified Data.HashMap.Lazy as HashMap
import qualified Data.HashMap.Strict as HashMapS
import qualified Data.List as List
import qualified Data.Maybe as Maybe
import qualified Data.Monoid as Monoid
import qualified Data.Primitive.ByteArray as BA
import qualified Data.Text as Text
import qualified Data.Vector.Primitive as PV
import Debug.Trace (trace)
import GHC.Integer.GMP.Internals (Integer (..), BigNat (..))
import BasicTypes (InlineSpec (..))
import Clash.Annotations.Primitive (extractPrim)
import Clash.Core.DataCon (DataCon (..))
import Clash.Core.Evaluator (PureHeap, whnf')
import Clash.Core.Name
(Name (..), NameSort (..), mkUnsafeSystemName)
import Clash.Core.FreeVars
(localIdOccursIn, localIdsDoNotOccurIn, freeLocalIds, termFreeTyVars, typeFreeVars, localVarsDoNotOccurIn)
import Clash.Core.Literal (Literal (..))
import Clash.Core.Pretty (showPpr)
import Clash.Core.Subst
(substTm, mkSubst, extendIdSubst, extendIdSubstList, extendTvSubst,
extendTvSubstList, freshenTm, substTyInVar, deShadowTerm)
import Clash.Core.Term
(LetBinding, Pat (..), Term (..), CoreContext (..), PrimInfo (..), TickInfo,
isLambdaBodyCtx, isTickCtx, collectArgs, collectArgsTicks, collectTicks,
partitionTicks)
import Clash.Core.Type (Type, TypeView (..), applyFunTy,
isPolyFunCoreTy, isClassTy,
normalizeType, splitFunForallTy,
splitFunTy,
tyView)
import Clash.Core.TyCon (TyConMap, tyConDataCons)
import Clash.Core.Util
(isCon, isFun, isLet, isPolyFun, isPrim,
isSignalType, isVar, mkApps, mkLams, mkVec, piResultTy, termSize, termType,
tyNatSize, patVars, isAbsurdAlt, altEqs, substInExistentialsList,
solveNonAbsurds, patIds, isLocalVar, undefinedTm, stripTicks, mkTicks)
import Clash.Core.Var
(Id, Var (..), isGlobalId, isLocalId, mkLocalId)
import Clash.Core.VarEnv
(InScopeSet, VarEnv, VarSet, elemVarSet,
emptyVarEnv, emptyVarSet, extendInScopeSet, extendInScopeSetList, lookupVarEnv,
notElemVarSet, unionVarEnvWith, unionVarSet, unionInScope, unitVarEnv,
unitVarSet, mkVarSet, mkInScopeSet, uniqAway)
import Clash.Driver.Types (DebugLevel (..))
import Clash.Netlist.BlackBox.Util (usedArguments)
import Clash.Netlist.Types (HWType (..), FilteredHWType(..))
import Clash.Netlist.Util
(coreTypeToHWType, representableType, splitNormalized, bindsExistentials)
import Clash.Normalize.DEC
import Clash.Normalize.PrimitiveReductions
import Clash.Normalize.Types
import Clash.Normalize.Util
import Clash.Primitives.Types
(Primitive(..), TemplateKind(TExpr), CompiledPrimMap)
import Clash.Rewrite.Combinators
import Clash.Rewrite.Types
import Clash.Rewrite.Util
import Clash.Unique
(Unique, lookupUniqMap, toListUniqMap)
import Clash.Util
inlineOrLiftNonRep :: HasCallStack => NormRewrite
inlineOrLiftNonRep :: NormRewrite
inlineOrLiftNonRep = (LetBinding -> RewriteMonad NormalizeState Bool)
-> (Term -> LetBinding -> RewriteMonad NormalizeState Bool)
-> NormRewrite
forall extra.
(LetBinding -> RewriteMonad extra Bool)
-> (Term -> LetBinding -> RewriteMonad extra Bool) -> Rewrite extra
inlineOrLiftBinders LetBinding -> RewriteMonad NormalizeState Bool
forall extra. LetBinding -> RewriteMonad extra Bool
nonRepTest Term -> LetBinding -> RewriteMonad NormalizeState Bool
forall extra. Term -> LetBinding -> RewriteMonad extra Bool
inlineTest
where
nonRepTest :: (Id, Term) -> RewriteMonad extra Bool
nonRepTest :: LetBinding -> RewriteMonad extra Bool
nonRepTest (Id {varType :: forall a. Var a -> Kind
varType = Kind
ty}, _)
= Bool -> Bool
not (Bool -> Bool)
-> RewriteMonad extra Bool -> RewriteMonad extra Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool
representableType ((CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad
extra
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
extra (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
extra
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
RewriteMonad
extra (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad extra CustomReprs
-> RewriteMonad extra (Bool -> TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad extra CustomReprs
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
RewriteMonad extra (Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad extra Bool
-> RewriteMonad extra (TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad extra Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
False
RewriteMonad extra (TyConMap -> Kind -> Bool)
-> RewriteMonad extra TyConMap -> RewriteMonad extra (Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
RewriteMonad extra (Kind -> Bool)
-> RewriteMonad extra Kind -> RewriteMonad extra Bool
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Kind -> RewriteMonad extra Kind
forall (f :: * -> *) a. Applicative f => a -> f a
pure Kind
ty)
nonRepTest _ = Bool -> RewriteMonad extra Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
inlineTest :: Term -> (Id, Term) -> RewriteMonad extra Bool
inlineTest :: Term -> LetBinding -> RewriteMonad extra Bool
inlineTest e :: Term
e (id_ :: Id
id_, e' :: Term
e')
= Bool -> Bool
not (Bool -> Bool) -> ([Bool] -> Bool) -> [Bool] -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or ([Bool] -> Bool)
-> RewriteMonad extra [Bool] -> RewriteMonad extra Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [RewriteMonad extra Bool] -> RewriteMonad extra [Bool]
forall (t :: * -> *) (m :: * -> *) a.
(Traversable t, Monad m) =>
t (m a) -> m (t a)
sequence
[
Bool -> RewriteMonad extra Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Id
id_ Id -> Term -> Bool
`localIdOccursIn` Term
e')
, Bool -> RewriteMonad extra Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Id -> Term -> Bool
isJoinPointIn Id
id_ Term
e Bool -> Bool -> Bool
&& Bool -> Bool
not (Term -> Bool
isVoidWrapper Term
e'))
, Bool -> RewriteMonad extra Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure (Int
freeOccurances Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> 1)
]
where
freeOccurances :: Int
freeOccurances :: Int
freeOccurances = case Term
e of
Letrec _ res :: Term
res -> do
Sum Int -> Int
forall a. Sum a -> a
Monoid.getSum
(Getting (Sum Int) Term Id -> (Id -> Sum Int) -> Term -> Sum Int
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (Sum Int) Term Id
Fold Term Id
freeLocalIds
(\i :: Id
i -> if Id
i Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
id_
then Int -> Sum Int
forall a. a -> Sum a
Monoid.Sum 1
else Int -> Sum Int
forall a. a -> Sum a
Monoid.Sum 0)
Term
res)
_ -> 0
typeSpec :: HasCallStack => NormRewrite
typeSpec :: NormRewrite
typeSpec ctx :: TransformContext
ctx e :: Term
e@(TyApp e1 :: Term
e1 ty :: Kind
ty)
| (Var {}, args :: [Either Term Kind]
args) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e1
, [TyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ([TyVar] -> Bool) -> [TyVar] -> Bool
forall a b. (a -> b) -> a -> b
$ Getting (Endo [TyVar]) Kind TyVar -> Kind -> [TyVar]
forall a s. Getting (Endo [a]) s a -> s -> [a]
Lens.toListOf Getting (Endo [TyVar]) Kind TyVar
Fold Kind TyVar
typeFreeVars Kind
ty
, (_, []) <- [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
= NormRewrite
specializeNorm TransformContext
ctx Term
e
typeSpec _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
nonRepSpec :: HasCallStack => NormRewrite
nonRepSpec :: NormRewrite
nonRepSpec ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) e :: Term
e@(App e1 :: Term
e1 e2 :: Term
e2)
| (Var {}, args :: [Either Term Kind]
args) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e1
, (_, []) <- [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
, [TyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ([TyVar] -> Bool) -> [TyVar] -> Bool
forall a b. (a -> b) -> a -> b
$ Getting (Endo [TyVar]) Term TyVar -> Term -> [TyVar]
forall a s. Getting (Endo [a]) s a -> s -> [a]
Lens.toListOf Getting (Endo [TyVar]) Term TyVar
Fold Term TyVar
termFreeTyVars Term
e2
= do TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let e2Ty :: Kind
e2Ty = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e2
let localVar :: Bool
localVar = Term -> Bool
isLocalVar Term
e2
Bool
nonRepE2 <- Bool -> Bool
not (Bool -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool
representableType ((CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad
NormalizeState
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
NormalizeState
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
RewriteMonad
NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState CustomReprs
-> RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad NormalizeState CustomReprs
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
False
RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState TyConMap
-> RewriteMonad NormalizeState (Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
RewriteMonad NormalizeState (Kind -> Bool)
-> RewriteMonad NormalizeState Kind
-> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Kind -> RewriteMonad NormalizeState Kind
forall (f :: * -> *) a. Applicative f => a -> f a
pure Kind
e2Ty)
if Bool
nonRepE2 Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
localVar
then do
Term
e2' <- Term -> RewriteMonad NormalizeState Term
inlineInternalSpecialisationArgument Term
e2
NormRewrite
specializeNorm TransformContext
ctx (Term -> Term -> Term
App Term
e1 Term
e2')
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
where
inlineInternalSpecialisationArgument
:: Term
-> NormalizeSession Term
inlineInternalSpecialisationArgument :: Term -> RewriteMonad NormalizeState Term
inlineInternalSpecialisationArgument app :: Term
app
| (Var f :: Id
f,fArgs :: [Either Term Kind]
fArgs,ticks :: [TickInfo]
ticks) <- Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
app
= do
Maybe (Id, SrcSpan, InlineSpec, Term)
fTmM <- Id
-> VarEnv (Id, SrcSpan, InlineSpec, Term)
-> Maybe (Id, SrcSpan, InlineSpec, Term)
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f (VarEnv (Id, SrcSpan, InlineSpec, Term)
-> Maybe (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (Maybe (Id, SrcSpan, InlineSpec, Term))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
forall extra.
Lens' (RewriteState extra) (VarEnv (Id, SrcSpan, InlineSpec, Term))
bindings
case Maybe (Id, SrcSpan, InlineSpec, Term)
fTmM of
Just (fNm :: Id
fNm,_,_,tm :: Term
tm)
| Name Term -> NameSort
forall a. Name a -> NameSort
nameSort (Id -> Name Term
forall a. Var a -> Name a
varName Id
fNm) NameSort -> NameSort -> Bool
forall a. Eq a => a -> a -> Bool
== NameSort
Internal
-> do
Term
tm' <- (Any -> Any)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall extra a.
(Any -> Any) -> RewriteMonad extra a -> RewriteMonad extra a
censor (Any -> Any -> Any
forall a b. a -> b -> a
const Any
forall a. Monoid a => a
mempty)
(NormRewrite -> NormRewrite
forall (m :: * -> *). Monad m => Transform m -> Transform m
bottomupR HasCallStack => NormRewrite
NormRewrite
appProp TransformContext
ctx
(Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks Term
tm [TickInfo]
ticks) [Either Term Kind]
fArgs))
Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return (HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
is0 Term
tm')
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
app
| Bool
otherwise = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
app
nonRepSpec _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
caseLet :: HasCallStack => NormRewrite
caseLet :: NormRewrite
caseLet _ (Case (Letrec xes :: [LetBinding]
xes e :: Term
e) ty :: Kind
ty alts :: [Alt]
alts) =
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
xes (Term -> Kind -> [Alt] -> Term
Case Term
e Kind
ty [Alt]
alts))
caseLet _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
caseElemNonReachable :: HasCallStack => NormRewrite
caseElemNonReachable :: NormRewrite
caseElemNonReachable _ case0 :: Term
case0@(Case scrut :: Term
scrut altsTy :: Kind
altsTy alts0 :: [Alt]
alts0) = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let (altsAbsurd :: [Alt]
altsAbsurd, altsOther :: [Alt]
altsOther) = (Alt -> Bool) -> [Alt] -> ([Alt], [Alt])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition (TyConMap -> Alt -> Bool
isAbsurdAlt TyConMap
tcm) [Alt]
alts0
case [Alt]
altsAbsurd of
[] -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
case0
_ -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< Term -> RewriteMonad NormalizeState Term
forall extra. Term -> RewriteMonad extra Term
caseOneAlt (Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
altsTy [Alt]
altsOther)
caseElemNonReachable _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
elemExistentials :: HasCallStack => NormRewrite
elemExistentials :: NormRewrite
elemExistentials (TransformContext is0 :: InScopeSet
is0 _) (Case scrut :: Term
scrut altsTy :: Kind
altsTy alts0 :: [Alt]
alts0) = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
[Alt]
alts1 <- (Alt -> RewriteMonad NormalizeState Alt)
-> [Alt] -> RewriteMonad NormalizeState [Alt]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet -> TyConMap -> Alt -> RewriteMonad NormalizeState Alt
go InScopeSet
is0 TyConMap
tcm) [Alt]
alts0
Term -> RewriteMonad NormalizeState Term
forall extra. Term -> RewriteMonad extra Term
caseOneAlt (Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
altsTy [Alt]
alts1)
where
go :: InScopeSet -> TyConMap -> (Pat, Term) -> NormalizeSession (Pat, Term)
go :: InScopeSet -> TyConMap -> Alt -> RewriteMonad NormalizeState Alt
go is2 :: InScopeSet
is2 tcm :: TyConMap
tcm alt :: Alt
alt@(DataPat dc :: DataCon
dc exts0 :: [TyVar]
exts0 xs0 :: [Id]
xs0, term0 :: Term
term0) =
case TyConMap -> [(Kind, Kind)] -> [(TyVar, Kind)]
solveNonAbsurds TyConMap
tcm (TyConMap -> Alt -> [(Kind, Kind)]
altEqs TyConMap
tcm Alt
alt) of
[] -> Alt -> RewriteMonad NormalizeState Alt
forall (m :: * -> *) a. Monad m => a -> m a
return Alt
alt
sols :: [(TyVar, Kind)]
sols ->
Alt -> RewriteMonad NormalizeState Alt
forall a extra. a -> RewriteMonad extra a
changed (Alt -> RewriteMonad NormalizeState Alt)
-> RewriteMonad NormalizeState Alt
-> RewriteMonad NormalizeState Alt
forall (m :: * -> *) a b. Monad m => (a -> m b) -> m a -> m b
=<< InScopeSet -> TyConMap -> Alt -> RewriteMonad NormalizeState Alt
go InScopeSet
is2 TyConMap
tcm (DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
exts1 [Id]
xs1, Term
term1)
where
is3 :: InScopeSet
is3 = InScopeSet -> [TyVar] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is2 [TyVar]
exts0
xs1 :: [Id]
xs1 = (Id -> Id) -> [Id] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map (Subst -> Id -> Id
forall a. HasCallStack => Subst -> Var a -> Var a
substTyInVar (Subst -> [(TyVar, Kind)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is3) [(TyVar, Kind)]
sols)) [Id]
xs0
exts1 :: [TyVar]
exts1 = HasCallStack => InScopeSet -> [TyVar] -> [(TyVar, Kind)] -> [TyVar]
InScopeSet -> [TyVar] -> [(TyVar, Kind)] -> [TyVar]
substInExistentialsList InScopeSet
is2 [TyVar]
exts0 [(TyVar, Kind)]
sols
is4 :: InScopeSet
is4 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is3 [Id]
xs1
subst :: Subst
subst = Subst -> [(TyVar, Kind)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is4) [(TyVar, Kind)]
sols
term1 :: Term
term1 = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "Replacing tyVar due to solved eq" Subst
subst Term
term0
go _ _ alt :: Alt
alt = Alt -> RewriteMonad NormalizeState Alt
forall (m :: * -> *) a. Monad m => a -> m a
return Alt
alt
elemExistentials _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
caseCase :: HasCallStack => NormRewrite
caseCase :: NormRewrite
caseCase _ e :: Term
e@(Case (Term -> Term
stripTicks -> Case scrut :: Term
scrut alts1Ty :: Kind
alts1Ty alts1 :: [Alt]
alts1) alts2Ty :: Kind
alts2Ty alts2 :: [Alt]
alts2)
= do
Bool
ty1Rep <- (CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool
representableType ((CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad
NormalizeState
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
NormalizeState
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
RewriteMonad
NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState CustomReprs
-> RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad NormalizeState CustomReprs
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
False
RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState TyConMap
-> RewriteMonad NormalizeState (Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
RewriteMonad NormalizeState (Kind -> Bool)
-> RewriteMonad NormalizeState Kind
-> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Kind -> RewriteMonad NormalizeState Kind
forall (f :: * -> *) a. Applicative f => a -> f a
pure Kind
alts1Ty
if Bool -> Bool
not Bool
ty1Rep
then let newAlts :: [Alt]
newAlts = (Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> Alt -> Alt
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (\altE :: Term
altE -> Term -> Kind -> [Alt] -> Term
Case Term
altE Kind
alts2Ty [Alt]
alts2)) [Alt]
alts1
in Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
alts2Ty [Alt]
newAlts
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
caseCase _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
inlineNonRep :: HasCallStack => NormRewrite
inlineNonRep :: NormRewrite
inlineNonRep (TransformContext localScope :: InScopeSet
localScope _) e :: Term
e@(Case scrut :: Term
scrut altsTy :: Kind
altsTy alts :: [Alt]
alts)
| (Var f :: Id
f, args :: [Either Term Kind]
args,ticks :: [TickInfo]
ticks) <- Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
scrut
, Id -> Bool
forall a. Var a -> Bool
isGlobalId Id
f
= do
(cf :: Id
cf,_) <- Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
-> RewriteMonad NormalizeState (Id, SrcSpan)
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
forall extra. Lens' (RewriteState extra) (Id, SrcSpan)
curFun
Maybe Int
isInlined <- State NormalizeState (Maybe Int)
-> RewriteMonad NormalizeState (Maybe Int)
forall extra a. State extra a -> RewriteMonad extra a
zoomExtra (Id -> Id -> State NormalizeState (Maybe Int)
alreadyInlined Id
f Id
cf)
Int
limit <- Getting Int (RewriteState NormalizeState) Int
-> RewriteMonad NormalizeState Int
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use ((NormalizeState -> Const Int NormalizeState)
-> RewriteState NormalizeState
-> Const Int (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState -> Const Int NormalizeState)
-> RewriteState NormalizeState
-> Const Int (RewriteState NormalizeState))
-> ((Int -> Const Int Int)
-> NormalizeState -> Const Int NormalizeState)
-> Getting Int (RewriteState NormalizeState) Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Int -> Const Int Int)
-> NormalizeState -> Const Int NormalizeState
Lens' NormalizeState Int
inlineLimit)
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let scrutTy :: Kind
scrutTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
scrut
noException :: Bool
noException = Bool -> Bool
not (TyConMap -> Kind -> Bool
exception TyConMap
tcm Kind
scrutTy)
if Bool
noException Bool -> Bool -> Bool
&& (Int -> Maybe Int -> Int
forall a. a -> Maybe a -> a
Maybe.fromMaybe 0 Maybe Int
isInlined) Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
limit
then do
Bool
-> String
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall a. Bool -> String -> a -> a
traceIf Bool
True ([String] -> String
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [$(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "InlineNonRep: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
f)
," already inlined " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
limit String -> String -> String
forall a. [a] -> [a] -> [a]
++ " times in:"
, Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
cf)
, "\nType of the subject is: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Kind -> String
forall p. PrettyPrec p => p -> String
showPpr Kind
scrutTy
, "\nFunction " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Name Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Id -> Name Term
forall a. Var a -> Name a
varName Id
cf)
, " will not reach a normal form, and compilation"
, " might fail."
, "\nRun with '-fclash-inline-limit=N' to increase"
, " the inlining limit to N."
])
(Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e)
else do
Maybe (Id, SrcSpan, InlineSpec, Term)
bodyMaybe <- Id
-> VarEnv (Id, SrcSpan, InlineSpec, Term)
-> Maybe (Id, SrcSpan, InlineSpec, Term)
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f (VarEnv (Id, SrcSpan, InlineSpec, Term)
-> Maybe (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (Maybe (Id, SrcSpan, InlineSpec, Term))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
forall extra.
Lens' (RewriteState extra) (VarEnv (Id, SrcSpan, InlineSpec, Term))
bindings
Bool
nonRepScrut <- Bool -> Bool
not (Bool -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ((CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool
representableType ((CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad
NormalizeState
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
NormalizeState
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
RewriteMonad
NormalizeState (CustomReprs -> Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState CustomReprs
-> RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad NormalizeState CustomReprs
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
RewriteMonad NormalizeState (Bool -> TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState Bool
-> RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Bool -> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
False
RewriteMonad NormalizeState (TyConMap -> Kind -> Bool)
-> RewriteMonad NormalizeState TyConMap
-> RewriteMonad NormalizeState (Kind -> Bool)
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
RewriteMonad NormalizeState (Kind -> Bool)
-> RewriteMonad NormalizeState Kind
-> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a b. Applicative f => f (a -> b) -> f a -> f b
<*> Kind -> RewriteMonad NormalizeState Kind
forall (f :: * -> *) a. Applicative f => a -> f a
pure Kind
scrutTy)
case (Bool
nonRepScrut, Maybe (Id, SrcSpan, InlineSpec, Term)
bodyMaybe) of
(True,Just (_,_,_,scrutBody0 :: Term
scrutBody0)) -> do
Bool
-> RewriteMonad NormalizeState () -> RewriteMonad NormalizeState ()
forall (f :: * -> *). Applicative f => Bool -> f () -> f ()
Monad.when Bool
noException (State NormalizeState () -> RewriteMonad NormalizeState ()
forall extra a. State extra a -> RewriteMonad extra a
zoomExtra (Id -> Id -> State NormalizeState ()
addNewInline Id
f Id
cf))
let scrutBody1 :: Term
scrutBody1 = HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
localScope Term
scrutBody0
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> Kind -> [Alt] -> Term
Case (Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks Term
scrutBody1 [TickInfo]
ticks) [Either Term Kind]
args) Kind
altsTy [Alt]
alts
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
where
exception :: TyConMap -> Kind -> Bool
exception = TyConMap -> Kind -> Bool
isClassTy
inlineNonRep _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
caseCon :: HasCallStack => NormRewrite
caseCon :: NormRewrite
caseCon (TransformContext is0 :: InScopeSet
is0 _) (Case scrut :: Term
scrut ty :: Kind
ty alts :: [Alt]
alts)
| (Data dc :: DataCon
dc, args :: [Either Term Kind]
args) <- Term -> (Term, [Either Term Kind])
collectArgs Term
scrut
= case (Alt -> Bool) -> [Alt] -> Maybe Alt
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
List.find (DataCon -> Pat -> Bool
equalCon DataCon
dc (Pat -> Bool) -> (Alt -> Pat) -> Alt -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Pat
forall a b. (a, b) -> a
fst) [Alt]
alts of
Just (DataPat _ tvs :: [TyVar]
tvs xs :: [Id]
xs, e :: Term
e) -> do
let is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList (InScopeSet -> [TyVar] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [TyVar]
tvs) [Id]
xs
let fvs :: UniqSet (Var Any)
fvs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
(binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs ([Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args)
e' :: Term
e' = case [LetBinding]
binds of
[] -> Term
e
_ ->
let ((is3 :: InScopeSet
is3,substIds :: [LetBinding]
substIds),binds' :: [LetBinding]
binds') = ((InScopeSet, [LetBinding])
-> LetBinding -> ((InScopeSet, [LetBinding]), LetBinding))
-> (InScopeSet, [LetBinding])
-> [LetBinding]
-> ((InScopeSet, [LetBinding]), [LetBinding])
forall (t :: * -> *) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
List.mapAccumL (InScopeSet, [LetBinding])
-> LetBinding -> ((InScopeSet, [LetBinding]), LetBinding)
forall b.
(InScopeSet, [LetBinding])
-> (Id, b) -> ((InScopeSet, [LetBinding]), (Id, b))
newBinder
(InScopeSet
is1,[]) [LetBinding]
binds
subst :: Subst
subst = Subst -> [LetBinding] -> Subst
extendIdSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is3) [LetBinding]
substIds
in [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds' (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "caseCon0" Subst
subst Term
e)
let subst :: Subst
subst = Subst -> [(TyVar, Kind)] -> Subst
extendTvSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is1)
([(TyVar, Kind)] -> Subst) -> [(TyVar, Kind)] -> Subst
forall a b. (a -> b) -> a -> b
$ [TyVar] -> [Kind] -> [(TyVar, Kind)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TyVar]
tvs (Int -> [Kind] -> [Kind]
forall a. Int -> [a] -> [a]
drop ([TyVar] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length (DataCon -> [TyVar]
dcUnivTyVars DataCon
dc)) ([Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args))
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "caseCon1" Subst
subst Term
e')
_ -> case [Alt]
alts of
((DefaultPat,e :: Term
e):_) -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Kind -> Term
undefinedTm Kind
ty)
where
equalCon :: DataCon -> Pat -> Bool
equalCon dc :: DataCon
dc (DataPat dc' :: DataCon
dc' _ _) = DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== DataCon -> Int
dcTag DataCon
dc'
equalCon _ _ = Bool
False
newBinder :: (InScopeSet, [LetBinding])
-> (Id, b) -> ((InScopeSet, [LetBinding]), (Id, b))
newBinder (isN0 :: InScopeSet
isN0,substN :: [LetBinding]
substN) (x :: Id
x,arg :: b
arg) =
let x' :: Id
x' = InScopeSet -> Id -> Id
forall a. (Uniquable a, ClashPretty a) => InScopeSet -> a -> a
uniqAway InScopeSet
isN0 Id
x
isN1 :: InScopeSet
isN1 = InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
isN0 Id
x'
in ((InScopeSet
isN1,(Id
x,Id -> Term
Var Id
x')LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:[LetBinding]
substN),(Id
x',b
arg))
caseCon _ c :: Term
c@(Case (Term -> Term
stripTicks -> Literal l :: Literal
l) _ alts :: [Alt]
alts) = case (Alt -> Bool) -> [Alt] -> Maybe Alt
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
List.find (Pat -> Bool
equalLit (Pat -> Bool) -> (Alt -> Pat) -> Alt -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Pat
forall a b. (a, b) -> a
fst) [Alt]
alts of
Just (LitPat _,e :: Term
e) -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
_ -> Term -> Literal -> [Alt] -> RewriteMonad NormalizeState Term
matchLiteralContructor Term
c Literal
l [Alt]
alts
where
equalLit :: Pat -> Bool
equalLit (LitPat l' :: Literal
l') = Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l'
equalLit _ = Bool
False
caseCon ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) e :: Term
e@(Case subj :: Term
subj ty :: Kind
ty alts :: [Alt]
alts)
| (Prim _ _,_) <- Term -> (Term, [Either Term Kind])
collectArgs Term
subj = do
CustomReprs
reprs <- Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad NormalizeState CustomReprs
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs <- Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
forall extra.
Lens' (RewriteState extra) (VarEnv (Id, SrcSpan, InlineSpec, Term))
bindings
PrimEvaluator
primEval <- Getting PrimEvaluator RewriteEnv PrimEvaluator
-> RewriteMonad NormalizeState PrimEvaluator
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting PrimEvaluator RewriteEnv PrimEvaluator
Lens' RewriteEnv PrimEvaluator
evaluator
Supply
ids <- Getting Supply (RewriteState NormalizeState) Supply
-> RewriteMonad NormalizeState Supply
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting Supply (RewriteState NormalizeState) Supply
forall extra. Lens' (RewriteState extra) Supply
uniqSupply
let (ids1 :: Supply
ids1,ids2 :: Supply
ids2) = Supply -> (Supply, Supply)
splitSupply Supply
ids
(Supply -> Identity Supply)
-> RewriteState NormalizeState
-> Identity (RewriteState NormalizeState)
forall extra. Lens' (RewriteState extra) Supply
uniqSupply ((Supply -> Identity Supply)
-> RewriteState NormalizeState
-> Identity (RewriteState NormalizeState))
-> Supply -> RewriteMonad NormalizeState ()
forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
Lens..= Supply
ids2
GlobalHeap
gh <- Getting GlobalHeap (RewriteState NormalizeState) GlobalHeap
-> RewriteMonad NormalizeState GlobalHeap
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting GlobalHeap (RewriteState NormalizeState) GlobalHeap
forall extra. Lens' (RewriteState extra) GlobalHeap
globalHeap
DebugLevel
lvl <- Getting DebugLevel RewriteEnv DebugLevel
-> RewriteMonad NormalizeState DebugLevel
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting DebugLevel RewriteEnv DebugLevel
Lens' RewriteEnv DebugLevel
dbgLevel
case PrimEvaluator
-> VarEnv (Id, SrcSpan, InlineSpec, Term)
-> TyConMap
-> GlobalHeap
-> Supply
-> InScopeSet
-> Bool
-> Term
-> (GlobalHeap, PureHeap, Term)
whnf' PrimEvaluator
primEval VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs TyConMap
tcm GlobalHeap
gh Supply
ids1 InScopeSet
is0 Bool
True Term
subj of
(gh' :: GlobalHeap
gh',ph' :: PureHeap
ph',v :: Term
v) -> do
(GlobalHeap -> Identity GlobalHeap)
-> RewriteState NormalizeState
-> Identity (RewriteState NormalizeState)
forall extra. Lens' (RewriteState extra) GlobalHeap
globalHeap ((GlobalHeap -> Identity GlobalHeap)
-> RewriteState NormalizeState
-> Identity (RewriteState NormalizeState))
-> GlobalHeap -> RewriteMonad NormalizeState ()
forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
Lens..= GlobalHeap
gh'
TransformContext
-> TyConMap
-> PureHeap
-> (TransformContext -> RewriteMonad NormalizeState Term)
-> RewriteMonad NormalizeState Term
forall extra.
TransformContext
-> TyConMap
-> PureHeap
-> (TransformContext -> RewriteMonad extra Term)
-> RewriteMonad extra Term
bindPureHeap TransformContext
ctx TyConMap
tcm PureHeap
ph' ((TransformContext -> RewriteMonad NormalizeState Term)
-> RewriteMonad NormalizeState Term)
-> (TransformContext -> RewriteMonad NormalizeState Term)
-> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ \ctx' :: TransformContext
ctx' -> case Term -> Term
stripTicks Term
v of
Literal l :: Literal
l -> HasCallStack => NormRewrite
NormRewrite
caseCon TransformContext
ctx' (Term -> Kind -> [Alt] -> Term
Case (Literal -> Term
Literal Literal
l) Kind
ty [Alt]
alts)
subj' :: Term
subj' -> case Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
subj' of
(Data _,_,_) -> HasCallStack => NormRewrite
NormRewrite
caseCon TransformContext
ctx' (Term -> Kind -> [Alt] -> Term
Case Term
subj' Kind
ty [Alt]
alts)
#if MIN_VERSION_ghc(8,2,2)
(Prim nm :: Text
nm ty' :: PrimInfo
ty',_:msgOrCallStack :: Either Term Kind
msgOrCallStack:_,ticks :: [TickInfo]
ticks)
| Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Control.Exception.Base.absentError" ->
let e' :: Term
e' = Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (Text -> PrimInfo -> Term
Prim Text
nm PrimInfo
ty') [TickInfo]
ticks)
[Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
ty,Either Term Kind
msgOrCallStack]
in Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
#endif
(Prim nm :: Text
nm ty' :: PrimInfo
ty',repTy :: Either Term Kind
repTy:_:msgOrCallStack :: Either Term Kind
msgOrCallStack:_,ticks :: [TickInfo]
ticks)
| Text
nm Text -> [Text] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` ["Control.Exception.Base.patError"
#if !MIN_VERSION_ghc(8,2,2)
,"Control.Exception.Base.absentError"
#endif
,"GHC.Err.undefined"] ->
let e' :: Term
e' = Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (Text -> PrimInfo -> Term
Prim Text
nm PrimInfo
ty') [TickInfo]
ticks)
[Either Term Kind
repTy,Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
ty,Either Term Kind
msgOrCallStack]
in Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
(Prim nm :: Text
nm ty' :: PrimInfo
ty',[_],ticks :: [TickInfo]
ticks)
| Text
nm Text -> [Text] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [ "Clash.Transformations.undefined"
, "Clash.GHC.Evaluator.undefined"
, "EmptyCase"] ->
let e' :: Term
e' = Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (Text -> PrimInfo -> Term
Prim Text
nm PrimInfo
ty') [TickInfo]
ticks) [Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
ty]
in Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
_ -> do
let subjTy :: Kind
subjTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
subj
CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType))
tran <- Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
NormalizeState
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
case (State HWMap (Either String FilteredHWType)
-> HWMap -> Either String FilteredHWType
forall s a. State s a -> s -> a
`evalState` HWMap
forall k v. HashMap k v
HashMapS.empty) ((CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Either String FilteredHWType)
coreTypeToHWType CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType))
tran CustomReprs
reprs TyConMap
tcm Kind
subjTy) of
Right (FilteredHWType (Void (Just hty :: HWType
hty)) _areVoids :: [[(Bool, FilteredHWType)]]
_areVoids)
| HWType
hty HWType -> [HWType] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Int -> HWType
BitVector 0, Int -> HWType
Unsigned 0, Int -> HWType
Signed 0, Integer -> HWType
Index 1]
-> HasCallStack => NormRewrite
NormRewrite
caseCon TransformContext
ctx' (Term -> Kind -> [Alt] -> Term
Case (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral 0)) Kind
ty [Alt]
alts)
_ -> do
let ret :: RewriteMonad extra Term
ret = Term -> RewriteMonad extra Term
forall extra. Term -> RewriteMonad extra Term
caseOneAlt Term
e
if DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
> DebugLevel
DebugNone then do
let subjIsConst :: Bool
subjIsConst = Term -> Bool
isConstant Term
subj
Bool
-> String
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
> DebugLevel
DebugNone Bool -> Bool -> Bool
&& Bool
subjIsConst) ("Irreducible constant as case subject: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
subj String -> String -> String
forall a. [a] -> [a] -> [a]
++ "\nCan be reduced to: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
subj') RewriteMonad NormalizeState Term
forall extra. RewriteMonad extra Term
ret
else
RewriteMonad NormalizeState Term
forall extra. RewriteMonad extra Term
ret
caseCon ctx :: TransformContext
ctx e :: Term
e@(Case subj :: Term
subj ty :: Kind
ty alts :: [Alt]
alts) = do
CustomReprs
reprs <- Getting CustomReprs RewriteEnv CustomReprs
-> RewriteMonad NormalizeState CustomReprs
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting CustomReprs RewriteEnv CustomReprs
Lens' RewriteEnv CustomReprs
customReprs
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let subjTy :: Kind
subjTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
subj
CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType))
tran <- Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> RewriteMonad
NormalizeState
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
Lens'
RewriteEnv
(CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
typeTranslator
case (State HWMap (Either String FilteredHWType)
-> HWMap -> Either String FilteredHWType
forall s a. State s a -> s -> a
`evalState` HWMap
forall k v. HashMap k v
HashMapS.empty) ((CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType)))
-> CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Either String FilteredHWType)
coreTypeToHWType CustomReprs
-> TyConMap
-> Kind
-> State HWMap (Maybe (Either String FilteredHWType))
tran CustomReprs
reprs TyConMap
tcm Kind
subjTy) of
Right (FilteredHWType (Void (Just hty :: HWType
hty)) _areVoids :: [[(Bool, FilteredHWType)]]
_areVoids)
| HWType
hty HWType -> [HWType] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` [Int -> HWType
BitVector 0, Int -> HWType
Unsigned 0, Int -> HWType
Signed 0, Integer -> HWType
Index 1]
-> HasCallStack => NormRewrite
NormRewrite
caseCon TransformContext
ctx (Term -> Kind -> [Alt] -> Term
Case (Literal -> Term
Literal (Integer -> Literal
IntegerLiteral 0)) Kind
ty [Alt]
alts)
_ -> Term -> RewriteMonad NormalizeState Term
forall extra. Term -> RewriteMonad extra Term
caseOneAlt Term
e
caseCon _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
bindPureHeap
:: TransformContext
-> TyConMap
-> PureHeap
-> (TransformContext -> RewriteMonad extra Term)
-> RewriteMonad extra Term
bindPureHeap :: TransformContext
-> TyConMap
-> PureHeap
-> (TransformContext -> RewriteMonad extra Term)
-> RewriteMonad extra Term
bindPureHeap (TransformContext is0 :: InScopeSet
is0 ctxs :: Context
ctxs) tcm :: TyConMap
tcm heap :: PureHeap
heap rw :: TransformContext -> RewriteMonad extra Term
rw = do
(e :: Term
e, Any -> Bool
Monoid.getAny -> Bool
hasChanged) <- RewriteMonad extra Term -> RewriteMonad extra (Term, Any)
forall w (m :: * -> *) a. MonadWriter w m => m a -> m (a, w)
listen (RewriteMonad extra Term -> RewriteMonad extra (Term, Any))
-> RewriteMonad extra Term -> RewriteMonad extra (Term, Any)
forall a b. (a -> b) -> a -> b
$ TransformContext -> RewriteMonad extra Term
rw TransformContext
ctx'
if Bool
hasChanged Bool -> Bool -> Bool
&& Bool -> Bool
not ([LetBinding] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LetBinding]
bndrs)
then Term -> RewriteMonad extra Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> RewriteMonad extra Term)
-> Term -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$ [LetBinding] -> Term -> Term
Letrec [LetBinding]
bndrs Term
e
else Term -> RewriteMonad extra Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
where
bndrs :: [LetBinding]
bndrs = ((Int, Term) -> LetBinding) -> [(Int, Term)] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map (Int, Term) -> LetBinding
toLetBinding ([(Int, Term)] -> [LetBinding]) -> [(Int, Term)] -> [LetBinding]
forall a b. (a -> b) -> a -> b
$ PureHeap -> [(Int, Term)]
forall a. UniqMap a -> [(Int, a)]
toListUniqMap PureHeap
heap
heapIds :: [Id]
heapIds = (LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
bndrs
is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [Id]
heapIds
ctx' :: TransformContext
ctx' = InScopeSet -> Context -> TransformContext
TransformContext InScopeSet
is1 ([Id] -> CoreContext
LetBody [Id]
heapIds CoreContext -> Context -> Context
forall a. a -> [a] -> [a]
: Context
ctxs)
toLetBinding :: (Unique,Term) -> LetBinding
toLetBinding :: (Int, Term) -> LetBinding
toLetBinding (uniq :: Int
uniq,term :: Term
term) = (Id
nm, Term
term)
where
ty :: Kind
ty = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
term
nm :: Id
nm = Kind -> Name Term -> Id
mkLocalId Kind
ty (Text -> Int -> Name Term
forall a. Text -> Int -> Name a
mkUnsafeSystemName "x" Int
uniq)
matchLiteralContructor
:: Term
-> Literal
-> [(Pat,Term)]
-> NormalizeSession Term
matchLiteralContructor :: Term -> Literal -> [Alt] -> RewriteMonad NormalizeState Term
matchLiteralContructor c :: Term
c (IntegerLiteral l :: Integer
l) alts :: [Alt]
alts = [Alt] -> RewriteMonad NormalizeState Term
forall extra. [Alt] -> RewriteMonad extra Term
go ([Alt] -> [Alt]
forall a. [a] -> [a]
reverse [Alt]
alts)
where
go :: [Alt] -> RewriteMonad extra Term
go [(DefaultPat,e :: Term
e)] = Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
go ((DataPat dc :: DataCon
dc [] xs :: [Id]
xs,e :: Term
e):alts' :: [Alt]
alts')
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 1
, Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= ((-2)Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(63::Int)) Bool -> Bool -> Bool
&& Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(63::Int)
= let fvs :: UniqSet (Var Any)
fvs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
(binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Integer -> Literal
IntLiteral Integer
l)]
e' :: Term
e' = case [LetBinding]
binds of
[] -> Term
e
_ -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 2
, Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(63::Int)
= let !(Jp# !(BN# ba :: ByteArray#
ba)) = Integer
l
ba' :: ByteArray
ba' = ByteArray# -> ByteArray
BA.ByteArray ByteArray#
ba
bv :: Vector a
bv = Int -> Int -> ByteArray -> Vector a
forall a. Int -> Int -> ByteArray -> Vector a
PV.Vector 0 (ByteArray -> Int
BA.sizeofByteArray ByteArray
ba') ByteArray
ba'
fvs :: UniqSet (Var Any)
fvs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
(binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Vector Word8 -> Literal
ByteArrayLiteral Vector Word8
forall a. Vector a
bv)]
e' :: Term
e' = case [LetBinding]
binds of
[] -> Term
e
_ -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 3
, Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< ((-2)Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(63::Int))
= let !(Jn# !(BN# ba :: ByteArray#
ba)) = Integer
l
ba' :: ByteArray
ba' = ByteArray# -> ByteArray
BA.ByteArray ByteArray#
ba
bv :: Vector a
bv = Int -> Int -> ByteArray -> Vector a
forall a. Int -> Int -> ByteArray -> Vector a
PV.Vector 0 (ByteArray -> Int
BA.sizeofByteArray ByteArray
ba') ByteArray
ba'
fvs :: UniqSet (Var Any)
fvs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
(binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Vector Word8 -> Literal
ByteArrayLiteral Vector Word8
forall a. Vector a
bv)]
e' :: Term
e' = case [LetBinding]
binds of
[] -> Term
e
_ -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
| Bool
otherwise
= [Alt] -> RewriteMonad extra Term
go [Alt]
alts'
go ((LitPat l' :: Literal
l', e :: Term
e):alts' :: [Alt]
alts')
| Integer -> Literal
IntegerLiteral Integer
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l'
= Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
| Bool
otherwise
= [Alt] -> RewriteMonad extra Term
go [Alt]
alts'
go _ = String -> RewriteMonad extra Term
forall a. HasCallStack => String -> a
error (String -> RewriteMonad extra Term)
-> String -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "Report as bug: caseCon error: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
c
matchLiteralContructor c :: Term
c (NaturalLiteral l :: Integer
l) alts :: [Alt]
alts = [Alt] -> RewriteMonad NormalizeState Term
forall extra. [Alt] -> RewriteMonad extra Term
go ([Alt] -> [Alt]
forall a. [a] -> [a]
reverse [Alt]
alts)
where
go :: [Alt] -> RewriteMonad extra Term
go [(DefaultPat,e :: Term
e)] = Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
go ((DataPat dc :: DataCon
dc [] xs :: [Id]
xs,e :: Term
e):alts' :: [Alt]
alts')
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 1
, Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= 0 Bool -> Bool -> Bool
&& Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(64::Int)
= let fvs :: UniqSet (Var Any)
fvs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
(binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Integer -> Literal
WordLiteral Integer
l)]
e' :: Term
e' = case [LetBinding]
binds of
[] -> Term
e
_ -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 2
, Integer
l Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= 2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(64::Int)
= let !(Jp# !(BN# ba :: ByteArray#
ba)) = Integer
l
ba' :: ByteArray
ba' = ByteArray# -> ByteArray
BA.ByteArray ByteArray#
ba
bv :: Vector a
bv = Int -> Int -> ByteArray -> Vector a
forall a. Int -> Int -> ByteArray -> Vector a
PV.Vector 0 (ByteArray -> Int
BA.sizeofByteArray ByteArray
ba') ByteArray
ba'
fvs :: UniqSet (Var Any)
fvs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
e
(binds :: [LetBinding]
binds,_) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition ((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst)
([LetBinding] -> ([LetBinding], [LetBinding]))
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a b. (a -> b) -> a -> b
$ [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Literal -> Term
Literal (Vector Word8 -> Literal
ByteArrayLiteral Vector Word8
forall a. Vector a
bv)]
e' :: Term
e' = case [LetBinding]
binds of
[] -> Term
e
_ -> [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
e
in Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
| Bool
otherwise
= [Alt] -> RewriteMonad extra Term
go [Alt]
alts'
go ((LitPat l' :: Literal
l', e :: Term
e):alts' :: [Alt]
alts')
| Integer -> Literal
NaturalLiteral Integer
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l'
= Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
| Bool
otherwise
= [Alt] -> RewriteMonad extra Term
go [Alt]
alts'
go _ = String -> RewriteMonad extra Term
forall a. HasCallStack => String -> a
error (String -> RewriteMonad extra Term)
-> String -> RewriteMonad extra Term
forall a b. (a -> b) -> a -> b
$ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "Report as bug: caseCon error: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
c
matchLiteralContructor _ _ ((DefaultPat,e :: Term
e):_) = Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
matchLiteralContructor c :: Term
c _ _ =
String -> RewriteMonad NormalizeState Term
forall a. HasCallStack => String -> a
error (String -> RewriteMonad NormalizeState Term)
-> String -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "Report as bug: caseCon error: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
c
caseOneAlt :: Term -> RewriteMonad extra Term
caseOneAlt :: Term -> RewriteMonad extra Term
caseOneAlt e :: Term
e@(Case _ _ [(pat :: Pat
pat,altE :: Term
altE)]) = case Pat
pat of
DefaultPat -> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
altE
LitPat _ -> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
altE
DataPat _ tvs :: [TyVar]
tvs xs :: [Id]
xs
| ([TyVar] -> [Var Any]
forall a b. Coercible a b => a -> b
coerce [TyVar]
tvs [Var Any] -> [Var Any] -> [Var Any]
forall a. [a] -> [a] -> [a]
++ [Id] -> [Var Any]
forall a b. Coercible a b => a -> b
coerce [Id]
xs) [Var Any] -> Term -> Bool
forall a. [Var a] -> Term -> Bool
`localVarsDoNotOccurIn` Term
altE
-> Term -> RewriteMonad extra Term
forall a extra. a -> RewriteMonad extra a
changed Term
altE
| Bool
otherwise
-> Term -> RewriteMonad extra Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
caseOneAlt e :: Term
e = Term -> RewriteMonad extra Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
nonRepANF :: HasCallStack => NormRewrite
nonRepANF :: NormRewrite
nonRepANF ctx :: TransformContext
ctx e :: Term
e@(App appConPrim :: Term
appConPrim arg :: Term
arg)
| (conPrim :: Term
conPrim, _) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e
, Term -> Bool
isCon Term
conPrim Bool -> Bool -> Bool
|| Term -> Bool
isPrim Term
conPrim
= do
Bool
untranslatable <- Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
arg
case (Bool
untranslatable,Term -> Term
stripTicks Term
arg) of
(True,Letrec binds :: [LetBinding]
binds body :: Term
body) -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
binds (Term -> Term -> Term
App Term
appConPrim Term
body))
(True,Case {}) -> NormRewrite
specializeNorm TransformContext
ctx Term
e
(True,Lam {}) -> NormRewrite
specializeNorm TransformContext
ctx Term
e
(True,TyLam {}) -> NormRewrite
specializeNorm TransformContext
ctx Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
nonRepANF _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
topLet :: HasCallStack => NormRewrite
topLet :: NormRewrite
topLet (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) e :: Term
e
| (CoreContext -> Bool) -> Context -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (\c :: CoreContext
c -> CoreContext -> Bool
isLambdaBodyCtx CoreContext
c Bool -> Bool -> Bool
|| CoreContext -> Bool
isTickCtx CoreContext
c) Context
ctx Bool -> Bool -> Bool
&& Bool -> Bool
not (Term -> Bool
isLet Term
e)
= do
Bool
untranslatable <- Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
e
if Bool
untranslatable
then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else do TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
Id
argId <- InScopeSet
-> TyConMap -> Name Any -> Term -> RewriteMonad NormalizeState Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is0 TyConMap
tcm (Text -> Int -> Name Any
forall a. Text -> Int -> Name a
mkUnsafeSystemName "result" 0) Term
e
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [(Id
argId, Term
e)] (Id -> Term
Var Id
argId))
topLet (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) e :: Term
e@(Letrec binds :: [LetBinding]
binds body :: Term
body)
| (CoreContext -> Bool) -> Context -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
all (\c :: CoreContext
c -> CoreContext -> Bool
isLambdaBodyCtx CoreContext
c Bool -> Bool -> Bool
|| CoreContext -> Bool
isTickCtx CoreContext
c) Context
ctx
= do
let localVar :: Bool
localVar = Term -> Bool
isLocalVar Term
body
Bool
untranslatable <- Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
body
if Bool
localVar Bool -> Bool -> Bool
|| Bool
untranslatable
then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let is2 :: InScopeSet
is2 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
binds)
Id
argId <- InScopeSet
-> TyConMap -> Name Any -> Term -> RewriteMonad NormalizeState Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is2 TyConMap
tcm (Text -> Int -> Name Any
forall a. Text -> Int -> Name a
mkUnsafeSystemName "result" 0) Term
body
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec ([LetBinding]
binds [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++ [(Id
argId,Term
body)]) (Id -> Term
Var Id
argId))
topLet _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
deadCode :: HasCallStack => NormRewrite
deadCode :: NormRewrite
deadCode _ e :: Term
e@(Letrec xes :: [LetBinding]
xes body :: Term
body) = do
let bodyFVs :: UniqSet (Var Any)
bodyFVs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
body
(xesUsed :: [LetBinding]
xesUsed,xesOther :: [LetBinding]
xesOther) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
bodyFVs) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst) [LetBinding]
xes
xesUsed' :: [LetBinding]
xesUsed' = [LetBinding] -> [LetBinding] -> [LetBinding] -> [LetBinding]
findUsedBndrs [] [LetBinding]
xesUsed [LetBinding]
xesOther
if [LetBinding] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LetBinding]
xesUsed' Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= [LetBinding] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LetBinding]
xes
then case [LetBinding]
xesUsed' of
[] -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
body
_ -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
xesUsed' Term
body)
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
where
findUsedBndrs :: [(Id, Term)] -> [(Id, Term)]
-> [(Id, Term)] -> [(Id, Term)]
findUsedBndrs :: [LetBinding] -> [LetBinding] -> [LetBinding] -> [LetBinding]
findUsedBndrs used :: [LetBinding]
used [] _ = [LetBinding]
used
findUsedBndrs used :: [LetBinding]
used explore :: [LetBinding]
explore other :: [LetBinding]
other =
let fvsUsed :: UniqSet (Var Any)
fvsUsed = (UniqSet (Var Any) -> UniqSet (Var Any) -> UniqSet (Var Any))
-> UniqSet (Var Any) -> [UniqSet (Var Any)] -> UniqSet (Var Any)
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' UniqSet (Var Any) -> UniqSet (Var Any) -> UniqSet (Var Any)
unionVarSet
UniqSet (Var Any)
emptyVarSet
((LetBinding -> UniqSet (Var Any))
-> [LetBinding] -> [UniqSet (Var Any)]
forall a b. (a -> b) -> [a] -> [b]
map (Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet (Term -> UniqSet (Var Any))
-> (LetBinding -> Term) -> LetBinding -> UniqSet (Var Any)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Term
forall a b. (a, b) -> b
snd) [LetBinding]
explore)
(explore' :: [LetBinding]
explore',other' :: [LetBinding]
other') = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition
((Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
fvsUsed) (Id -> Bool) -> (LetBinding -> Id) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Id
forall a b. (a, b) -> a
fst) [LetBinding]
other
in [LetBinding] -> [LetBinding] -> [LetBinding] -> [LetBinding]
findUsedBndrs ([LetBinding]
used [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++ [LetBinding]
explore) [LetBinding]
explore' [LetBinding]
other'
deadCode _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
removeUnusedExpr :: HasCallStack => NormRewrite
removeUnusedExpr :: NormRewrite
removeUnusedExpr _ e :: Term
e@(Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (p :: Term
p@(Prim nm :: Text
nm pInfo :: PrimInfo
pInfo),args :: [Either Term Kind]
args,ticks :: [TickInfo]
ticks)) = do
Maybe GuardedCompiledPrimitive
bbM <- Text
-> HashMap Text GuardedCompiledPrimitive
-> Maybe GuardedCompiledPrimitive
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
HashMap.lookup Text
nm (HashMap Text GuardedCompiledPrimitive
-> Maybe GuardedCompiledPrimitive)
-> RewriteMonad
NormalizeState (HashMap Text GuardedCompiledPrimitive)
-> RewriteMonad NormalizeState (Maybe GuardedCompiledPrimitive)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(HashMap Text GuardedCompiledPrimitive)
(RewriteState NormalizeState)
(HashMap Text GuardedCompiledPrimitive)
-> RewriteMonad
NormalizeState (HashMap Text GuardedCompiledPrimitive)
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use ((NormalizeState
-> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState)
-> RewriteState NormalizeState
-> Const
(HashMap Text GuardedCompiledPrimitive)
(RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState
-> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState)
-> RewriteState NormalizeState
-> Const
(HashMap Text GuardedCompiledPrimitive)
(RewriteState NormalizeState))
-> ((HashMap Text GuardedCompiledPrimitive
-> Const
(HashMap Text GuardedCompiledPrimitive)
(HashMap Text GuardedCompiledPrimitive))
-> NormalizeState
-> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState)
-> Getting
(HashMap Text GuardedCompiledPrimitive)
(RewriteState NormalizeState)
(HashMap Text GuardedCompiledPrimitive)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(HashMap Text GuardedCompiledPrimitive
-> Const
(HashMap Text GuardedCompiledPrimitive)
(HashMap Text GuardedCompiledPrimitive))
-> NormalizeState
-> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState
Lens' NormalizeState (HashMap Text GuardedCompiledPrimitive)
primitives)
case Maybe GuardedCompiledPrimitive
bbM of
Just (GuardedCompiledPrimitive -> Maybe CompiledPrimitive
forall a. PrimitiveGuard a -> Maybe a
extractPrim -> Just (BlackBox pNm :: Text
pNm _ _ _ _ _ _ inc :: [((Text, Text), BlackBox)]
inc templ :: BlackBox
templ)) -> do
let usedArgs :: [Int]
usedArgs | Text -> Bool
isFromInt Text
pNm
= [0,1,2]
| Text
nm Text -> [Text] -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`elem` ["Clash.Annotations.BitRepresentation.Deriving.dontApplyInHDL"
]
= [0,1]
| Bool
otherwise
= BlackBox -> [Int]
usedArguments BlackBox
templ [Int] -> [Int] -> [Int]
forall a. [a] -> [a] -> [a]
++ (((Text, Text), BlackBox) -> [Int])
-> [((Text, Text), BlackBox)] -> [Int]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (BlackBox -> [Int]
usedArguments (BlackBox -> [Int])
-> (((Text, Text), BlackBox) -> BlackBox)
-> ((Text, Text), BlackBox)
-> [Int]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ((Text, Text), BlackBox) -> BlackBox
forall a b. (a, b) -> b
snd) [((Text, Text), BlackBox)]
inc
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
[Either Term Kind]
args' <- TyConMap
-> Int
-> [Int]
-> [Either Term Kind]
-> RewriteMonad NormalizeState [Either Term Kind]
forall (m :: * -> *) (t :: * -> *) b.
(Monad m, Foldable t) =>
TyConMap -> Int -> t Int -> [Either Term b] -> m [Either Term b]
go TyConMap
tcm 0 [Int]
usedArgs [Either Term Kind]
args
if [Either Term Kind]
args [Either Term Kind] -> [Either Term Kind] -> Bool
forall a. Eq a => a -> a -> Bool
== [Either Term Kind]
args'
then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks Term
p [TickInfo]
ticks) [Either Term Kind]
args')
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
where
arity :: Int
arity = [Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length ([Kind] -> Int)
-> (([Either TyVar Kind], Kind) -> [Kind])
-> ([Either TyVar Kind], Kind)
-> Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Either TyVar Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights ([Either TyVar Kind] -> [Kind])
-> (([Either TyVar Kind], Kind) -> [Either TyVar Kind])
-> ([Either TyVar Kind], Kind)
-> [Kind]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ([Either TyVar Kind], Kind) -> [Either TyVar Kind]
forall a b. (a, b) -> a
fst (([Either TyVar Kind], Kind) -> Int)
-> ([Either TyVar Kind], Kind) -> Int
forall a b. (a -> b) -> a -> b
$ Kind -> ([Either TyVar Kind], Kind)
splitFunForallTy (PrimInfo -> Kind
primType PrimInfo
pInfo)
go :: TyConMap -> Int -> t Int -> [Either Term b] -> m [Either Term b]
go _ _ _ [] = [Either Term b] -> m [Either Term b]
forall (m :: * -> *) a. Monad m => a -> m a
return []
go tcm :: TyConMap
tcm n :: Int
n used :: t Int
used (Right ty :: b
ty:args' :: [Either Term b]
args') = do
[Either Term b]
args'' <- TyConMap -> Int -> t Int -> [Either Term b] -> m [Either Term b]
go TyConMap
tcm Int
n t Int
used [Either Term b]
args'
[Either Term b] -> m [Either Term b]
forall (m :: * -> *) a. Monad m => a -> m a
return (b -> Either Term b
forall a b. b -> Either a b
Right b
ty Either Term b -> [Either Term b] -> [Either Term b]
forall a. a -> [a] -> [a]
: [Either Term b]
args'')
go tcm :: TyConMap
tcm n :: Int
n used :: t Int
used (Left tm :: Term
tm : args' :: [Either Term b]
args') = do
[Either Term b]
args'' <- TyConMap -> Int -> t Int -> [Either Term b] -> m [Either Term b]
go TyConMap
tcm (Int
nInt -> Int -> Int
forall a. Num a => a -> a -> a
+1) t Int
used [Either Term b]
args'
let ty :: Kind
ty = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
tm
p' :: Term
p' = Kind -> Term
removedTm Kind
ty
if Int
n Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< Int
arity Bool -> Bool -> Bool
&& Int
n Int -> t Int -> Bool
forall (t :: * -> *) a. (Foldable t, Eq a) => a -> t a -> Bool
`notElem` t Int
used
then [Either Term b] -> m [Either Term b]
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> Either Term b
forall a b. a -> Either a b
Left Term
p' Either Term b -> [Either Term b] -> [Either Term b]
forall a. a -> [a] -> [a]
: [Either Term b]
args'')
else [Either Term b] -> m [Either Term b]
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> Either Term b
forall a b. a -> Either a b
Left Term
tm Either Term b -> [Either Term b] -> [Either Term b]
forall a. a -> [a] -> [a]
: [Either Term b]
args'')
removeUnusedExpr _ e :: Term
e@(Case _ _ [(DataPat _ [] xs :: [Id]
xs,altExpr :: Term
altExpr)]) =
if [Id]
xs [Id] -> Term -> Bool
`localIdsDoNotOccurIn` Term
altExpr
then Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
altExpr
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
removeUnusedExpr _ e :: Term
e@(Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (Data dc :: DataCon
dc, [_,Right aTy :: Kind
aTy,Right nTy :: Kind
nTy,_,Left a :: Term
a,Left nil :: Term
nil],ticks :: [TickInfo]
ticks))
| Name DataCon -> Text
forall a. Name a -> Text
nameOcc (DataCon -> Name DataCon
dcName DataCon
dc) Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Vector.Cons"
= do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right 0
| (con :: Term
con, _) <- Term -> (Term, [Either Term Kind])
collectArgs Term
nil
, Bool -> Bool
not (Term -> Bool
isCon Term
con)
-> let eTy :: Kind
eTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e
(TyConApp vecTcNm :: TyConName
vecTcNm _) = Kind -> TypeView
tyView Kind
eTy
(Just vecTc :: TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap TyConName
vecTcNm TyConMap
tcm
[nilCon :: DataCon
nilCon,consCon :: DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
v :: Term
v = Term -> [TickInfo] -> Term
mkTicks (DataCon -> DataCon -> Kind -> Integer -> [Term] -> Term
mkVec DataCon
nilCon DataCon
consCon Kind
aTy 1 [Term
a]) [TickInfo]
ticks
in Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
v
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
removeUnusedExpr _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
bindConstantVar :: HasCallStack => NormRewrite
bindConstantVar :: NormRewrite
bindConstantVar = (Term -> LetBinding -> RewriteMonad NormalizeState Bool)
-> NormRewrite
forall extra.
(Term -> LetBinding -> RewriteMonad extra Bool) -> Rewrite extra
inlineBinders Term -> LetBinding -> RewriteMonad NormalizeState Bool
forall p a. p -> (a, Term) -> RewriteMonad NormalizeState Bool
test
where
test :: p -> (a, Term) -> RewriteMonad NormalizeState Bool
test _ (_,Term -> Term
stripTicks -> Term
e) = case Term -> Bool
isLocalVar Term
e of
True -> Bool -> RewriteMonad NormalizeState Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
_ -> Term -> RewriteMonad NormalizeState Bool
forall extra. Term -> RewriteMonad extra Bool
isWorkFreeIsh Term
e RewriteMonad NormalizeState Bool
-> (Bool -> RewriteMonad NormalizeState Bool)
-> RewriteMonad NormalizeState Bool
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
True -> Getting Word (RewriteState NormalizeState) Word
-> RewriteMonad NormalizeState Word
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use ((NormalizeState -> Const Word NormalizeState)
-> RewriteState NormalizeState
-> Const Word (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState -> Const Word NormalizeState)
-> RewriteState NormalizeState
-> Const Word (RewriteState NormalizeState))
-> ((Word -> Const Word Word)
-> NormalizeState -> Const Word NormalizeState)
-> Getting Word (RewriteState NormalizeState) Word
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Word -> Const Word Word)
-> NormalizeState -> Const Word NormalizeState
Lens' NormalizeState Word
inlineConstantLimit) RewriteMonad NormalizeState Word
-> (Word -> RewriteMonad NormalizeState Bool)
-> RewriteMonad NormalizeState Bool
forall (m :: * -> *) a b. Monad m => m a -> (a -> m b) -> m b
>>= \case
0 -> Bool -> RewriteMonad NormalizeState Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
n :: Word
n -> Bool -> RewriteMonad NormalizeState Bool
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> Word
termSize Term
e Word -> Word -> Bool
forall a. Ord a => a -> a -> Bool
<= Word
n)
_ -> Bool -> RewriteMonad NormalizeState Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
caseCast :: HasCallStack => NormRewrite
caseCast :: NormRewrite
caseCast _ (Cast (Term -> Term
stripTicks -> Case subj :: Term
subj ty :: Kind
ty alts :: [Alt]
alts) ty1 :: Kind
ty1 ty2 :: Kind
ty2) = do
let alts' :: [Alt]
alts' = (Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map (\(p :: Pat
p,e :: Term
e) -> (Pat
p, Term -> Kind -> Kind -> Term
Cast Term
e Kind
ty1 Kind
ty2)) [Alt]
alts
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> Kind -> [Alt] -> Term
Case Term
subj Kind
ty [Alt]
alts')
caseCast _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
letCast :: HasCallStack => NormRewrite
letCast :: NormRewrite
letCast _ (Cast (Term -> Term
stripTicks -> Letrec binds :: [LetBinding]
binds body :: Term
body) ty1 :: Kind
ty1 ty2 :: Kind
ty2) =
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ [LetBinding] -> Term -> Term
Letrec [LetBinding]
binds (Term -> Kind -> Kind -> Term
Cast Term
body Kind
ty1 Kind
ty2)
letCast _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
argCastSpec :: HasCallStack => NormRewrite
argCastSpec :: NormRewrite
argCastSpec ctx :: TransformContext
ctx e :: Term
e@(App _ (Term -> Term
stripTicks -> Cast e' :: Term
e' _ _)) = case Term
e' of
Var {} -> RewriteMonad NormalizeState Term
go
Cast (Var {}) _ _ -> RewriteMonad NormalizeState Term
go
_ -> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall a. a -> a
warn RewriteMonad NormalizeState Term
go
where
go :: RewriteMonad NormalizeState Term
go = NormRewrite
specializeNorm TransformContext
ctx Term
e
warn :: a -> a
warn = String -> a -> a
forall a. String -> a -> a
trace ([String] -> String
unlines ["WARNING: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "specializing a function on a possibly non work-free cast."
,"Generated HDL implementation might contain duplicate work."
,"Please report this as a bug."
,""
,"Expression where this occurs:"
,Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
e
])
argCastSpec _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
inlineCast :: HasCallStack => NormRewrite
inlineCast :: NormRewrite
inlineCast = (Term -> LetBinding -> RewriteMonad NormalizeState Bool)
-> NormRewrite
forall extra.
(Term -> LetBinding -> RewriteMonad extra Bool) -> Rewrite extra
inlineBinders Term -> LetBinding -> RewriteMonad NormalizeState Bool
forall (m :: * -> *) p a. Monad m => p -> (a, Term) -> m Bool
test
where
test :: p -> (a, Term) -> m Bool
test _ (_, (Cast (Term -> Term
stripTicks -> Var {}) _ _)) = Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
True
test _ _ = Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
eliminateCastCast :: HasCallStack => NormRewrite
eliminateCastCast :: NormRewrite
eliminateCastCast _ c :: Term
c@(Cast (Term -> Term
stripTicks -> Cast e :: Term
e tyA :: Kind
tyA tyB :: Kind
tyB) tyB' :: Kind
tyB' tyC :: Kind
tyC) = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let ntyA :: Kind
ntyA = TyConMap -> Kind -> Kind
normalizeType TyConMap
tcm Kind
tyA
ntyB :: Kind
ntyB = TyConMap -> Kind -> Kind
normalizeType TyConMap
tcm Kind
tyB
ntyB' :: Kind
ntyB' = TyConMap -> Kind -> Kind
normalizeType TyConMap
tcm Kind
tyB'
ntyC :: Kind
ntyC = TyConMap -> Kind -> Kind
normalizeType TyConMap
tcm Kind
tyC
if Kind
ntyB Kind -> Kind -> Bool
forall a. Eq a => a -> a -> Bool
== Kind
ntyB' Bool -> Bool -> Bool
&& Kind
ntyA Kind -> Kind -> Bool
forall a. Eq a => a -> a -> Bool
== Kind
ntyC then Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e
else RewriteMonad NormalizeState Term
forall b. RewriteMonad NormalizeState b
throwError
where throwError :: RewriteMonad NormalizeState b
throwError = do
(nm :: Id
nm,sp :: SrcSpan
sp) <- Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
-> RewriteMonad NormalizeState (Id, SrcSpan)
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
forall extra. Lens' (RewriteState extra) (Id, SrcSpan)
curFun
ClashException -> RewriteMonad NormalizeState b
forall a e. Exception e => e -> a
throw (SrcSpan -> String -> Maybe String -> ClashException
ClashException SrcSpan
sp ($(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ Id -> String
forall p. PrettyPrec p => p -> String
showPpr Id
nm
String -> String -> String
forall a. [a] -> [a] -> [a]
++ ": Found 2 nested casts whose types don't line up:\n"
String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr Term
c)
Maybe String
forall a. Maybe a
Nothing)
eliminateCastCast _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
splitCastWork :: HasCallStack => NormRewrite
splitCastWork :: NormRewrite
splitCastWork ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) unchanged :: Term
unchanged@(Letrec vs :: [LetBinding]
vs e' :: Term
e') = do
(vss' :: [[LetBinding]]
vss', Any -> Bool
Monoid.getAny -> Bool
hasChanged) <- RewriteMonad NormalizeState [[LetBinding]]
-> RewriteMonad NormalizeState ([[LetBinding]], Any)
forall w (m :: * -> *) a. MonadWriter w m => m a -> m (a, w)
listen ((LetBinding -> RewriteMonad NormalizeState [LetBinding])
-> [LetBinding] -> RewriteMonad NormalizeState [[LetBinding]]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet
-> LetBinding -> RewriteMonad NormalizeState [LetBinding]
forall extra.
InScopeSet -> LetBinding -> RewriteMonad extra [LetBinding]
splitCastLetBinding InScopeSet
is0) [LetBinding]
vs)
let vs' :: [LetBinding]
vs' = [[LetBinding]] -> [LetBinding]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat [[LetBinding]]
vss'
if Bool
hasChanged then Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
vs' Term
e')
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
unchanged
where
splitCastLetBinding
:: InScopeSet
-> LetBinding
-> RewriteMonad extra [LetBinding]
splitCastLetBinding :: InScopeSet -> LetBinding -> RewriteMonad extra [LetBinding]
splitCastLetBinding isN :: InScopeSet
isN x :: LetBinding
x@(nm :: Id
nm, e :: Term
e) = case Term -> Term
stripTicks Term
e of
Cast (Var {}) _ _ -> [LetBinding] -> RewriteMonad extra [LetBinding]
forall (m :: * -> *) a. Monad m => a -> m a
return [LetBinding
x]
Cast (Cast {}) _ _ -> [LetBinding] -> RewriteMonad extra [LetBinding]
forall (m :: * -> *) a. Monad m => a -> m a
return [LetBinding
x]
Cast e0 :: Term
e0 ty1 :: Kind
ty1 ty2 :: Kind
ty2 -> do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> RewriteMonad extra TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
Id
nm' <- InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad extra Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
isN TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx (Name Term -> Text
forall a. Name a -> Text
nameOcc (Name Term -> Text) -> Name Term -> Text
forall a b. (a -> b) -> a -> b
$ Id -> Name Term
forall a. Var a -> Name a
varName Id
nm)) Term
e0
[LetBinding] -> RewriteMonad extra [LetBinding]
forall a extra. a -> RewriteMonad extra a
changed [(Id
nm',Term
e0)
,(Id
nm, Term -> Kind -> Kind -> Term
Cast (Id -> Term
Var Id
nm') Kind
ty1 Kind
ty2)
]
_ -> [LetBinding] -> RewriteMonad extra [LetBinding]
forall (m :: * -> *) a. Monad m => a -> m a
return [LetBinding
x]
splitCastWork _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
inlineWorkFree :: HasCallStack => NormRewrite
inlineWorkFree :: NormRewrite
inlineWorkFree (TransformContext localScope :: InScopeSet
localScope _) e :: Term
e@(Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (Var f :: Id
f,args :: [Either Term Kind]
args@(_:_),ticks :: [TickInfo]
ticks))
= do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let eTy :: Kind
eTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e
Bool
argsHaveWork <- [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or ([Bool] -> Bool)
-> RewriteMonad NormalizeState [Bool]
-> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Either Term Kind -> RewriteMonad NormalizeState Bool)
-> [Either Term Kind] -> RewriteMonad NormalizeState [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM ((Term -> RewriteMonad NormalizeState Bool)
-> (Kind -> RewriteMonad NormalizeState Bool)
-> Either Term Kind
-> RewriteMonad NormalizeState Bool
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either Term -> RewriteMonad NormalizeState Bool
forall (m :: * -> *). MonadReader RewriteEnv m => Term -> m Bool
expressionHasWork
(RewriteMonad NormalizeState Bool
-> Kind -> RewriteMonad NormalizeState Bool
forall a b. a -> b -> a
const (Bool -> RewriteMonad NormalizeState Bool
forall (f :: * -> *) a. Applicative f => a -> f a
pure Bool
False)))
[Either Term Kind]
args
Bool
untranslatable <- Bool -> Kind -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Kind -> RewriteMonad extra Bool
isUntranslatableType Bool
True Kind
eTy
let isSignal :: Bool
isSignal = TyConMap -> Kind -> Bool
isSignalType TyConMap
tcm Kind
eTy
let lv :: Bool
lv = Id -> Bool
forall a. Var a -> Bool
isLocalId Id
f
if Bool
untranslatable Bool -> Bool -> Bool
|| Bool
isSignal Bool -> Bool -> Bool
|| Bool
argsHaveWork Bool -> Bool -> Bool
|| Bool
lv
then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else do
VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs <- Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
forall extra.
Lens' (RewriteState extra) (VarEnv (Id, SrcSpan, InlineSpec, Term))
bindings
case Id
-> VarEnv (Id, SrcSpan, InlineSpec, Term)
-> Maybe (Id, SrcSpan, InlineSpec, Term)
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs of
Just (_,_,_,body :: Term
body) -> do
Bool
isRecBndr <- Id -> RewriteMonad NormalizeState Bool
isRecursiveBndr Id
f
if Bool
isRecBndr
then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else do
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
localScope Term
body) [TickInfo]
ticks) [Either Term Kind]
args)
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
where
expressionHasWork :: Term -> m Bool
expressionHasWork e' :: Term
e' = do
let fvIds :: [Id]
fvIds = Getting (Endo [Id]) Term Id -> Term -> [Id]
forall a s. Getting (Endo [a]) s a -> s -> [a]
Lens.toListOf Getting (Endo [Id]) Term Id
Fold Term Id
freeLocalIds Term
e'
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> m TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let e'Ty :: Kind
e'Ty = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e'
isSignal :: Bool
isSignal = TyConMap -> Kind -> Bool
isSignalType TyConMap
tcm Kind
e'Ty
Bool -> m Bool
forall (m :: * -> *) a. Monad m => a -> m a
return (Bool -> Bool
not ([Id] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [Id]
fvIds) Bool -> Bool -> Bool
|| Bool
isSignal)
inlineWorkFree (TransformContext localScope :: InScopeSet
localScope _) e :: Term
e@(Var f :: Id
f) = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let fTy :: Kind
fTy = Id -> Kind
forall a. Var a -> Kind
varType Id
f
closed :: Bool
closed = Bool -> Bool
not (TyConMap -> Kind -> Bool
isPolyFunCoreTy TyConMap
tcm Kind
fTy)
isSignal :: Bool
isSignal = TyConMap -> Kind -> Bool
isSignalType TyConMap
tcm Kind
fTy
Bool
untranslatable <- Bool -> Kind -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Kind -> RewriteMonad extra Bool
isUntranslatableType Bool
True Kind
fTy
let gv :: Bool
gv = Id -> Bool
forall a. Var a -> Bool
isGlobalId Id
f
if Bool
closed Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
untranslatable Bool -> Bool -> Bool
&& Bool -> Bool
not Bool
isSignal Bool -> Bool -> Bool
&& Bool
gv
then do
VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs <- Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
forall extra.
Lens' (RewriteState extra) (VarEnv (Id, SrcSpan, InlineSpec, Term))
bindings
case Id
-> VarEnv (Id, SrcSpan, InlineSpec, Term)
-> Maybe (Id, SrcSpan, InlineSpec, Term)
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs of
Just top :: (Id, SrcSpan, InlineSpec, Term)
top -> do
Bool
isRecBndr <- Id -> RewriteMonad NormalizeState Bool
isRecursiveBndr Id
f
if Bool
isRecBndr
then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else do
(_,_,_,body :: Term
body) <- Id
-> (Id, SrcSpan, InlineSpec, Term)
-> NormalizeSession (Id, SrcSpan, InlineSpec, Term)
normalizeTopLvlBndr Id
f (Id, SrcSpan, InlineSpec, Term)
top
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
localScope Term
body)
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
inlineWorkFree _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
inlineSmall :: HasCallStack => NormRewrite
inlineSmall :: NormRewrite
inlineSmall (TransformContext localScope :: InScopeSet
localScope _) e :: Term
e@(Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (Var f :: Id
f,args :: [Either Term Kind]
args,ticks :: [TickInfo]
ticks)) = do
Bool
untranslatable <- Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
True Term
e
UniqSet (Var Any)
topEnts <- Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
-> RewriteMonad NormalizeState (UniqSet (Var Any))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
Lens' RewriteEnv (UniqSet (Var Any))
topEntities
let lv :: Bool
lv = Id -> Bool
forall a. Var a -> Bool
isLocalId Id
f
if Bool
untranslatable Bool -> Bool -> Bool
|| Id
f Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
topEnts Bool -> Bool -> Bool
|| Bool
lv
then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else do
VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs <- Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
forall extra.
Lens' (RewriteState extra) (VarEnv (Id, SrcSpan, InlineSpec, Term))
bindings
Word
sizeLimit <- Getting Word (RewriteState NormalizeState) Word
-> RewriteMonad NormalizeState Word
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use ((NormalizeState -> Const Word NormalizeState)
-> RewriteState NormalizeState
-> Const Word (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState -> Const Word NormalizeState)
-> RewriteState NormalizeState
-> Const Word (RewriteState NormalizeState))
-> ((Word -> Const Word Word)
-> NormalizeState -> Const Word NormalizeState)
-> Getting Word (RewriteState NormalizeState) Word
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Word -> Const Word Word)
-> NormalizeState -> Const Word NormalizeState
Lens' NormalizeState Word
inlineFunctionLimit)
case Id
-> VarEnv (Id, SrcSpan, InlineSpec, Term)
-> Maybe (Id, SrcSpan, InlineSpec, Term)
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs of
Just (_,_,inl :: InlineSpec
inl,body :: Term
body) -> do
Bool
isRecBndr <- Id -> RewriteMonad NormalizeState Bool
isRecursiveBndr Id
f
if Bool -> Bool
not Bool
isRecBndr Bool -> Bool -> Bool
&& InlineSpec
inl InlineSpec -> InlineSpec -> Bool
forall a. Eq a => a -> a -> Bool
/= InlineSpec
NoInline Bool -> Bool -> Bool
&& Term -> Word
termSize Term
body Word -> Word -> Bool
forall a. Ord a => a -> a -> Bool
< Word
sizeLimit
then do
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
localScope Term
body) [TickInfo]
ticks) [Either Term Kind]
args)
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
inlineSmall _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
constantSpec :: HasCallStack => NormRewrite
constantSpec :: NormRewrite
constantSpec ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 tfCtx :: Context
tfCtx) e :: Term
e@(App e1 :: Term
e1 e2 :: Term
e2)
| (Var {}, args :: [Either Term Kind]
args) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e1
, (_, []) <- [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
, [TyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ([TyVar] -> Bool) -> [TyVar] -> Bool
forall a b. (a -> b) -> a -> b
$ Getting (Endo [TyVar]) Term TyVar -> Term -> [TyVar]
forall a s. Getting (Endo [a]) s a -> s -> [a]
Lens.toListOf Getting (Endo [TyVar]) Term TyVar
Fold Term TyVar
termFreeTyVars Term
e2
= do ConstantSpecInfo
specInfo<- TransformContext
-> Term -> RewriteMonad NormalizeState ConstantSpecInfo
constantSpecInfo TransformContext
ctx Term
e2
if ConstantSpecInfo -> Bool
csrFoundConstant ConstantSpecInfo
specInfo then
let newBindings :: [LetBinding]
newBindings = ConstantSpecInfo -> [LetBinding]
csrNewBindings ConstantSpecInfo
specInfo in
if [LetBinding] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LetBinding]
newBindings then
NormRewrite
specializeNorm TransformContext
ctx (Term -> Term -> Term
App Term
e1 Term
e2)
else do
let is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 (LetBinding -> Id
forall a b. (a, b) -> a
fst (LetBinding -> Id) -> [LetBinding] -> [Id]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ConstantSpecInfo -> [LetBinding]
csrNewBindings ConstantSpecInfo
specInfo)
HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
is0
(Term -> Term) -> (Term -> Term) -> Term -> Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> [LetBinding] -> Term -> Term
Letrec [LetBinding]
newBindings
(Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> NormRewrite
specializeNorm
(InScopeSet -> Context -> TransformContext
TransformContext InScopeSet
is1 Context
tfCtx)
(Term -> Term -> Term
App Term
e1 (ConstantSpecInfo -> Term
csrNewTerm ConstantSpecInfo
specInfo))
else
Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
constantSpec _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
appProp :: HasCallStack => NormRewrite
appProp :: NormRewrite
appProp (TransformContext is0 :: InScopeSet
is0 _) (App (Term -> (Term, [TickInfo])
collectTicks -> (Lam v :: Id
v e :: Term
e,ticks :: [TickInfo]
ticks)) arg :: Term
arg) =
if Term -> Bool
isWorkFree Term
arg Bool -> Bool -> Bool
|| Term -> Bool
isVar Term
arg
then do
let subst :: Subst
subst = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
is0) Id
v Term
arg
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> [TickInfo] -> Term
mkTicks (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "appProp.AppLam" Subst
subst Term
e) [TickInfo]
ticks
else Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ [LetBinding] -> Term -> Term
Letrec [(Id
v, Term
arg)] (Term -> [TickInfo] -> Term
mkTicks Term
e [TickInfo]
ticks)
appProp _ (App (Term -> (Term, [TickInfo])
collectTicks -> (Letrec v :: [LetBinding]
v e :: Term
e, ticks :: [TickInfo]
ticks)) arg :: Term
arg) = do
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
v (Term -> Term -> Term
App (Term -> [TickInfo] -> Term
mkTicks Term
e [TickInfo]
ticks) Term
arg))
appProp ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) (App (Term -> (Term, [TickInfo])
collectTicks -> (Case scrut :: Term
scrut ty :: Kind
ty alts :: [Alt]
alts,ticks :: [TickInfo]
ticks)) arg :: Term
arg) = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let argTy :: Kind
argTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
arg
ty' :: Kind
ty' = TyConMap -> Kind -> Kind -> Kind
applyFunTy TyConMap
tcm Kind
ty Kind
argTy
if Term -> Bool
isWorkFree Term
arg Bool -> Bool -> Bool
|| Term -> Bool
isVar Term
arg
then do
let alts' :: [Alt]
alts' = (Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> Alt -> Alt
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (Term -> Term -> Term
`App` Term
arg)) [Alt]
alts
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> [TickInfo] -> Term
mkTicks (Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
ty' [Alt]
alts') [TickInfo]
ticks
else do
let is2 :: InScopeSet
is2 = InScopeSet -> InScopeSet -> InScopeSet
unionInScope InScopeSet
is0 ((UniqSet (Var Any) -> InScopeSet
mkInScopeSet (UniqSet (Var Any) -> InScopeSet)
-> ([Alt] -> UniqSet (Var Any)) -> [Alt] -> InScopeSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Var Any] -> UniqSet (Var Any)
forall a. [Var a] -> UniqSet (Var Any)
mkVarSet ([Var Any] -> UniqSet (Var Any))
-> ([Alt] -> [Var Any]) -> [Alt] -> UniqSet (Var Any)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Alt -> [Var Any]) -> [Alt] -> [Var Any]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Pat -> [Var Any]
forall a. Pat -> [Var a]
patVars (Pat -> [Var Any]) -> (Alt -> Pat) -> Alt -> [Var Any]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Pat
forall a b. (a, b) -> a
fst)) [Alt]
alts)
Id
boundArg <- InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad NormalizeState Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is2 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "app_arg") Term
arg
let alts' :: [Alt]
alts' = (Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> Alt -> Alt
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (Term -> Term -> Term
`App` (Id -> Term
Var Id
boundArg))) [Alt]
alts
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [(Id
boundArg, Term
arg)] (Term -> [TickInfo] -> Term
mkTicks (Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
ty' [Alt]
alts') [TickInfo]
ticks))
appProp (TransformContext is0 :: InScopeSet
is0 _) (TyApp (Term -> (Term, [TickInfo])
collectTicks -> (TyLam tv :: TyVar
tv e :: Term
e,ticks :: [TickInfo]
ticks)) t :: Kind
t) = do
let subst :: Subst
subst = Subst -> TyVar -> Kind -> Subst
extendTvSubst (InScopeSet -> Subst
mkSubst InScopeSet
is0) TyVar
tv Kind
t
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> [TickInfo] -> Term
mkTicks (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "appProp.TyAppTyLam" Subst
subst Term
e) [TickInfo]
ticks
appProp _ (TyApp (Term -> (Term, [TickInfo])
collectTicks -> (Letrec v :: [LetBinding]
v e :: Term
e,ticks :: [TickInfo]
ticks)) t :: Kind
t) = do
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
v (Term -> [TickInfo] -> Term
mkTicks (Term -> Kind -> Term
TyApp Term
e Kind
t) [TickInfo]
ticks))
appProp _ (TyApp (Term -> (Term, [TickInfo])
collectTicks -> (Case scrut :: Term
scrut altsTy :: Kind
altsTy alts :: [Alt]
alts,ticks :: [TickInfo]
ticks)) ty :: Kind
ty) = do
let alts' :: [Alt]
alts' = (Alt -> Alt) -> [Alt] -> [Alt]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> Alt -> Alt
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (Term -> Kind -> Term
`TyApp` Kind
ty)) [Alt]
alts
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let ty' :: Kind
ty' = TyConMap -> Kind -> Kind -> Kind
piResultTy TyConMap
tcm Kind
altsTy Kind
ty
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [TickInfo] -> Term
mkTicks (Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
ty' [Alt]
alts') [TickInfo]
ticks)
appProp _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
appPropFast :: HasCallStack => NormRewrite
appPropFast :: NormRewrite
appPropFast ctx :: TransformContext
ctx@(TransformContext is :: InScopeSet
is _) = \case
e :: Term
e@App {} -> (Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term)
-> (Term, [Either Term Kind], [TickInfo])
-> RewriteMonad NormalizeState Term
forall a b c d. (a -> b -> c -> d) -> (a, b, c) -> d
uncurry3 (InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is) (Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
e)
e :: Term
e@TyApp {} -> (Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term)
-> (Term, [Either Term Kind], [TickInfo])
-> RewriteMonad NormalizeState Term
forall a b c d. (a -> b -> c -> d) -> (a, b, c) -> d
uncurry3 (InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is) (Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
e)
e :: Term
e -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
where
go :: InScopeSet -> Term -> [Either Term Type] -> [TickInfo]
-> NormalizeSession Term
go :: InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go is0 :: InScopeSet
is0 (Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (fun :: Term
fun,args0 :: [Either Term Kind]
args0@(_:_),ticks0 :: [TickInfo]
ticks0)) args1 :: [Either Term Kind]
args1 ticks1 :: [TickInfo]
ticks1 =
InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is0 Term
fun ([Either Term Kind]
args0 [Either Term Kind] -> [Either Term Kind] -> [Either Term Kind]
forall a. [a] -> [a] -> [a]
++ [Either Term Kind]
args1) ([TickInfo]
ticks0 [TickInfo] -> [TickInfo] -> [TickInfo]
forall a. [a] -> [a] -> [a]
++ [TickInfo]
ticks1)
go is0 :: InScopeSet
is0 (Lam v :: Id
v e :: Term
e) (Left arg :: Term
arg:args :: [Either Term Kind]
args) ticks :: [TickInfo]
ticks = do
RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
if Term -> Bool
isWorkFree Term
arg Bool -> Bool -> Bool
|| Term -> Bool
isVar Term
arg
then do
let subst :: Subst
subst = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
is0) Id
v Term
arg
(Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is0 (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "appPropFast.AppLam" Subst
subst Term
e) [Either Term Kind]
args []
else do
let is1 :: InScopeSet
is1 = InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is0 Id
v
[LetBinding] -> Term -> Term
Letrec [(Id
v, Term
arg)] (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is1 Term
e [Either Term Kind]
args [TickInfo]
ticks
go is0 :: InScopeSet
is0 (Letrec vs :: [LetBinding]
vs e :: Term
e) args :: [Either Term Kind]
args@(_:_) ticks :: [TickInfo]
ticks = do
RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
let vbs :: [Id]
vbs = (LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
vs
is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [Id]
vbs
[LetBinding] -> Term -> Term
Letrec [LetBinding]
vs (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is1 Term
e [Either Term Kind]
args [TickInfo]
ticks
go is0 :: InScopeSet
is0 (TyLam tv :: TyVar
tv e :: Term
e) (Right t :: Kind
t:args :: [Either Term Kind]
args) ticks :: [TickInfo]
ticks = do
RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
let subst :: Subst
subst = Subst -> TyVar -> Kind -> Subst
extendTvSubst (InScopeSet -> Subst
mkSubst InScopeSet
is0) TyVar
tv Kind
t
(Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is0 (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "appPropFast.TyAppTyLam" Subst
subst Term
e) [Either Term Kind]
args []
go is0 :: InScopeSet
is0 (Case scrut :: Term
scrut ty0 :: Kind
ty0 alts :: [Alt]
alts) args0 :: [Either Term Kind]
args0@(_:_) ticks :: [TickInfo]
ticks = do
RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
let isA1 :: InScopeSet
isA1 = InScopeSet -> InScopeSet -> InScopeSet
unionInScope
InScopeSet
is0
((UniqSet (Var Any) -> InScopeSet
mkInScopeSet (UniqSet (Var Any) -> InScopeSet)
-> ([Alt] -> UniqSet (Var Any)) -> [Alt] -> InScopeSet
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [Var Any] -> UniqSet (Var Any)
forall a. [Var a] -> UniqSet (Var Any)
mkVarSet ([Var Any] -> UniqSet (Var Any))
-> ([Alt] -> [Var Any]) -> [Alt] -> UniqSet (Var Any)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Alt -> [Var Any]) -> [Alt] -> [Var Any]
forall (t :: * -> *) a b. Foldable t => (a -> [b]) -> t a -> [b]
concatMap (Pat -> [Var Any]
forall a. Pat -> [Var a]
patVars (Pat -> [Var Any]) -> (Alt -> Pat) -> Alt -> [Var Any]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Alt -> Pat
forall a b. (a, b) -> a
fst)) [Alt]
alts)
(ty1 :: Kind
ty1,vs :: [LetBinding]
vs,args1 :: [Either Term Kind]
args1) <- InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> RewriteMonad
NormalizeState (Kind, [LetBinding], [Either Term Kind])
forall (m :: * -> *).
(MonadReader RewriteEnv m, MonadUnique m, MonadFail m) =>
InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg InScopeSet
isA1 Kind
ty0 [] [Either Term Kind]
args0
case [LetBinding]
vs of
[] -> (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term) -> ([Alt] -> Term) -> [Alt] -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
ty1 ([Alt] -> Term)
-> RewriteMonad NormalizeState [Alt]
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Alt -> RewriteMonad NormalizeState Alt)
-> [Alt] -> RewriteMonad NormalizeState [Alt]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet
-> [Either Term Kind] -> Alt -> RewriteMonad NormalizeState Alt
goAlt InScopeSet
is0 [Either Term Kind]
args1) [Alt]
alts
_ -> do
let vbs :: [Id]
vbs = (LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
vs
is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [Id]
vbs
[LetBinding] -> Term -> Term
Letrec [LetBinding]
vs (Term -> Term) -> ([Alt] -> Term) -> [Alt] -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term) -> ([Alt] -> Term) -> [Alt] -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Kind -> [Alt] -> Term
Case Term
scrut Kind
ty1 ([Alt] -> Term)
-> RewriteMonad NormalizeState [Alt]
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (Alt -> RewriteMonad NormalizeState Alt)
-> [Alt] -> RewriteMonad NormalizeState [Alt]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet
-> [Either Term Kind] -> Alt -> RewriteMonad NormalizeState Alt
goAlt InScopeSet
is1 [Either Term Kind]
args1) [Alt]
alts
go is0 :: InScopeSet
is0 (Tick sp :: TickInfo
sp e :: Term
e) args :: [Either Term Kind]
args ticks :: [TickInfo]
ticks = do
RewriteMonad NormalizeState ()
forall extra. RewriteMonad extra ()
setChanged
InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is0 Term
e [Either Term Kind]
args (TickInfo
spTickInfo -> [TickInfo] -> [TickInfo]
forall a. a -> [a] -> [a]
:[TickInfo]
ticks)
go _ fun :: Term
fun args :: [Either Term Kind]
args ticks :: [TickInfo]
ticks = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks Term
fun [TickInfo]
ticks) [Either Term Kind]
args)
goAlt :: InScopeSet
-> [Either Term Kind] -> Alt -> RewriteMonad NormalizeState Alt
goAlt is0 :: InScopeSet
is0 args0 :: [Either Term Kind]
args0 (p :: Pat
p,e :: Term
e) = do
let (tvs :: [TyVar]
tvs,ids :: [Id]
ids) = Pat -> ([TyVar], [Id])
patIds Pat
p
is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList (InScopeSet -> [TyVar] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [TyVar]
tvs) [Id]
ids
(Pat
p,) (Term -> Alt)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Alt
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Term
-> [Either Term Kind]
-> [TickInfo]
-> RewriteMonad NormalizeState Term
go InScopeSet
is1 Term
e [Either Term Kind]
args0 []
goCaseArg :: InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg isA :: InScopeSet
isA ty0 :: Kind
ty0 ls0 :: [LetBinding]
ls0 (Right t :: Kind
t:args0 :: [Either Term Kind]
args0) = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> m TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let ty1 :: Kind
ty1 = TyConMap -> Kind -> Kind -> Kind
piResultTy TyConMap
tcm Kind
ty0 Kind
t
(ty2 :: Kind
ty2,ls1 :: [LetBinding]
ls1,args1 :: [Either Term Kind]
args1) <- InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg InScopeSet
isA Kind
ty1 [LetBinding]
ls0 [Either Term Kind]
args0
(Kind, [LetBinding], [Either Term Kind])
-> m (Kind, [LetBinding], [Either Term Kind])
forall (m :: * -> *) a. Monad m => a -> m a
return (Kind
ty2,[LetBinding]
ls1,Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
tEither Term Kind -> [Either Term Kind] -> [Either Term Kind]
forall a. a -> [a] -> [a]
:[Either Term Kind]
args1)
goCaseArg isA0 :: InScopeSet
isA0 ty0 :: Kind
ty0 ls0 :: [LetBinding]
ls0 (Left arg :: Term
arg:args0 :: [Either Term Kind]
args0) = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap -> m TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let argTy :: Kind
argTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
arg
ty1 :: Kind
ty1 = TyConMap -> Kind -> Kind -> Kind
applyFunTy TyConMap
tcm Kind
ty0 Kind
argTy
case Term -> Bool
isWorkFree Term
arg Bool -> Bool -> Bool
|| Term -> Bool
isVar Term
arg of
True -> do
(ty2 :: Kind
ty2,ls1 :: [LetBinding]
ls1,args1 :: [Either Term Kind]
args1) <- InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg InScopeSet
isA0 Kind
ty1 [LetBinding]
ls0 [Either Term Kind]
args0
(Kind, [LetBinding], [Either Term Kind])
-> m (Kind, [LetBinding], [Either Term Kind])
forall (m :: * -> *) a. Monad m => a -> m a
return (Kind
ty2,[LetBinding]
ls1,Term -> Either Term Kind
forall a b. a -> Either a b
Left Term
argEither Term Kind -> [Either Term Kind] -> [Either Term Kind]
forall a. a -> [a] -> [a]
:[Either Term Kind]
args1)
False -> do
Id
boundArg <- InScopeSet -> TyConMap -> Name Term -> Term -> m Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
isA0 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "app_arg") Term
arg
let isA1 :: InScopeSet
isA1 = InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
isA0 Id
boundArg
(ty2 :: Kind
ty2,ls1 :: [LetBinding]
ls1,args1 :: [Either Term Kind]
args1) <- InScopeSet
-> Kind
-> [LetBinding]
-> [Either Term Kind]
-> m (Kind, [LetBinding], [Either Term Kind])
goCaseArg InScopeSet
isA1 Kind
ty1 [LetBinding]
ls0 [Either Term Kind]
args0
(Kind, [LetBinding], [Either Term Kind])
-> m (Kind, [LetBinding], [Either Term Kind])
forall (m :: * -> *) a. Monad m => a -> m a
return (Kind
ty2,(Id
boundArg,Term
arg)LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:[LetBinding]
ls1,Term -> Either Term Kind
forall a b. a -> Either a b
Left (Id -> Term
Var Id
boundArg)Either Term Kind -> [Either Term Kind] -> [Either Term Kind]
forall a. a -> [a] -> [a]
:[Either Term Kind]
args1)
goCaseArg _ ty :: Kind
ty ls :: [LetBinding]
ls [] = (Kind, [LetBinding], [Either Term Kind])
-> m (Kind, [LetBinding], [Either Term Kind])
forall (m :: * -> *) a. Monad m => a -> m a
return (Kind
ty,[LetBinding]
ls,[])
caseFlat :: HasCallStack => NormRewrite
caseFlat :: NormRewrite
caseFlat _ e :: Term
e@(Case (Term -> Maybe (Term, Term)
collectEqArgs -> Just (scrut' :: Term
scrut',_)) ty :: Kind
ty _)
= do
case Term -> Term -> Maybe [Alt]
collectFlat Term
scrut' Term
e of
Just alts' :: [Alt]
alts' -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> Kind -> [Alt] -> Term
Case Term
scrut' Kind
ty ([Alt] -> Alt
forall a. [a] -> a
last [Alt]
alts' Alt -> [Alt] -> [Alt]
forall a. a -> [a] -> [a]
: [Alt] -> [Alt]
forall a. [a] -> [a]
init [Alt]
alts'))
Nothing -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
caseFlat _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
collectFlat :: Term -> Term -> Maybe [(Pat,Term)]
collectFlat :: Term -> Term -> Maybe [Alt]
collectFlat scrut :: Term
scrut (Case (Term -> Maybe (Term, Term)
collectEqArgs -> Just (scrut' :: Term
scrut', val :: Term
val)) _ty :: Kind
_ty [lAlt :: Alt
lAlt,rAlt :: Alt
rAlt])
| Term
scrut' Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
scrut
= case Term -> (Term, [Either Term Kind])
collectArgs Term
val of
(Prim nm' :: Text
nm' _,args' :: [Either Term Kind]
args') | Text -> Bool
isFromInt Text
nm' ->
Either Term Kind -> Maybe [Alt]
forall b. Either Term b -> Maybe [Alt]
go ([Either Term Kind] -> Either Term Kind
forall a. [a] -> a
last [Either Term Kind]
args')
(Data dc :: DataCon
dc,args' :: [Either Term Kind]
args') | Name DataCon -> Text
forall a. Name a -> Text
nameOcc (DataCon -> Name DataCon
dcName DataCon
dc) Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "GHC.Types.I#" ->
Either Term Kind -> Maybe [Alt]
forall b. Either Term b -> Maybe [Alt]
go ([Either Term Kind] -> Either Term Kind
forall a. [a] -> a
last [Either Term Kind]
args')
_ -> Maybe [Alt]
forall a. Maybe a
Nothing
where
go :: Either Term b -> Maybe [Alt]
go (Left (Literal i :: Literal
i)) = case (Alt
lAlt,Alt
rAlt) of
((pl :: Pat
pl,el :: Term
el),(pr :: Pat
pr,er :: Term
er))
| Pat -> Bool
isFalseDcPat Pat
pl Bool -> Bool -> Bool
|| Pat -> Bool
isTrueDcPat Pat
pr ->
case Term -> Term -> Maybe [Alt]
collectFlat Term
scrut Term
el of
Just alts' :: [Alt]
alts' -> [Alt] -> Maybe [Alt]
forall a. a -> Maybe a
Just ((Literal -> Pat
LitPat Literal
i, Term
er) Alt -> [Alt] -> [Alt]
forall a. a -> [a] -> [a]
: [Alt]
alts')
Nothing -> [Alt] -> Maybe [Alt]
forall a. a -> Maybe a
Just [(Literal -> Pat
LitPat Literal
i, Term
er)
,(Pat
DefaultPat, Term
el)
]
| Bool
otherwise ->
case Term -> Term -> Maybe [Alt]
collectFlat Term
scrut Term
er of
Just alts' :: [Alt]
alts' -> [Alt] -> Maybe [Alt]
forall a. a -> Maybe a
Just ((Literal -> Pat
LitPat Literal
i, Term
el) Alt -> [Alt] -> [Alt]
forall a. a -> [a] -> [a]
: [Alt]
alts')
Nothing -> [Alt] -> Maybe [Alt]
forall a. a -> Maybe a
Just [(Literal -> Pat
LitPat Literal
i, Term
el)
,(Pat
DefaultPat, Term
er)
]
go _ = Maybe [Alt]
forall a. Maybe a
Nothing
isFalseDcPat :: Pat -> Bool
isFalseDcPat (DataPat p :: DataCon
p _ _)
= ((Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "GHC.Types.False") (Text -> Bool) -> (DataCon -> Text) -> DataCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name DataCon -> Text
forall a. Name a -> Text
nameOcc (Name DataCon -> Text)
-> (DataCon -> Name DataCon) -> DataCon -> Text
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DataCon -> Name DataCon
dcName) DataCon
p
isFalseDcPat _ = Bool
False
isTrueDcPat :: Pat -> Bool
isTrueDcPat (DataPat p :: DataCon
p _ _)
= ((Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "GHC.Types.True") (Text -> Bool) -> (DataCon -> Text) -> DataCon -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name DataCon -> Text
forall a. Name a -> Text
nameOcc (Name DataCon -> Text)
-> (DataCon -> Name DataCon) -> DataCon -> Text
forall b c a. (b -> c) -> (a -> b) -> a -> c
. DataCon -> Name DataCon
dcName) DataCon
p
isTrueDcPat _ = Bool
False
collectFlat _ _ = Maybe [Alt]
forall a. Maybe a
Nothing
collectEqArgs :: Term -> Maybe (Term,Term)
collectEqArgs :: Term -> Maybe (Term, Term)
collectEqArgs (Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks -> (Prim nm :: Text
nm _, args :: [Either Term Kind]
args, ticks :: [TickInfo]
ticks))
| Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.BitVector.eq#"
= let [_,_,Left scrut :: Term
scrut,Left val :: Term
val] = [Either Term Kind]
args
in (Term, Term) -> Maybe (Term, Term)
forall a. a -> Maybe a
Just (Term -> [TickInfo] -> Term
mkTicks Term
scrut [TickInfo]
ticks,Term
val)
| Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.Index.eq#" Bool -> Bool -> Bool
||
Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.Signed.eq#" Bool -> Bool -> Bool
||
Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.Unsigned.eq#"
= let [_,Left scrut :: Term
scrut,Left val :: Term
val] = [Either Term Kind]
args
in (Term, Term) -> Maybe (Term, Term)
forall a. a -> Maybe a
Just (Term -> [TickInfo] -> Term
mkTicks Term
scrut [TickInfo]
ticks,Term
val)
| Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Transformations.eqInt"
= let [Left scrut :: Term
scrut,Left val :: Term
val] = [Either Term Kind]
args
in (Term, Term) -> Maybe (Term, Term)
forall a. a -> Maybe a
Just (Term -> [TickInfo] -> Term
mkTicks Term
scrut [TickInfo]
ticks,Term
val)
collectEqArgs _ = Maybe (Term, Term)
forall a. Maybe a
Nothing
type NormRewriteW = Transform (StateT ([LetBinding],InScopeSet) (RewriteMonad NormalizeState))
tellBinders :: Monad m => [LetBinding] -> StateT ([LetBinding],InScopeSet) m ()
tellBinders :: [LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders bs :: [LetBinding]
bs = (([LetBinding], InScopeSet) -> ([LetBinding], InScopeSet))
-> StateT ([LetBinding], InScopeSet) m ()
forall s (m :: * -> *). MonadState s m => (s -> s) -> m ()
modify (([LetBinding]
bs [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++) ([LetBinding] -> [LetBinding])
-> (InScopeSet -> InScopeSet)
-> ([LetBinding], InScopeSet)
-> ([LetBinding], InScopeSet)
forall (a :: * -> * -> *) b c b' c'.
Arrow a =>
a b c -> a b' c' -> a (b, b') (c, c')
*** (InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
`extendInScopeSetList` ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
bs)))
makeANF :: HasCallStack => NormRewrite
makeANF :: NormRewrite
makeANF (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) (Lam bndr :: Id
bndr e :: Term
e) = do
Term
e' <- HasCallStack => NormRewrite
NormRewrite
makeANF (InScopeSet -> Context -> TransformContext
TransformContext (InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is0 Id
bndr)
(Id -> CoreContext
LamBody Id
bndrCoreContext -> Context -> Context
forall a. a -> [a] -> [a]
:Context
ctx))
Term
e
Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Id -> Term -> Term
Lam Id
bndr Term
e')
makeANF _ e :: Term
e@(TyLam {}) = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
makeANF ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) e0 :: Term
e0
= do
let (is2 :: InScopeSet
is2,e1 :: Term
e1) = InScopeSet -> Term -> (InScopeSet, Term)
freshenTm InScopeSet
is0 Term
e0
(e2 :: Term
e2,(bndrs :: [LetBinding]
bndrs,_)) <- StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
-> ([LetBinding], InScopeSet)
-> RewriteMonad NormalizeState (Term, ([LetBinding], InScopeSet))
forall s (m :: * -> *) a. StateT s m a -> s -> m (a, s)
runStateT (Transform
(StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
-> Transform
(StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
forall (m :: * -> *). Monad m => Transform m -> Transform m
bottomupR HasCallStack =>
Transform
(StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
Transform
(StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
collectANF TransformContext
ctx Term
e1) ([],InScopeSet
is2)
case [LetBinding]
bndrs of
[] -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e0
_ -> do
let (e3 :: Term
e3,ticks :: [TickInfo]
ticks) = Term -> (Term, [TickInfo])
collectTicks Term
e2
(srcTicks :: [TickInfo]
srcTicks,nmTicks :: [TickInfo]
nmTicks) = [TickInfo] -> ([TickInfo], [TickInfo])
partitionTicks [TickInfo]
ticks
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [TickInfo] -> Term
mkTicks ([LetBinding] -> Term -> Term
Letrec [LetBinding]
bndrs (Term -> [TickInfo] -> Term
mkTicks Term
e3 [TickInfo]
srcTicks)) [TickInfo]
nmTicks)
collectANF :: HasCallStack => NormRewriteW
collectANF :: Transform
(StateT ([LetBinding], InScopeSet) (RewriteMonad NormalizeState))
collectANF ctx :: TransformContext
ctx e :: Term
e@(App appf :: Term
appf arg :: Term
arg)
| (conVarPrim :: Term
conVarPrim, _) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e
, Term -> Bool
isCon Term
conVarPrim Bool -> Bool -> Bool
|| Term -> Bool
isPrim Term
conVarPrim Bool -> Bool -> Bool
|| Term -> Bool
isVar Term
conVarPrim
= do
Bool
untranslatable <- RewriteMonad NormalizeState Bool
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Bool
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
arg)
let localVar :: Bool
localVar = Term -> Bool
isLocalVar Term
arg
Bool
constantNoCR <- RewriteMonad NormalizeState Bool
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Bool
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Term -> RewriteMonad NormalizeState Bool
forall extra. Term -> RewriteMonad extra Bool
isConstantNotClockReset Term
arg)
case (Bool
untranslatable,Bool
localVar Bool -> Bool -> Bool
|| Bool
constantNoCR,Term
arg) of
(False,False,_) -> do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
Id
argId <- RewriteMonad NormalizeState Id
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad NormalizeState Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "app_arg") Term
arg)
[LetBinding]
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: * -> *).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [(Id
argId,Term
arg)]
Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> Term -> Term
App Term
appf (Id -> Term
Var Id
argId))
(True,False,Letrec binds :: [LetBinding]
binds body :: Term
body) -> do
[LetBinding]
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: * -> *).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [LetBinding]
binds
Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> Term -> Term
App Term
appf Term
body)
_ -> Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
collectANF _ (Letrec binds :: [LetBinding]
binds body :: Term
body) = do
[LetBinding]
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: * -> *).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [LetBinding]
binds
Bool
untranslatable <- RewriteMonad NormalizeState Bool
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Bool
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (Bool -> Term -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Term -> RewriteMonad extra Bool
isUntranslatable Bool
False Term
body)
let localVar :: Bool
localVar = Term -> Bool
isLocalVar Term
body
if Bool
localVar Bool -> Bool -> Bool
|| Bool
untranslatable
then Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
body
else do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
Id
argId <- RewriteMonad NormalizeState Id
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Any -> Term -> RewriteMonad NormalizeState Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (Text -> Int -> Name Any
forall a. Text -> Int -> Name a
mkUnsafeSystemName "result" 0) Term
body)
[LetBinding]
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: * -> *).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [(Id
argId,Term
body)]
Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Id -> Term
Var Id
argId)
collectANF _ e :: Term
e@(Case _ _ [(DataPat dc :: DataCon
dc _ _,_)])
| Name DataCon -> Text
forall a. Name a -> Text
nameOcc (DataCon -> Name DataCon
dcName DataCon
dc) Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Signal.Internal.:-" = Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
collectANF ctx :: TransformContext
ctx (Case subj :: Term
subj ty :: Kind
ty alts :: [Alt]
alts) = do
let localVar :: Bool
localVar = Term -> Bool
isLocalVar Term
subj
let isConstantSubj :: Bool
isConstantSubj = Term -> Bool
isConstant Term
subj
Term
subj' <- if Bool
localVar Bool -> Bool -> Bool
|| Bool
isConstantSubj
then Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
subj
else do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
Id
argId <- RewriteMonad NormalizeState Id
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad NormalizeState Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "case_scrut") Term
subj)
[LetBinding]
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: * -> *).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [(Id
argId,Term
subj)]
Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Id -> Term
Var Id
argId)
[Alt]
alts' <- (Alt
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt)
-> [Alt]
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) [Alt]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (Term
-> Alt
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
doAlt Term
subj') [Alt]
alts
case [Alt]
alts' of
[(DataPat _ [] xs :: [Id]
xs,altExpr :: Term
altExpr)]
| [Id]
xs [Id] -> Term -> Bool
`localIdsDoNotOccurIn` Term
altExpr
-> Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
altExpr
_ -> Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> Kind -> [Alt] -> Term
Case Term
subj' Kind
ty [Alt]
alts')
where
doAlt
:: Term -> (Pat,Term)
-> StateT ([LetBinding],InScopeSet) (RewriteMonad NormalizeState)
(Pat,Term)
doAlt :: Term
-> Alt
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
doAlt subj' :: Term
subj' alt :: Alt
alt@(DataPat dc :: DataCon
dc exts :: [TyVar]
exts xs :: [Id]
xs,altExpr :: Term
altExpr) | Bool -> Bool
not ([TyVar] -> [Id] -> Bool
forall a. [TyVar] -> [Var a] -> Bool
bindsExistentials [TyVar]
exts [Id]
xs) = do
let lv :: Bool
lv = Term -> Bool
isLocalVar Term
altExpr
[LetBinding]
patSels <- (Id
-> Int
-> StateT
([LetBinding], InScopeSet)
(RewriteMonad NormalizeState)
LetBinding)
-> [Id]
-> [Int]
-> StateT
([LetBinding], InScopeSet)
(RewriteMonad NormalizeState)
[LetBinding]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
Monad.zipWithM (Term
-> DataCon
-> Id
-> Int
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) LetBinding
doPatBndr Term
subj' DataCon
dc) [Id]
xs [0..]
let altExprIsConstant :: Bool
altExprIsConstant = Term -> Bool
isConstant Term
altExpr
let usesXs :: Term -> Bool
usesXs (Var n :: Id
n) = (Id -> Bool) -> [Id] -> Bool
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Bool
any (Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
n) [Id]
xs
usesXs _ = Bool
False
if (Bool
lv Bool -> Bool -> Bool
&& (Bool -> Bool
not (Term -> Bool
usesXs Term
altExpr) Bool -> Bool -> Bool
|| [Alt] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Alt]
alts Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 1)) Bool -> Bool -> Bool
|| Bool
altExprIsConstant
then do
[LetBinding]
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: * -> *).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [LetBinding]
patSels
Alt
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: * -> *) a. Monad m => a -> m a
return Alt
alt
else do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
Id
altId <- RewriteMonad NormalizeState Id
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad NormalizeState Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "case_alt") Term
altExpr)
[LetBinding]
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: * -> *).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders ((Id
altId,Term
altExpr)LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:[LetBinding]
patSels)
Alt
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: * -> *) a. Monad m => a -> m a
return (DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
exts [Id]
xs,Id -> Term
Var Id
altId)
doAlt _ alt :: Alt
alt@(DataPat {}, _) = Alt
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: * -> *) a. Monad m => a -> m a
return Alt
alt
doAlt _ alt :: Alt
alt@(pat :: Pat
pat,altExpr :: Term
altExpr) = do
let lv :: Bool
lv = Term -> Bool
isLocalVar Term
altExpr
let altExprIsConstant :: Bool
altExprIsConstant = Term -> Bool
isConstant Term
altExpr
if Bool
lv Bool -> Bool -> Bool
|| Bool
altExprIsConstant
then Alt
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: * -> *) a. Monad m => a -> m a
return Alt
alt
else do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
Id
altId <- RewriteMonad NormalizeState Id
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Id
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (InScopeSet
-> TyConMap -> Name Term -> Term -> RewriteMonad NormalizeState Id
forall (m :: * -> *) a.
(Monad m, MonadUnique m, MonadFail m) =>
InScopeSet -> TyConMap -> Name a -> Term -> m Id
mkTmBinderFor InScopeSet
is1 TyConMap
tcm (TransformContext -> Text -> Name Term
mkDerivedName TransformContext
ctx "case_alt") Term
altExpr)
[LetBinding]
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) ()
forall (m :: * -> *).
Monad m =>
[LetBinding] -> StateT ([LetBinding], InScopeSet) m ()
tellBinders [(Id
altId,Term
altExpr)]
Alt
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Alt
forall (m :: * -> *) a. Monad m => a -> m a
return (Pat
pat,Id -> Term
Var Id
altId)
doPatBndr
:: Term -> DataCon -> Id -> Int
-> StateT ([LetBinding],InScopeSet) (RewriteMonad NormalizeState)
LetBinding
doPatBndr :: Term
-> DataCon
-> Id
-> Int
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) LetBinding
doPatBndr subj' :: Term
subj' dc :: DataCon
dc pId :: Id
pId i :: Int
i
= do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
InScopeSet
is1 <- Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) InScopeSet
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting InScopeSet ([LetBinding], InScopeSet) InScopeSet
forall s t a b. Field2 s t a b => Lens s t a b
_2
Term
patExpr <- RewriteMonad NormalizeState Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (t :: (* -> *) -> * -> *) (m :: * -> *) a.
(MonadTrans t, Monad m) =>
m a -> t m a
lift (String
-> InScopeSet
-> TyConMap
-> Term
-> Int
-> Int
-> RewriteMonad NormalizeState Term
forall (m :: * -> *).
(HasCallStack, Functor m, Monad m, MonadUnique m) =>
String -> InScopeSet -> TyConMap -> Term -> Int -> Int -> m Term
mkSelectorCase ($(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "doPatBndr") InScopeSet
is1 TyConMap
tcm Term
subj' (DataCon -> Int
dcTag DataCon
dc) Int
i)
LetBinding
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) LetBinding
forall (m :: * -> *) a. Monad m => a -> m a
return (Id
pId,Term
patExpr)
collectANF _ e :: Term
e = Term
-> StateT
([LetBinding], InScopeSet) (RewriteMonad NormalizeState) Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
etaExpansionTL :: HasCallStack => NormRewrite
etaExpansionTL :: NormRewrite
etaExpansionTL (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) (Lam bndr :: Id
bndr e :: Term
e) = do
Term
e' <- HasCallStack => NormRewrite
NormRewrite
etaExpansionTL
(InScopeSet -> Context -> TransformContext
TransformContext (InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is0 Id
bndr) (Id -> CoreContext
LamBody Id
bndrCoreContext -> Context -> Context
forall a. a -> [a] -> [a]
:Context
ctx))
Term
e
Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Id -> Term -> Term
Lam Id
bndr Term
e'
etaExpansionTL (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) (Letrec xes :: [LetBinding]
xes e :: Term
e) = do
let bndrs :: [Id]
bndrs = (LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
xes
Term
e' <- HasCallStack => NormRewrite
NormRewrite
etaExpansionTL
(InScopeSet -> Context -> TransformContext
TransformContext (InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 [Id]
bndrs)
([Id] -> CoreContext
LetBody [Id]
bndrsCoreContext -> Context -> Context
forall a. a -> [a] -> [a]
:Context
ctx))
Term
e
case Term -> ([Id], Term)
stripLambda Term
e' of
(bs :: [Id]
bs@(_:_),e2 :: Term
e2) -> do
let e3 :: Term
e3 = [LetBinding] -> Term -> Term
Letrec [LetBinding]
xes Term
e2
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [Id] -> Term
mkLams Term
e3 [Id]
bs)
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return ([LetBinding] -> Term -> Term
Letrec [LetBinding]
xes Term
e')
where
stripLambda :: Term -> ([Id],Term)
stripLambda :: Term -> ([Id], Term)
stripLambda (Lam bndr :: Id
bndr e0 :: Term
e0) =
let (bndrs :: [Id]
bndrs,e1 :: Term
e1) = Term -> ([Id], Term)
stripLambda Term
e0
in (Id
bndrId -> [Id] -> [Id]
forall a. a -> [a] -> [a]
:[Id]
bndrs,Term
e1)
stripLambda e' :: Term
e' = ([],Term
e')
etaExpansionTL (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) e :: Term
e
= do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
if TyConMap -> Term -> Bool
isFun TyConMap
tcm Term
e
then do
let argTy :: Kind
argTy = ( (Kind, Kind) -> Kind
forall a b. (a, b) -> a
fst
((Kind, Kind) -> Kind) -> (Term -> (Kind, Kind)) -> Term -> Kind
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Kind, Kind) -> Maybe (Kind, Kind) -> (Kind, Kind)
forall a. a -> Maybe a -> a
Maybe.fromMaybe (String -> (Kind, Kind)
forall a. HasCallStack => String -> a
error (String -> (Kind, Kind)) -> String -> (Kind, Kind)
forall a b. (a -> b) -> a -> b
$ $(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "etaExpansion splitFunTy")
(Maybe (Kind, Kind) -> (Kind, Kind))
-> (Term -> Maybe (Kind, Kind)) -> Term -> (Kind, Kind)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Kind -> Maybe (Kind, Kind)
splitFunTy TyConMap
tcm
(Kind -> Maybe (Kind, Kind))
-> (Term -> Kind) -> Term -> Maybe (Kind, Kind)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Term -> Kind
termType TyConMap
tcm
) Term
e
Id
newId <- InScopeSet -> Text -> Kind -> RewriteMonad NormalizeState Id
forall (m :: * -> *).
(Monad m, MonadUnique m) =>
InScopeSet -> Text -> Kind -> m Id
mkInternalVar InScopeSet
is0 "arg" Kind
argTy
Term
e' <- HasCallStack => NormRewrite
NormRewrite
etaExpansionTL (InScopeSet -> Context -> TransformContext
TransformContext (InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is0 Id
newId)
(Id -> CoreContext
LamBody Id
newIdCoreContext -> Context -> Context
forall a. a -> [a] -> [a]
:Context
ctx))
(Term -> Term -> Term
App Term
e (Id -> Term
Var Id
newId))
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Id -> Term -> Term
Lam Id
newId Term
e')
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
etaExpandSyn :: HasCallStack => NormRewrite
etaExpandSyn :: NormRewrite
etaExpandSyn (TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) e :: Term
e@(Term -> (Term, [Either Term Kind])
collectArgs -> (Var f :: Id
f, _)) = do
UniqSet (Var Any)
topEnts <- Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
-> RewriteMonad NormalizeState (UniqSet (Var Any))
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting (UniqSet (Var Any)) RewriteEnv (UniqSet (Var Any))
Lens' RewriteEnv (UniqSet (Var Any))
topEntities
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let isTopEnt :: Bool
isTopEnt = Id
f Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`elemVarSet` UniqSet (Var Any)
topEnts
isAppFunCtx :: Context -> Bool
isAppFunCtx =
\case
AppFun:_ -> Bool
True
TickC _:c :: Context
c -> Context -> Bool
isAppFunCtx Context
c
_ -> Bool
False
argTyM :: Maybe Kind
argTyM = ((Kind, Kind) -> Kind) -> Maybe (Kind, Kind) -> Maybe Kind
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
fmap (Kind, Kind) -> Kind
forall a b. (a, b) -> a
fst (TyConMap -> Kind -> Maybe (Kind, Kind)
splitFunTy TyConMap
tcm (TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e))
case Maybe Kind
argTyM of
Just argTy :: Kind
argTy | Bool
isTopEnt Bool -> Bool -> Bool
&& Bool -> Bool
not (Context -> Bool
isAppFunCtx Context
ctx) -> do
Id
newId <- InScopeSet -> Text -> Kind -> RewriteMonad NormalizeState Id
forall (m :: * -> *).
(Monad m, MonadUnique m) =>
InScopeSet -> Text -> Kind -> m Id
mkInternalVar InScopeSet
is0 "arg" Kind
argTy
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Id -> Term -> Term
Lam Id
newId (Term -> Term -> Term
App Term
e (Id -> Term
Var Id
newId)))
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
etaExpandSyn _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
isClassConstraint :: Type -> Bool
isClassConstraint :: Kind -> Bool
isClassConstraint (Kind -> TypeView
tyView -> TyConApp nm0 :: TyConName
nm0 _) =
if
| "GHC.Classes.(%" Text -> Text -> Bool
`Text.isInfixOf` Text
nm1 -> Bool
True
| "C:" Text -> Text -> Bool
`Text.isInfixOf` Text
nm2 -> Bool
True
| Bool
otherwise -> Bool
False
where
nm1 :: Text
nm1 = TyConName -> Text
forall a. Name a -> Text
nameOcc TyConName
nm0
nm2 :: Text
nm2 = (Text, Text) -> Text
forall a b. (a, b) -> b
snd (Text -> Text -> (Text, Text)
Text.breakOnEnd "." Text
nm1)
isClassConstraint _ = Bool
False
recToLetRec :: HasCallStack => NormRewrite
recToLetRec :: NormRewrite
recToLetRec (TransformContext is0 :: InScopeSet
is0 []) e :: Term
e = do
(fn :: Id
fn,_) <- Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
-> RewriteMonad NormalizeState (Id, SrcSpan)
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
forall extra. Lens' (RewriteState extra) (Id, SrcSpan)
curFun
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
case TyConMap -> Term -> Either String ([Id], [LetBinding], Id)
splitNormalized TyConMap
tcm Term
e of
Right (args :: [Id]
args,bndrs :: [LetBinding]
bndrs,res :: Id
res) -> do
let args' :: [Term]
args' = (Id -> Term) -> [Id] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Id -> Term
Var [Id]
args
(toInline :: [LetBinding]
toInline,others :: [LetBinding]
others) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition (TyConMap -> Id -> [Term] -> Term -> Bool
eqApp TyConMap
tcm Id
fn [Term]
args' (Term -> Bool) -> (LetBinding -> Term) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Term
forall a b. (a, b) -> b
snd) [LetBinding]
bndrs
resV :: Term
resV = Id -> Term
Var Id
res
case ([LetBinding]
toInline,[LetBinding]
others) of
(_:_,_:_) -> do
let is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 ([Id]
args [Id] -> [Id] -> [Id]
forall a. [a] -> [a] -> [a]
++ (LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
bndrs)
let substsInline :: Subst
substsInline = Subst -> [LetBinding] -> Subst
extendIdSubstList (InScopeSet -> Subst
mkSubst InScopeSet
is1)
([LetBinding] -> Subst) -> [LetBinding] -> Subst
forall a b. (a -> b) -> a -> b
$ (LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (Term -> Term -> Term
forall a b. a -> b -> a
const Term
resV)) [LetBinding]
toInline
others' :: [LetBinding]
others' = (LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "recToLetRec" Subst
substsInline))
[LetBinding]
others
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> RewriteMonad NormalizeState Term)
-> Term -> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ Term -> [Id] -> Term
mkLams ([LetBinding] -> Term -> Term
Letrec [LetBinding]
others' Term
resV) [Id]
args
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
where
eqApp :: TyConMap -> Id -> [Term] -> Term -> Bool
eqApp tcm :: TyConMap
tcm v :: Id
v args :: [Term]
args (Term -> (Term, [Either Term Kind])
collectArgs -> (Var v' :: Id
v',args' :: [Either Term Kind]
args'))
| Id -> Bool
forall a. Var a -> Bool
isGlobalId Id
v'
, Id
v Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
v'
, let args2 :: [Term]
args2 = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args'
, [Term] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Term]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== [Term] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Term]
args2
= [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and ((Term -> Term -> Bool) -> [Term] -> [Term] -> [Bool]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (TyConMap -> Term -> Term -> Bool
eqArg TyConMap
tcm) [Term]
args [Term]
args2)
eqApp _ _ _ _ = Bool
False
eqArg :: TyConMap -> Term -> Term -> Bool
eqArg _ v1 :: Term
v1 v2 :: Term
v2@(Var {})
= Term
v1 Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
v2
eqArg tcm :: TyConMap
tcm v1 :: Term
v1 v2 :: Term
v2@(Term -> (Term, [Either Term Kind])
collectArgs -> (Data _, args' :: [Either Term Kind]
args'))
| let t1 :: Kind
t1 = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
v1
, let t2 :: Kind
t2 = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
v2
, Kind
t1 Kind -> Kind -> Bool
forall a. Eq a => a -> a -> Bool
== Kind
t2
= if Kind -> Bool
isClassConstraint Kind
t1 then
Bool
True
else
[Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and (([Int] -> Term -> Bool) -> [[Int]] -> [Term] -> [Bool]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (Term -> [Int] -> Term -> Bool
eqDat Term
v1) ((Int -> [Int]) -> [Int] -> [[Int]]
forall a b. (a -> b) -> [a] -> [b]
map Int -> [Int]
forall (f :: * -> *) a. Applicative f => a -> f a
pure [0..]) ([Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args'))
eqArg _ _ _
= Bool
False
eqDat :: Term -> [Int] -> Term -> Bool
eqDat :: Term -> [Int] -> Term -> Bool
eqDat v :: Term
v fTrace :: [Int]
fTrace (Term -> (Term, [Either Term Kind])
collectArgs -> (Data _, args :: [Either Term Kind]
args)) =
[Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
and (([Int] -> Term -> Bool) -> [[Int]] -> [Term] -> [Bool]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith (Term -> [Int] -> Term -> Bool
eqDat Term
v) ((Int -> [Int]) -> [Int] -> [[Int]]
forall a b. (a -> b) -> [a] -> [b]
map (Int -> [Int] -> [Int]
forall a. a -> [a] -> [a]
:[Int]
fTrace) [0..]) ([Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args))
eqDat v1 :: Term
v1 fTrace :: [Int]
fTrace v2 :: Term
v2 =
case [Int] -> Term -> Term -> Maybe [Int]
stripProjection ([Int] -> [Int]
forall a. [a] -> [a]
reverse [Int]
fTrace) Term
v1 Term
v2 of
Just [] -> Bool
True
_ -> Bool
False
stripProjection :: [Int] -> Term -> Term -> Maybe [Int]
stripProjection :: [Int] -> Term -> Term -> Maybe [Int]
stripProjection fTrace0 :: [Int]
fTrace0 vTarget0 :: Term
vTarget0 (Case v :: Term
v _ [(DataPat _ _ xs :: [Id]
xs, r :: Term
r)]) = do
[Int]
fTrace1 <- [Int] -> Term -> Term -> Maybe [Int]
stripProjection [Int]
fTrace0 Term
vTarget0 Term
v
Int
n <- [Int] -> Maybe Int
forall a. [a] -> Maybe a
headMaybe [Int]
fTrace1
Id
vTarget1 <- [Id] -> Int -> Maybe Id
forall a. [a] -> Int -> Maybe a
indexMaybe [Id]
xs Int
n
[Int]
fTrace2 <- [Int] -> Maybe [Int]
forall a. [a] -> Maybe [a]
tailMaybe [Int]
fTrace1
[Int] -> Term -> Term -> Maybe [Int]
stripProjection [Int]
fTrace2 (Id -> Term
Var Id
vTarget1) Term
r
stripProjection fTrace :: [Int]
fTrace (Var sTarget :: Id
sTarget) (Var s :: Id
s) =
if Id
sTarget Id -> Id -> Bool
forall a. Eq a => a -> a -> Bool
== Id
s then [Int] -> Maybe [Int]
forall a. a -> Maybe a
Just [Int]
fTrace else Maybe [Int]
forall a. Maybe a
Nothing
stripProjection _fTrace :: [Int]
_fTrace _vTarget :: Term
_vTarget _v :: Term
_v =
Maybe [Int]
forall a. Maybe a
Nothing
recToLetRec _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
inlineHO :: HasCallStack => NormRewrite
inlineHO :: NormRewrite
inlineHO (TransformContext is0 :: InScopeSet
is0 _) e :: Term
e@(App _ _)
| (Var f :: Id
f, args :: [Either Term Kind]
args, ticks :: [TickInfo]
ticks) <- Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
e
= do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
let hasPolyFunArgs :: Bool
hasPolyFunArgs = [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or ((Either Term Kind -> Bool) -> [Either Term Kind] -> [Bool]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Bool) -> (Kind -> Bool) -> Either Term Kind -> Bool
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (TyConMap -> Term -> Bool
isPolyFun TyConMap
tcm) (Bool -> Kind -> Bool
forall a b. a -> b -> a
const Bool
False)) [Either Term Kind]
args)
if Bool
hasPolyFunArgs
then do (cf :: Id
cf,_) <- Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
-> RewriteMonad NormalizeState (Id, SrcSpan)
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting (Id, SrcSpan) (RewriteState NormalizeState) (Id, SrcSpan)
forall extra. Lens' (RewriteState extra) (Id, SrcSpan)
curFun
Maybe Int
isInlined <- State NormalizeState (Maybe Int)
-> RewriteMonad NormalizeState (Maybe Int)
forall extra a. State extra a -> RewriteMonad extra a
zoomExtra (Id -> Id -> State NormalizeState (Maybe Int)
alreadyInlined Id
f Id
cf)
Int
limit <- Getting Int (RewriteState NormalizeState) Int
-> RewriteMonad NormalizeState Int
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use ((NormalizeState -> Const Int NormalizeState)
-> RewriteState NormalizeState
-> Const Int (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState -> Const Int NormalizeState)
-> RewriteState NormalizeState
-> Const Int (RewriteState NormalizeState))
-> ((Int -> Const Int Int)
-> NormalizeState -> Const Int NormalizeState)
-> Getting Int (RewriteState NormalizeState) Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Int -> Const Int Int)
-> NormalizeState -> Const Int NormalizeState
Lens' NormalizeState Int
inlineLimit)
if (Int -> Maybe Int -> Int
forall a. a -> Maybe a -> a
Maybe.fromMaybe 0 Maybe Int
isInlined) Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
> Int
limit
then do
DebugLevel
lvl <- Getting DebugLevel RewriteEnv DebugLevel
-> RewriteMonad NormalizeState DebugLevel
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting DebugLevel RewriteEnv DebugLevel
Lens' RewriteEnv DebugLevel
dbgLevel
Bool
-> String
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall a. Bool -> String -> a -> a
traceIf (DebugLevel
lvl DebugLevel -> DebugLevel -> Bool
forall a. Ord a => a -> a -> Bool
> DebugLevel
DebugNone) ($(curLoc) String -> String -> String
forall a. [a] -> [a] -> [a]
++ "InlineHO: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Id -> String
forall a. Show a => a -> String
show Id
f String -> String -> String
forall a. [a] -> [a] -> [a]
++ " already inlined " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Int -> String
forall a. Show a => a -> String
show Int
limit String -> String -> String
forall a. [a] -> [a] -> [a]
++ " times in:" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Id -> String
forall a. Show a => a -> String
show Id
cf) (Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e)
else do
Maybe (Id, SrcSpan, InlineSpec, Term)
bodyMaybe <- Id
-> VarEnv (Id, SrcSpan, InlineSpec, Term)
-> Maybe (Id, SrcSpan, InlineSpec, Term)
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
f (VarEnv (Id, SrcSpan, InlineSpec, Term)
-> Maybe (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (Maybe (Id, SrcSpan, InlineSpec, Term))
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
forall extra.
Lens' (RewriteState extra) (VarEnv (Id, SrcSpan, InlineSpec, Term))
bindings
case Maybe (Id, SrcSpan, InlineSpec, Term)
bodyMaybe of
Just (_,_,_,body :: Term
body) -> do
State NormalizeState () -> RewriteMonad NormalizeState ()
forall extra a. State extra a -> RewriteMonad extra a
zoomExtra (Id -> Id -> State NormalizeState ()
addNewInline Id
f Id
cf)
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [Either Term Kind] -> Term
mkApps (Term -> [TickInfo] -> Term
mkTicks (HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm InScopeSet
is0 Term
body) [TickInfo]
ticks) [Either Term Kind]
args)
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
inlineHO _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
simpleCSE :: HasCallStack => NormRewrite
simpleCSE :: NormRewrite
simpleCSE (TransformContext is0 :: InScopeSet
is0 _) e :: Term
e@(Letrec binders :: [LetBinding]
binders body :: Term
body) = do
let is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
binders)
let (reducedBindings :: [LetBinding]
reducedBindings,body' :: Term
body') = InScopeSet -> [LetBinding] -> Term -> ([LetBinding], Term)
reduceBindersFix InScopeSet
is1 [LetBinding]
binders Term
body
if [LetBinding] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LetBinding]
binders Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= [LetBinding] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LetBinding]
reducedBindings
then Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
reducedBindings Term
body')
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
simpleCSE _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
reduceBindersFix
:: InScopeSet
-> [LetBinding]
-> Term
-> ([LetBinding],Term)
reduceBindersFix :: InScopeSet -> [LetBinding] -> Term -> ([LetBinding], Term)
reduceBindersFix is :: InScopeSet
is binders :: [LetBinding]
binders body :: Term
body =
if [LetBinding] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LetBinding]
binders Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
/= [LetBinding] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [LetBinding]
reduced
then InScopeSet -> [LetBinding] -> Term -> ([LetBinding], Term)
reduceBindersFix InScopeSet
is [LetBinding]
reduced Term
body'
else ([LetBinding]
binders,Term
body)
where
(reduced :: [LetBinding]
reduced,body' :: Term
body') = InScopeSet
-> [LetBinding] -> Term -> [LetBinding] -> ([LetBinding], Term)
reduceBinders InScopeSet
is [] Term
body [LetBinding]
binders
reduceBinders
:: InScopeSet
-> [LetBinding]
-> Term
-> [LetBinding]
-> ([LetBinding],Term)
reduceBinders :: InScopeSet
-> [LetBinding] -> Term -> [LetBinding] -> ([LetBinding], Term)
reduceBinders _ processed :: [LetBinding]
processed body :: Term
body [] = ([LetBinding]
processed,Term
body)
reduceBinders is :: InScopeSet
is processed :: [LetBinding]
processed body :: Term
body ((id_ :: Id
id_,expr :: Term
expr):binders :: [LetBinding]
binders) = case (LetBinding -> Bool) -> [LetBinding] -> Maybe LetBinding
forall (t :: * -> *) a. Foldable t => (a -> Bool) -> t a -> Maybe a
List.find ((Term -> Term -> Bool
forall a. Eq a => a -> a -> Bool
== Term
expr) (Term -> Bool) -> (LetBinding -> Term) -> LetBinding -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Term
forall a b. (a, b) -> b
snd) [LetBinding]
processed of
Just (id2 :: Id
id2,_) ->
let subst :: Subst
subst = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
is) Id
id_ (Id -> Term
Var Id
id2)
processed' :: [LetBinding]
processed' = (LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "reduceBinders.processed" Subst
subst)) [LetBinding]
processed
binders' :: [LetBinding]
binders' = (LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "reduceBinders.binders" Subst
subst)) [LetBinding]
binders
body' :: Term
body' = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "reduceBinders.body" Subst
subst Term
body
in InScopeSet
-> [LetBinding] -> Term -> [LetBinding] -> ([LetBinding], Term)
reduceBinders InScopeSet
is [LetBinding]
processed' Term
body' [LetBinding]
binders'
Nothing -> InScopeSet
-> [LetBinding] -> Term -> [LetBinding] -> ([LetBinding], Term)
reduceBinders InScopeSet
is ((Id
id_,Term
expr)LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:[LetBinding]
processed) Term
body [LetBinding]
binders
reduceConst :: HasCallStack => NormRewrite
reduceConst :: NormRewrite
reduceConst ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) e :: Term
e@(App _ _)
| (Prim nm0 :: Text
nm0 _, _) <- Term -> (Term, [Either Term Kind])
collectArgs Term
e
= do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs <- Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
-> RewriteMonad
NormalizeState (VarEnv (Id, SrcSpan, InlineSpec, Term))
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting
(VarEnv (Id, SrcSpan, InlineSpec, Term))
(RewriteState NormalizeState)
(VarEnv (Id, SrcSpan, InlineSpec, Term))
forall extra.
Lens' (RewriteState extra) (VarEnv (Id, SrcSpan, InlineSpec, Term))
bindings
PrimEvaluator
primEval <- Getting PrimEvaluator RewriteEnv PrimEvaluator
-> RewriteMonad NormalizeState PrimEvaluator
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting PrimEvaluator RewriteEnv PrimEvaluator
Lens' RewriteEnv PrimEvaluator
evaluator
Supply
ids <- Getting Supply (RewriteState NormalizeState) Supply
-> RewriteMonad NormalizeState Supply
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting Supply (RewriteState NormalizeState) Supply
forall extra. Lens' (RewriteState extra) Supply
uniqSupply
let (ids1 :: Supply
ids1,ids2 :: Supply
ids2) = Supply -> (Supply, Supply)
splitSupply Supply
ids
(Supply -> Identity Supply)
-> RewriteState NormalizeState
-> Identity (RewriteState NormalizeState)
forall extra. Lens' (RewriteState extra) Supply
uniqSupply ((Supply -> Identity Supply)
-> RewriteState NormalizeState
-> Identity (RewriteState NormalizeState))
-> Supply -> RewriteMonad NormalizeState ()
forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
Lens..= Supply
ids2
GlobalHeap
gh <- Getting GlobalHeap (RewriteState NormalizeState) GlobalHeap
-> RewriteMonad NormalizeState GlobalHeap
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use Getting GlobalHeap (RewriteState NormalizeState) GlobalHeap
forall extra. Lens' (RewriteState extra) GlobalHeap
globalHeap
case PrimEvaluator
-> VarEnv (Id, SrcSpan, InlineSpec, Term)
-> TyConMap
-> GlobalHeap
-> Supply
-> InScopeSet
-> Bool
-> Term
-> (GlobalHeap, PureHeap, Term)
whnf' PrimEvaluator
primEval VarEnv (Id, SrcSpan, InlineSpec, Term)
bndrs TyConMap
tcm GlobalHeap
gh Supply
ids1 InScopeSet
is0 Bool
False Term
e of
(gh' :: GlobalHeap
gh',ph' :: PureHeap
ph',e' :: Term
e') -> do
(GlobalHeap -> Identity GlobalHeap)
-> RewriteState NormalizeState
-> Identity (RewriteState NormalizeState)
forall extra. Lens' (RewriteState extra) GlobalHeap
globalHeap ((GlobalHeap -> Identity GlobalHeap)
-> RewriteState NormalizeState
-> Identity (RewriteState NormalizeState))
-> GlobalHeap -> RewriteMonad NormalizeState ()
forall s (m :: * -> *) a b.
MonadState s m =>
ASetter s s a b -> b -> m ()
Lens..= GlobalHeap
gh'
TransformContext
-> TyConMap
-> PureHeap
-> (TransformContext -> RewriteMonad NormalizeState Term)
-> RewriteMonad NormalizeState Term
forall extra.
TransformContext
-> TyConMap
-> PureHeap
-> (TransformContext -> RewriteMonad extra Term)
-> RewriteMonad extra Term
bindPureHeap TransformContext
ctx TyConMap
tcm PureHeap
ph' ((TransformContext -> RewriteMonad NormalizeState Term)
-> RewriteMonad NormalizeState Term)
-> (TransformContext -> RewriteMonad NormalizeState Term)
-> RewriteMonad NormalizeState Term
forall a b. (a -> b) -> a -> b
$ \_ctx' :: TransformContext
_ctx' -> case Term
e' of
(Term -> (Term, [Either Term Kind])
collectArgs -> (Prim nm1 :: Text
nm1 _, _)) | Text
nm0 Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
nm1 -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
e'
reduceConst _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
reduceNonRepPrim :: HasCallStack => NormRewrite
reduceNonRepPrim :: NormRewrite
reduceNonRepPrim c :: TransformContext
c@(TransformContext is0 :: InScopeSet
is0 ctx :: Context
ctx) e :: Term
e@(App _ _) | (Prim nm :: Text
nm _, args :: [Either Term Kind]
args, ticks :: [TickInfo]
ticks) <- Term -> (Term, [Either Term Kind], [TickInfo])
collectArgsTicks Term
e = do
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
Bool
shouldReduce1 <- Context -> RewriteMonad NormalizeState Bool
shouldReduce Context
ctx
Bool
ultra <- Getting Bool (RewriteState NormalizeState) Bool
-> RewriteMonad NormalizeState Bool
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use ((NormalizeState -> Const Bool NormalizeState)
-> RewriteState NormalizeState
-> Const Bool (RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState -> Const Bool NormalizeState)
-> RewriteState NormalizeState
-> Const Bool (RewriteState NormalizeState))
-> ((Bool -> Const Bool Bool)
-> NormalizeState -> Const Bool NormalizeState)
-> Getting Bool (RewriteState NormalizeState) Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(Bool -> Const Bool Bool)
-> NormalizeState -> Const Bool NormalizeState
Lens' NormalizeState Bool
normalizeUltra)
let eTy :: Kind
eTy = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e
case Kind -> TypeView
tyView Kind
eTy of
(TyConApp vecTcNm :: TyConName
vecTcNm@(TyConName -> Text
forall a. Name a -> Text
nameOcc -> Text
"Clash.Sized.Vector.Vec")
[Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (Except String Integer -> Either String Integer)
-> (Kind -> Except String Integer) -> Kind -> Either String Integer
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm -> Right 0, aTy :: Kind
aTy]) -> do
let (Just vecTc :: TyCon
vecTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap TyConName
vecTcNm TyConMap
tcm
[nilCon :: DataCon
nilCon,consCon :: DataCon
consCon] = TyCon -> [DataCon]
tyConDataCons TyCon
vecTc
nilE :: Term
nilE = DataCon -> DataCon -> Kind -> Integer -> [Term] -> Term
mkVec DataCon
nilCon DataCon
consCon Kind
aTy 0 []
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [TickInfo] -> Term
mkTicks Term
nilE [TickInfo]
ticks)
tv :: TypeView
tv -> case Text
nm of
"Clash.Sized.Vector.zipWith" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 7 -> do
let [lhsElTy :: Kind
lhsElTy,rhsElty :: Kind
rhsElty,resElTy :: Kind
resElTy,nTy :: Kind
nTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
[Bool]
untranslatableTys <- (Kind -> RewriteMonad NormalizeState Bool)
-> [Kind] -> RewriteMonad NormalizeState [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly [Kind
lhsElTy,Kind
rhsElty,Kind
resElTy]
if [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or [Bool]
untranslatableTys Bool -> Bool -> Bool
|| Bool
shouldReduce1 Bool -> Bool -> Bool
|| Bool
ultra Bool -> Bool -> Bool
|| Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< 2
then let [fun :: Term
fun,lhsArg :: Term
lhsArg,rhsArg :: Term
rhsArg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
in (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$>
TransformContext
-> Integer
-> Kind
-> Kind
-> Kind
-> Term
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceZipWith TransformContext
c Integer
n Kind
lhsElTy Kind
rhsElty Kind
resElTy Term
fun Term
lhsArg Term
rhsArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.map" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 5 -> do
let [argElTy :: Kind
argElTy,resElTy :: Kind
resElTy,nTy :: Kind
nTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
[Bool]
untranslatableTys <- (Kind -> RewriteMonad NormalizeState Bool)
-> [Kind] -> RewriteMonad NormalizeState [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly [Kind
argElTy,Kind
resElTy]
if [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or [Bool]
untranslatableTys Bool -> Bool -> Bool
|| Bool
shouldReduce1 Bool -> Bool -> Bool
|| Bool
ultra Bool -> Bool -> Bool
|| Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< 2
then let [fun :: Term
fun,arg :: Term
arg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
in (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TransformContext
-> Integer
-> Kind
-> Kind
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceMap TransformContext
c Integer
n Kind
argElTy Kind
resElTy Term
fun Term
arg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.traverse#" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 7 ->
let [aTy :: Kind
aTy,fTy :: Kind
fTy,bTy :: Kind
bTy,nTy :: Kind
nTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
in case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n ->
let [dict :: Term
dict,fun :: Term
fun,arg :: Term
arg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
in (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TransformContext
-> Integer
-> Kind
-> Kind
-> Kind
-> Term
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceTraverse TransformContext
c Integer
n Kind
aTy Kind
fTy Kind
bTy Term
dict Term
fun Term
arg
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.fold" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 4 -> do
let [aTy :: Kind
aTy,nTy :: Kind
nTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
isPow2 :: a -> Bool
isPow2 x :: a
x = a
x a -> a -> Bool
forall a. Eq a => a -> a -> Bool
/= 0 Bool -> Bool -> Bool
&& (a
x a -> a -> a
forall a. Bits a => a -> a -> a
.&. (a -> a
forall a. Bits a => a -> a
complement a
x a -> a -> a
forall a. Num a => a -> a -> a
+ 1)) a -> a -> Bool
forall a. Eq a => a -> a -> Bool
== a
x
Bool
untranslatableTy <- Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly Kind
aTy
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n | Bool -> Bool
not (Integer -> Bool
forall a. (Num a, Bits a) => a -> Bool
isPow2 (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ 1)) Bool -> Bool -> Bool
|| Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1 Bool -> Bool -> Bool
|| Bool
ultra Bool -> Bool -> Bool
|| Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== 0 ->
let [fun :: Term
fun,arg :: Term
arg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
in (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TransformContext
-> Integer
-> Kind
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceFold TransformContext
c (Integer
n Integer -> Integer -> Integer
forall a. Num a => a -> a -> a
+ 1) Kind
aTy Term
fun Term
arg
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.foldr" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 6 ->
let [aTy :: Kind
aTy,bTy :: Kind
bTy,nTy :: Kind
nTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
in case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
[Bool]
untranslatableTys <- (Kind -> RewriteMonad NormalizeState Bool)
-> [Kind] -> RewriteMonad NormalizeState [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly [Kind
aTy,Kind
bTy]
if [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or [Bool]
untranslatableTys Bool -> Bool -> Bool
|| Bool
shouldReduce1 Bool -> Bool -> Bool
|| Bool
ultra
then let [fun :: Term
fun,start :: Term
start,arg :: Term
arg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
in (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TransformContext
-> Integer
-> Kind
-> Term
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceFoldr TransformContext
c Integer
n Kind
aTy Term
fun Term
start Term
arg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.dfold" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 8 ->
let ([_kn :: Term
_kn,_motive :: Term
_motive,fun :: Term
fun,start :: Term
start,arg :: Term
arg],[_mTy :: Kind
_mTy,nTy :: Kind
nTy,aTy :: Kind
aTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
in case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer
-> Kind
-> Term
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceDFold InScopeSet
is0 Integer
n Kind
aTy Term
fun Term
start Term
arg
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.++" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 5 ->
let [nTy :: Kind
nTy,aTy :: Kind
aTy,mTy :: Kind
mTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
[lArg :: Term
lArg,rArg :: Term
rArg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
in case (Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy), Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
mTy)) of
(Right n :: Integer
n, Right m :: Integer
m)
| Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== 0 -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
rArg
| Integer
m Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== 0 -> Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
lArg
| Bool
otherwise -> do
Bool
untranslatableTy <- Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly Kind
aTy
if Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1
then (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer
-> Integer
-> Kind
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceAppend InScopeSet
is0 Integer
n Integer
m Kind
aTy Term
lArg Term
rArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.head" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 3 -> do
let [nTy :: Kind
nTy,aTy :: Kind
aTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
[vArg :: Term
vArg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
Bool
untranslatableTy <- Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly Kind
aTy
if Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1
then (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer -> Kind -> Term -> RewriteMonad NormalizeState Term
reduceHead InScopeSet
is0 (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+1) Kind
aTy Term
vArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.tail" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 3 -> do
let [nTy :: Kind
nTy,aTy :: Kind
aTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
[vArg :: Term
vArg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
Bool
untranslatableTy <- Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly Kind
aTy
if Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1
then (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer -> Kind -> Term -> RewriteMonad NormalizeState Term
reduceTail InScopeSet
is0 (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+1) Kind
aTy Term
vArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.last" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 3 -> do
let [nTy :: Kind
nTy,aTy :: Kind
aTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
[vArg :: Term
vArg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
Bool
untranslatableTy <- Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly Kind
aTy
if Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1
then (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer -> Kind -> Term -> RewriteMonad NormalizeState Term
reduceLast InScopeSet
is0 (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+1) Kind
aTy Term
vArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.init" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 3 -> do
let [nTy :: Kind
nTy,aTy :: Kind
aTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
[vArg :: Term
vArg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
Bool
untranslatableTy <- Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly Kind
aTy
if Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1
then (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer -> Kind -> Term -> RewriteMonad NormalizeState Term
reduceInit InScopeSet
is0 (Integer
nInteger -> Integer -> Integer
forall a. Num a => a -> a -> a
+1) Kind
aTy Term
vArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.unconcat" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 6 -> do
let ([_knN :: Term
_knN,_sm :: Term
_sm,arg :: Term
arg],[mTy :: Kind
mTy,nTy :: Kind
nTy,aTy :: Kind
aTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
case (Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy), Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
mTy)) of
(Right n :: Integer
n, Right 0) -> (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Integer
-> Integer -> Kind -> Term -> RewriteMonad NormalizeState Term
reduceUnconcat Integer
n 0 Kind
aTy Term
arg
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.transpose" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 5 -> do
let ([_knN :: Term
_knN,arg :: Term
arg],[mTy :: Kind
mTy,nTy :: Kind
nTy,aTy :: Kind
aTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
case (Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy), Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
mTy)) of
(Right n :: Integer
n, Right 0) -> (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Integer
-> Integer -> Kind -> Term -> RewriteMonad NormalizeState Term
reduceTranspose Integer
n 0 Kind
aTy Term
arg
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.replicate" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 4 -> do
let ([_sArg :: Term
_sArg,vArg :: Term
vArg],[nTy :: Kind
nTy,aTy :: Kind
aTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
Bool
untranslatableTy <- Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly Kind
aTy
if Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1
then (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Integer -> Kind -> Kind -> Term -> RewriteMonad NormalizeState Term
reduceReplicate Integer
n Kind
aTy Kind
eTy Term
vArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.replace_int" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 6 -> do
let ([_knArg :: Term
_knArg,vArg :: Term
vArg,iArg :: Term
iArg,aArg :: Term
aArg],[nTy :: Kind
nTy,aTy :: Kind
aTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
Bool
untranslatableTy <- Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly Kind
aTy
if Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1 Bool -> Bool -> Bool
|| Bool
ultra
then (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer
-> Kind
-> Kind
-> Term
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceReplace_int InScopeSet
is0 Integer
n Kind
aTy Kind
eTy Term
vArg Term
iArg Term
aArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.index_int" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 5 -> do
let ([_knArg :: Term
_knArg,vArg :: Term
vArg,iArg :: Term
iArg],[nTy :: Kind
nTy,aTy :: Kind
aTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
Bool
untranslatableTy <- Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly Kind
aTy
if Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1 Bool -> Bool -> Bool
|| Bool
ultra
then (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer
-> Kind
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceIndex_int InScopeSet
is0 Integer
n Kind
aTy Term
vArg Term
iArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.imap" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 6 -> do
let [nTy :: Kind
nTy,argElTy :: Kind
argElTy,resElTy :: Kind
resElTy] = [Either Term Kind] -> [Kind]
forall a b. [Either a b] -> [b]
Either.rights [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
[Bool]
untranslatableTys <- (Kind -> RewriteMonad NormalizeState Bool)
-> [Kind] -> RewriteMonad NormalizeState [Bool]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM Kind -> RewriteMonad NormalizeState Bool
forall extra. Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly [Kind
argElTy,Kind
resElTy]
if [Bool] -> Bool
forall (t :: * -> *). Foldable t => t Bool -> Bool
or [Bool]
untranslatableTys Bool -> Bool -> Bool
|| Bool
shouldReduce1 Bool -> Bool -> Bool
|| Bool
ultra Bool -> Bool -> Bool
|| Integer
n Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< 2
then let [_,fun :: Term
fun,arg :: Term
arg] = [Either Term Kind] -> [Term]
forall a b. [Either a b] -> [a]
Either.lefts [Either Term Kind]
args
in (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> TransformContext
-> Integer
-> Kind
-> Kind
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceImap TransformContext
c Integer
n Kind
argElTy Kind
resElTy Term
fun Term
arg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.dtfold" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 8 ->
let ([_kn :: Term
_kn,_motive :: Term
_motive,lrFun :: Term
lrFun,brFun :: Term
brFun,arg :: Term
arg],[_mTy :: Kind
_mTy,nTy :: Kind
nTy,aTy :: Kind
aTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
in case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer
-> Kind
-> Term
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceDTFold InScopeSet
is0 Integer
n Kind
aTy Term
lrFun Term
brFun Term
arg
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Vector.reverse"
| Bool
ultra
, ([vArg :: Term
vArg],[nTy :: Kind
nTy,aTy :: Kind
aTy]) <- [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
, Right n :: Integer
n <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy)
-> (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer -> Kind -> Term -> RewriteMonad NormalizeState Term
reduceReverse InScopeSet
is0 Integer
n Kind
aTy Term
vArg
"Clash.Sized.RTree.tdfold" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 8 ->
let ([_kn :: Term
_kn,_motive :: Term
_motive,lrFun :: Term
lrFun,brFun :: Term
brFun,arg :: Term
arg],[_mTy :: Kind
_mTy,nTy :: Kind
nTy,aTy :: Kind
aTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
in case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> InScopeSet
-> Integer
-> Kind
-> Term
-> Term
-> Term
-> RewriteMonad NormalizeState Term
reduceTFold InScopeSet
is0 Integer
n Kind
aTy Term
lrFun Term
brFun Term
arg
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.RTree.treplicate" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 4 -> do
let ([_sArg :: Term
_sArg,vArg :: Term
vArg],[nTy :: Kind
nTy,aTy :: Kind
aTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
case Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy) of
Right n :: Integer
n -> do
Bool
untranslatableTy <- Bool -> Kind -> RewriteMonad NormalizeState Bool
forall extra. Bool -> Kind -> RewriteMonad extra Bool
isUntranslatableType Bool
False Kind
aTy
if Bool
untranslatableTy Bool -> Bool -> Bool
|| Bool
shouldReduce1
then (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
ticks) (Term -> Term)
-> RewriteMonad NormalizeState Term
-> RewriteMonad NormalizeState Term
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> Integer -> Kind -> Kind -> Term -> RewriteMonad NormalizeState Term
reduceTReplicate Integer
n Kind
aTy Kind
eTy Term
vArg
else Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Internal.BitVector.split#" | [Either Term Kind] -> Int
forall (t :: * -> *) a. Foldable t => t a -> Int
length [Either Term Kind]
args Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== 4 -> do
let ([_knArg :: Term
_knArg,bvArg :: Term
bvArg],[nTy :: Kind
nTy,mTy :: Kind
mTy]) = [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
case (Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy), Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
mTy), TypeView
tv) of
(Right n :: Integer
n, Right m :: Integer
m, TyConApp tupTcNm :: TyConName
tupTcNm [lTy :: Kind
lTy,rTy :: Kind
rTy])
| Integer
n Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== 0 -> do
let (Just tupTc :: TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap TyConName
tupTcNm TyConMap
tcm
[tupDc :: DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
tup :: Term
tup = Term -> [Either Term Kind] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc)
[Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
lTy
,Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
rTy
,Term -> Either Term Kind
forall a b. a -> Either a b
Left Term
bvArg
,Term -> Either Term Kind
forall a b. a -> Either a b
Left (Kind -> Term
removedTm Kind
rTy)
]
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [TickInfo] -> Term
mkTicks Term
tup [TickInfo]
ticks)
| Integer
m Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== 0 -> do
let (Just tupTc :: TyCon
tupTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap TyConName
tupTcNm TyConMap
tcm
[tupDc :: DataCon
tupDc] = TyCon -> [DataCon]
tyConDataCons TyCon
tupTc
tup :: Term
tup = Term -> [Either Term Kind] -> Term
mkApps (DataCon -> Term
Data DataCon
tupDc)
[Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
lTy
,Kind -> Either Term Kind
forall a b. b -> Either a b
Right Kind
rTy
,Term -> Either Term Kind
forall a b. a -> Either a b
Left (Kind -> Term
removedTm Kind
lTy)
,Term -> Either Term Kind
forall a b. a -> Either a b
Left Term
bvArg
]
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [TickInfo] -> Term
mkTicks Term
tup [TickInfo]
ticks)
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
"Clash.Sized.Internal.BitVector.eq#"
| ([_,_],[nTy :: Kind
nTy]) <- [Either Term Kind] -> ([Term], [Kind])
forall a b. [Either a b] -> ([a], [b])
Either.partitionEithers [Either Term Kind]
args
, Right 0 <- Except String Integer -> Either String Integer
forall e a. Except e a -> Either e a
runExcept (TyConMap -> Kind -> Except String Integer
tyNatSize TyConMap
tcm Kind
nTy)
, TyConApp boolTcNm :: TyConName
boolTcNm [] <- TypeView
tv
-> let (Just boolTc :: TyCon
boolTc) = TyConName -> TyConMap -> Maybe TyCon
forall a b. Uniquable a => a -> UniqMap b -> Maybe b
lookupUniqMap TyConName
boolTcNm TyConMap
tcm
[_falseDc :: DataCon
_falseDc,trueDc :: DataCon
trueDc] = TyCon -> [DataCon]
tyConDataCons TyCon
boolTc
in Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (Term -> [TickInfo] -> Term
mkTicks (DataCon -> Term
Data DataCon
trueDc) [TickInfo]
ticks)
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
where
isUntranslatableType_not_poly :: Kind -> RewriteMonad extra Bool
isUntranslatableType_not_poly t :: Kind
t = do
Bool
u <- Bool -> Kind -> RewriteMonad extra Bool
forall extra. Bool -> Kind -> RewriteMonad extra Bool
isUntranslatableType Bool
False Kind
t
if Bool
u
then Bool -> RewriteMonad extra Bool
forall (m :: * -> *) a. Monad m => a -> m a
return ([TyVar] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null ([TyVar] -> Bool) -> [TyVar] -> Bool
forall a b. (a -> b) -> a -> b
$ Getting (Endo [TyVar]) Kind TyVar -> Kind -> [TyVar]
forall a s. Getting (Endo [a]) s a -> s -> [a]
Lens.toListOf Getting (Endo [TyVar]) Kind TyVar
Fold Kind TyVar
typeFreeVars Kind
t)
else Bool -> RewriteMonad extra Bool
forall (m :: * -> *) a. Monad m => a -> m a
return Bool
False
reduceNonRepPrim _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
disjointExpressionConsolidation :: HasCallStack => NormRewrite
disjointExpressionConsolidation :: NormRewrite
disjointExpressionConsolidation ctx :: TransformContext
ctx@(TransformContext is0 :: InScopeSet
is0 _) e :: Term
e@(Case _scrut :: Term
_scrut _ty :: Kind
_ty _alts :: [Alt]
_alts@(_:_:_)) = do
(_,collected :: [(Term, ([Term], CaseTree [Either Term Kind]))]
collected) <- InScopeSet
-> [(Term, Term)]
-> [Term]
-> Term
-> RewriteMonad
NormalizeState
(Term, [(Term, ([Term], CaseTree [Either Term Kind]))])
collectGlobals InScopeSet
is0 [] [] Term
e
let disJoint :: [(Term, ([Term], CaseTree [Either Term Kind]))]
disJoint = ((Term, ([Term], CaseTree [Either Term Kind])) -> Bool)
-> [(Term, ([Term], CaseTree [Either Term Kind]))]
-> [(Term, ([Term], CaseTree [Either Term Kind]))]
forall a. (a -> Bool) -> [a] -> [a]
filter (CaseTree [Either Term Kind] -> Bool
isDisjoint (CaseTree [Either Term Kind] -> Bool)
-> ((Term, ([Term], CaseTree [Either Term Kind]))
-> CaseTree [Either Term Kind])
-> (Term, ([Term], CaseTree [Either Term Kind]))
-> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. ([Term], CaseTree [Either Term Kind])
-> CaseTree [Either Term Kind]
forall a b. (a, b) -> b
snd (([Term], CaseTree [Either Term Kind])
-> CaseTree [Either Term Kind])
-> ((Term, ([Term], CaseTree [Either Term Kind]))
-> ([Term], CaseTree [Either Term Kind]))
-> (Term, ([Term], CaseTree [Either Term Kind]))
-> CaseTree [Either Term Kind]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Term, ([Term], CaseTree [Either Term Kind]))
-> ([Term], CaseTree [Either Term Kind])
forall a b. (a, b) -> b
snd) [(Term, ([Term], CaseTree [Either Term Kind]))]
collected
if [(Term, ([Term], CaseTree [Either Term Kind]))] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [(Term, ([Term], CaseTree [Either Term Kind]))]
disJoint
then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
else do
[(Term, [Term])]
exprs <- ((Term, ([Term], CaseTree [Either Term Kind]))
-> RewriteMonad NormalizeState (Term, [Term]))
-> [(Term, ([Term], CaseTree [Either Term Kind]))]
-> RewriteMonad NormalizeState [(Term, [Term])]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet
-> (Term, ([Term], CaseTree [Either Term Kind]))
-> RewriteMonad NormalizeState (Term, [Term])
mkDisjointGroup InScopeSet
is0) [(Term, ([Term], CaseTree [Either Term Kind]))]
disJoint
TyConMap
tcm <- Getting TyConMap RewriteEnv TyConMap
-> RewriteMonad NormalizeState TyConMap
forall s (m :: * -> *) a. MonadReader s m => Getting a s a -> m a
Lens.view Getting TyConMap RewriteEnv TyConMap
Lens' RewriteEnv TyConMap
tcCache
[Id]
lids <- ((Term, ([Term], CaseTree [Either Term Kind]))
-> (Term, [Term]) -> RewriteMonad NormalizeState Id)
-> [(Term, ([Term], CaseTree [Either Term Kind]))]
-> [(Term, [Term])]
-> RewriteMonad NormalizeState [Id]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
Monad.zipWithM (InScopeSet
-> TyConMap
-> (Term, ([Term], CaseTree [Either Term Kind]))
-> (Term, [Term])
-> RewriteMonad NormalizeState Id
forall (m :: * -> *) b b.
(Monad m, MonadUnique m) =>
InScopeSet -> TyConMap -> (Term, b) -> (Term, b) -> m Id
mkFunOut InScopeSet
is0 TyConMap
tcm) [(Term, ([Term], CaseTree [Either Term Kind]))]
disJoint [(Term, [Term])]
exprs
let substitution :: [(Term, Term)]
substitution = [Term] -> [Term] -> [(Term, Term)]
forall a b. [a] -> [b] -> [(a, b)]
zip (((Term, ([Term], CaseTree [Either Term Kind])) -> Term)
-> [(Term, ([Term], CaseTree [Either Term Kind]))] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map (Term, ([Term], CaseTree [Either Term Kind])) -> Term
forall a b. (a, b) -> a
fst [(Term, ([Term], CaseTree [Either Term Kind]))]
disJoint) ((Id -> Term) -> [Id] -> [Term]
forall a b. (a -> b) -> [a] -> [b]
map Id -> Term
Var [Id]
lids)
subsMatrix :: [[(Term, Term)]]
subsMatrix = [(Term, Term)] -> [[(Term, Term)]]
forall a. [a] -> [[a]]
l2m [(Term, Term)]
substitution
(exprs' :: [Term]
exprs',_) <- [(Term, [(Term, ([Term], CaseTree [Either Term Kind]))])]
-> ([Term], [[(Term, ([Term], CaseTree [Either Term Kind]))]])
forall a b. [(a, b)] -> ([a], [b])
unzip ([(Term, [(Term, ([Term], CaseTree [Either Term Kind]))])]
-> ([Term], [[(Term, ([Term], CaseTree [Either Term Kind]))]]))
-> RewriteMonad
NormalizeState
[(Term, [(Term, ([Term], CaseTree [Either Term Kind]))])]
-> RewriteMonad
NormalizeState
([Term], [[(Term, ([Term], CaseTree [Either Term Kind]))]])
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> ([(Term, Term)]
-> (Term, [Term])
-> RewriteMonad
NormalizeState
(Term, [(Term, ([Term], CaseTree [Either Term Kind]))]))
-> [[(Term, Term)]]
-> [(Term, [Term])]
-> RewriteMonad
NormalizeState
[(Term, [(Term, ([Term], CaseTree [Either Term Kind]))])]
forall (m :: * -> *) a b c.
Applicative m =>
(a -> b -> m c) -> [a] -> [b] -> m [c]
Monad.zipWithM
(\s :: [(Term, Term)]
s (e' :: Term
e',seen :: [Term]
seen) -> InScopeSet
-> [(Term, Term)]
-> [Term]
-> Term
-> RewriteMonad
NormalizeState
(Term, [(Term, ([Term], CaseTree [Either Term Kind]))])
collectGlobals InScopeSet
is0 [(Term, Term)]
s [Term]
seen Term
e')
[[(Term, Term)]]
subsMatrix
[(Term, [Term])]
exprs
(e' :: Term
e',_) <- InScopeSet
-> [(Term, Term)]
-> [Term]
-> Term
-> RewriteMonad
NormalizeState
(Term, [(Term, ([Term], CaseTree [Either Term Kind]))])
collectGlobals InScopeSet
is0 [(Term, Term)]
substitution [] Term
e
let lb :: Term
lb = [LetBinding] -> Term -> Term
Letrec ([Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
lids [Term]
exprs') Term
e'
Term
lb' <- NormRewrite -> NormRewrite
forall (m :: * -> *). Monad m => Transform m -> Transform m
bottomupR HasCallStack => NormRewrite
NormRewrite
deadCode TransformContext
ctx Term
lb
Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed Term
lb'
where
mkFunOut :: InScopeSet -> TyConMap -> (Term, b) -> (Term, b) -> m Id
mkFunOut isN :: InScopeSet
isN tcm :: TyConMap
tcm (fun :: Term
fun,_) (e' :: Term
e',_) = do
let ty :: Kind
ty = TyConMap -> Term -> Kind
termType TyConMap
tcm Term
e'
nm :: Text
nm = case Term -> (Term, [Either Term Kind])
collectArgs Term
fun of
(Var v :: Id
v,_) -> Name Term -> Text
forall a. Name a -> Text
nameOcc (Id -> Name Term
forall a. Var a -> Name a
varName Id
v)
(Prim nm' :: Text
nm' _,_) -> Text
nm'
_ -> "complex_expression_"
nm'' :: Text
nm'' = [Text] -> Text
forall a. [a] -> a
last (Text -> Text -> [Text]
Text.splitOn "." Text
nm) Text -> Text -> Text
`Text.append` "Out"
InScopeSet -> Text -> Kind -> m Id
forall (m :: * -> *).
(Monad m, MonadUnique m) =>
InScopeSet -> Text -> Kind -> m Id
mkInternalVar InScopeSet
isN Text
nm'' Kind
ty
l2m :: [a] -> [[a]]
l2m = [a] -> [a] -> [[a]]
forall a. [a] -> [a] -> [[a]]
go []
where
go :: [a] -> [a] -> [[a]]
go _ [] = []
go xs :: [a]
xs (y :: a
y:ys :: [a]
ys) = ([a]
xs [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a]
ys) [a] -> [[a]] -> [[a]]
forall a. a -> [a] -> [a]
: [a] -> [a] -> [[a]]
go ([a]
xs [a] -> [a] -> [a]
forall a. [a] -> [a] -> [a]
++ [a
y]) [a]
ys
disjointExpressionConsolidation _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
inlineCleanup :: HasCallStack => NormRewrite
inlineCleanup :: NormRewrite
inlineCleanup (TransformContext is0 :: InScopeSet
is0 _) (Letrec binds :: [LetBinding]
binds body :: Term
body) = do
HashMap Text GuardedCompiledPrimitive
prims <- Getting
(HashMap Text GuardedCompiledPrimitive)
(RewriteState NormalizeState)
(HashMap Text GuardedCompiledPrimitive)
-> RewriteMonad
NormalizeState (HashMap Text GuardedCompiledPrimitive)
forall s (m :: * -> *) a. MonadState s m => Getting a s a -> m a
Lens.use ((NormalizeState
-> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState)
-> RewriteState NormalizeState
-> Const
(HashMap Text GuardedCompiledPrimitive)
(RewriteState NormalizeState)
forall extra extra2.
Lens (RewriteState extra) (RewriteState extra2) extra extra2
extra((NormalizeState
-> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState)
-> RewriteState NormalizeState
-> Const
(HashMap Text GuardedCompiledPrimitive)
(RewriteState NormalizeState))
-> ((HashMap Text GuardedCompiledPrimitive
-> Const
(HashMap Text GuardedCompiledPrimitive)
(HashMap Text GuardedCompiledPrimitive))
-> NormalizeState
-> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState)
-> Getting
(HashMap Text GuardedCompiledPrimitive)
(RewriteState NormalizeState)
(HashMap Text GuardedCompiledPrimitive)
forall b c a. (b -> c) -> (a -> b) -> a -> c
.(HashMap Text GuardedCompiledPrimitive
-> Const
(HashMap Text GuardedCompiledPrimitive)
(HashMap Text GuardedCompiledPrimitive))
-> NormalizeState
-> Const (HashMap Text GuardedCompiledPrimitive) NormalizeState
Lens' NormalizeState (HashMap Text GuardedCompiledPrimitive)
primitives)
let is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is0 ((LetBinding -> Id) -> [LetBinding] -> [Id]
forall a b. (a -> b) -> [a] -> [b]
map LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
binds)
let allOccs :: VarEnv Int
allOccs = (VarEnv Int -> VarEnv Int -> VarEnv Int)
-> VarEnv Int -> [VarEnv Int] -> VarEnv Int
forall (t :: * -> *) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
List.foldl' ((Int -> Int -> Int) -> VarEnv Int -> VarEnv Int -> VarEnv Int
forall a. (a -> a -> a) -> VarEnv a -> VarEnv a -> VarEnv a
unionVarEnvWith Int -> Int -> Int
forall a. Num a => a -> a -> a
(+)) VarEnv Int
forall a. VarEnv a
emptyVarEnv
([VarEnv Int] -> VarEnv Int) -> [VarEnv Int] -> VarEnv Int
forall a b. (a -> b) -> a -> b
$ (LetBinding -> VarEnv Int) -> [LetBinding] -> [VarEnv Int]
forall a b. (a -> b) -> [a] -> [b]
map (Fold Term Id
-> (VarEnv Int -> VarEnv Int -> VarEnv Int)
-> VarEnv Int
-> (Id -> VarEnv Int)
-> Term
-> VarEnv Int
forall s a r. Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
Lens.foldMapByOf Fold Term Id
freeLocalIds ((Int -> Int -> Int) -> VarEnv Int -> VarEnv Int -> VarEnv Int
forall a. (a -> a -> a) -> VarEnv a -> VarEnv a -> VarEnv a
unionVarEnvWith Int -> Int -> Int
forall a. Num a => a -> a -> a
(+))
VarEnv Int
forall a. VarEnv a
emptyVarEnv (Id -> Int -> VarEnv Int
forall b a. Var b -> a -> VarEnv a
`unitVarEnv` 1) (Term -> VarEnv Int)
-> (LetBinding -> Term) -> LetBinding -> VarEnv Int
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Term
forall a b. (a, b) -> b
snd)
[LetBinding]
binds
bodyFVs :: UniqSet (Var Any)
bodyFVs = Getting (UniqSet (Var Any)) Term Id
-> (Id -> UniqSet (Var Any)) -> Term -> UniqSet (Var Any)
forall r s a. Getting r s a -> (a -> r) -> s -> r
Lens.foldMapOf Getting (UniqSet (Var Any)) Term Id
Fold Term Id
freeLocalIds Id -> UniqSet (Var Any)
forall a. Var a -> UniqSet (Var Any)
unitVarSet Term
body
(il :: [LetBinding]
il,keep :: [LetBinding]
keep) = (LetBinding -> Bool)
-> [LetBinding] -> ([LetBinding], [LetBinding])
forall a. (a -> Bool) -> [a] -> ([a], [a])
List.partition (VarEnv Int
-> HashMap Text GuardedCompiledPrimitive
-> UniqSet (Var Any)
-> LetBinding
-> Bool
isInteresting VarEnv Int
allOccs HashMap Text GuardedCompiledPrimitive
prims UniqSet (Var Any)
bodyFVs) [LetBinding]
binds
keep' :: [LetBinding]
keep' = InScopeSet -> [LetBinding] -> [LetBinding] -> [LetBinding]
inlineBndrs InScopeSet
is1 [LetBinding]
keep [LetBinding]
il
if [LetBinding] -> Bool
forall (t :: * -> *) a. Foldable t => t a -> Bool
null [LetBinding]
il then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return ([LetBinding] -> Term -> Term
Letrec [LetBinding]
binds Term
body)
else Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding] -> Term -> Term
Letrec [LetBinding]
keep' Term
body)
where
isInteresting
:: VarEnv Int
-> CompiledPrimMap
-> VarSet
-> (Id, Term)
-> Bool
isInteresting :: VarEnv Int
-> HashMap Text GuardedCompiledPrimitive
-> UniqSet (Var Any)
-> LetBinding
-> Bool
isInteresting allOccs :: VarEnv Int
allOccs prims :: HashMap Text GuardedCompiledPrimitive
prims bodyFVs :: UniqSet (Var Any)
bodyFVs (id_ :: Id
id_,((Term, [Either Term Kind]) -> Term
forall a b. (a, b) -> a
fst((Term, [Either Term Kind]) -> Term)
-> (Term -> (Term, [Either Term Kind])) -> Term -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
.Term -> (Term, [Either Term Kind])
collectArgs) -> Term
tm)
| Name Term -> NameSort
forall a. Name a -> NameSort
nameSort (Id -> Name Term
forall a. Var a -> Name a
varName Id
id_) NameSort -> NameSort -> Bool
forall a. Eq a => a -> a -> Bool
/= NameSort
User
, Id
id_ Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`notElemVarSet` UniqSet (Var Any)
bodyFVs
= case Term
tm of
Prim nm :: Text
nm _
| Just (GuardedCompiledPrimitive -> Maybe CompiledPrimitive
forall a. PrimitiveGuard a -> Maybe a
extractPrim -> Just p :: CompiledPrimitive
p@(BlackBox {})) <- Text
-> HashMap Text GuardedCompiledPrimitive
-> Maybe GuardedCompiledPrimitive
forall k v. (Eq k, Hashable k) => k -> HashMap k v -> Maybe v
HashMap.lookup Text
nm HashMap Text GuardedCompiledPrimitive
prims
, TemplateKind
TExpr <- CompiledPrimitive -> TemplateKind
forall a b c d. Primitive a b c d -> TemplateKind
kind CompiledPrimitive
p
, Just occ :: Int
occ <- Id -> VarEnv Int -> Maybe Int
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
id_ VarEnv Int
allOccs
, Int
occ Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< 2
-> Bool
True
Case _ _ [_] -> Bool
True
Data _ -> Bool
True
_ -> Bool
False
| Id
id_ Id -> UniqSet (Var Any) -> Bool
forall a. Var a -> UniqSet (Var Any) -> Bool
`notElemVarSet` UniqSet (Var Any)
bodyFVs
= case Term
tm of
Case _ _ [(DataPat dcE :: DataCon
dcE _ _,_)]
-> let nm :: Text
nm = (Name DataCon -> Text
forall a. Name a -> Text
nameOcc (DataCon -> Name DataCon
dcName DataCon
dcE))
in
Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.BitVector.BV" Bool -> Bool -> Bool
||
Text
nm Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== "Clash.Sized.Internal.BitVector.Bit" Bool -> Bool -> Bool
||
"GHC.Classes" Text -> Text -> Bool
`Text.isPrefixOf` Text
nm
_ -> Bool
False
isInteresting _ _ _ _ = Bool
False
inlineBndrs
:: InScopeSet
-> [(Id, Term)]
-> [(Id, Term)]
-> [(Id, Term)]
inlineBndrs :: InScopeSet -> [LetBinding] -> [LetBinding] -> [LetBinding]
inlineBndrs _ keep :: [LetBinding]
keep [] = [LetBinding]
keep
inlineBndrs isN :: InScopeSet
isN keep :: [LetBinding]
keep ((v :: Id
v,e :: Term
e):il :: [LetBinding]
il) =
let subst :: Subst
subst = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
isN) Id
v Term
e
in if Id
v Id -> Term -> Bool
`localIdOccursIn` Term
e
then InScopeSet -> [LetBinding] -> [LetBinding] -> [LetBinding]
inlineBndrs InScopeSet
isN ((Id
v,Term
e)LetBinding -> [LetBinding] -> [LetBinding]
forall a. a -> [a] -> [a]
:[LetBinding]
keep) [LetBinding]
il
else InScopeSet -> [LetBinding] -> [LetBinding] -> [LetBinding]
inlineBndrs InScopeSet
isN
((LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "inlineCleanup.inlineBndrs" Subst
subst)) [LetBinding]
keep)
((LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "inlineCleanup.inlineBndrs" Subst
subst)) [LetBinding]
il)
inlineCleanup _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e
flattenLet :: HasCallStack => NormRewrite
flattenLet :: NormRewrite
flattenLet (TransformContext is0 :: InScopeSet
is0 _) letrec :: Term
letrec@(Letrec _ _) = do
let (is2 :: InScopeSet
is2, Letrec binds :: [LetBinding]
binds body :: Term
body) = InScopeSet -> Term -> (InScopeSet, Term)
freshenTm InScopeSet
is0 Term
letrec
bodyOccs :: VarEnv Int
bodyOccs = Fold Term Id
-> (VarEnv Int -> VarEnv Int -> VarEnv Int)
-> VarEnv Int
-> (Id -> VarEnv Int)
-> Term
-> VarEnv Int
forall s a r. Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
Lens.foldMapByOf
Fold Term Id
freeLocalIds ((Int -> Int -> Int) -> VarEnv Int -> VarEnv Int -> VarEnv Int
forall a. (a -> a -> a) -> VarEnv a -> VarEnv a -> VarEnv a
unionVarEnvWith Int -> Int -> Int
forall a. Num a => a -> a -> a
(+))
VarEnv Int
forall a. VarEnv a
emptyVarEnv (Id -> Int -> VarEnv Int
forall b a. Var b -> a -> VarEnv a
`unitVarEnv` (1 :: Int))
Term
body
[LetBinding]
binds' <- [[LetBinding]] -> [LetBinding]
forall (t :: * -> *) a. Foldable t => t [a] -> [a]
concat ([[LetBinding]] -> [LetBinding])
-> RewriteMonad NormalizeState [[LetBinding]]
-> RewriteMonad NormalizeState [LetBinding]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> (LetBinding -> RewriteMonad NormalizeState [LetBinding])
-> [LetBinding] -> RewriteMonad NormalizeState [[LetBinding]]
forall (t :: * -> *) (m :: * -> *) a b.
(Traversable t, Monad m) =>
(a -> m b) -> t a -> m (t b)
mapM (InScopeSet
-> LetBinding -> RewriteMonad NormalizeState [LetBinding]
go InScopeSet
is2) [LetBinding]
binds
case [LetBinding]
binds' of
[(id' :: Id
id',e' :: Term
e')] | Just occ :: Int
occ <- Id -> VarEnv Int -> Maybe Int
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
id' VarEnv Int
bodyOccs, Term -> Bool
isWorkFree Term
e' Bool -> Bool -> Bool
|| Int
occ Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< 2 ->
if Id
id' Id -> Term -> Bool
`localIdOccursIn` Term
e'
then Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return ([LetBinding] -> Term -> Term
Letrec [LetBinding]
binds' Term
body)
else let subst :: Subst
subst = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
is2) Id
id' Term
e'
in Term -> RewriteMonad NormalizeState Term
forall a extra. a -> RewriteMonad extra a
changed (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "flattenLet" Subst
subst Term
body)
_ -> Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return ([LetBinding] -> Term -> Term
Letrec [LetBinding]
binds' Term
body)
where
go :: InScopeSet -> LetBinding -> NormalizeSession [LetBinding]
go :: InScopeSet
-> LetBinding -> RewriteMonad NormalizeState [LetBinding]
go isN :: InScopeSet
isN (id_ :: Id
id_,Term -> (Term, [TickInfo])
collectTicks -> (Letrec binds' :: [LetBinding]
binds' body' :: Term
body',ticks :: [TickInfo]
ticks)) = do
let bodyOccs :: VarEnv Int
bodyOccs = Fold Term Id
-> (VarEnv Int -> VarEnv Int -> VarEnv Int)
-> VarEnv Int
-> (Id -> VarEnv Int)
-> Term
-> VarEnv Int
forall s a r. Fold s a -> (r -> r -> r) -> r -> (a -> r) -> s -> r
Lens.foldMapByOf
Fold Term Id
freeLocalIds ((Int -> Int -> Int) -> VarEnv Int -> VarEnv Int -> VarEnv Int
forall a. (a -> a -> a) -> VarEnv a -> VarEnv a -> VarEnv a
unionVarEnvWith Int -> Int -> Int
forall a. Num a => a -> a -> a
(+))
VarEnv Int
forall a. VarEnv a
emptyVarEnv (Id -> Int -> VarEnv Int
forall b a. Var b -> a -> VarEnv a
`unitVarEnv` (1 :: Int))
Term
body'
(srcTicks :: [TickInfo]
srcTicks,nmTicks :: [TickInfo]
nmTicks) = [TickInfo] -> ([TickInfo], [TickInfo])
partitionTicks [TickInfo]
ticks
(LetBinding -> LetBinding) -> [LetBinding] -> [LetBinding]
forall a b. (a -> b) -> [a] -> [b]
map ((Term -> Term) -> LetBinding -> LetBinding
forall (a :: * -> * -> *) b c d.
Arrow a =>
a b c -> a (d, b) (d, c)
second (Term -> [TickInfo] -> Term
`mkTicks` [TickInfo]
nmTicks)) ([LetBinding] -> [LetBinding])
-> RewriteMonad NormalizeState [LetBinding]
-> RewriteMonad NormalizeState [LetBinding]
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> case [LetBinding]
binds' of
[(id' :: Id
id',e' :: Term
e')] | Just occ :: Int
occ <- Id -> VarEnv Int -> Maybe Int
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
id' VarEnv Int
bodyOccs, Term -> Bool
isWorkFree Term
e' Bool -> Bool -> Bool
|| Int
occ Int -> Int -> Bool
forall a. Ord a => a -> a -> Bool
< 2 ->
if Id
id' Id -> Term -> Bool
`localIdOccursIn` Term
e'
then [LetBinding] -> RewriteMonad NormalizeState [LetBinding]
forall a extra. a -> RewriteMonad extra a
changed [(Id
id',Term
e'),(Id
id_, Term
body')]
else let subst :: Subst
subst = Subst -> Id -> Term -> Subst
extendIdSubst (InScopeSet -> Subst
mkSubst InScopeSet
isN) Id
id' Term
e'
in [LetBinding] -> RewriteMonad NormalizeState [LetBinding]
forall a extra. a -> RewriteMonad extra a
changed [(Id
id_
,Term -> [TickInfo] -> Term
mkTicks (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm "flattenLetGo" Subst
subst Term
body')
[TickInfo]
srcTicks)]
bs :: [LetBinding]
bs -> [LetBinding] -> RewriteMonad NormalizeState [LetBinding]
forall a extra. a -> RewriteMonad extra a
changed ([LetBinding]
bs [LetBinding] -> [LetBinding] -> [LetBinding]
forall a. [a] -> [a] -> [a]
++ [(Id
id_
,Term -> [TickInfo] -> Term
mkTicks Term
body' [TickInfo]
srcTicks)])
go _ b :: LetBinding
b = [LetBinding] -> RewriteMonad NormalizeState [LetBinding]
forall (m :: * -> *) a. Monad m => a -> m a
return [LetBinding
b]
flattenLet _ e :: Term
e = Term -> RewriteMonad NormalizeState Term
forall (m :: * -> *) a. Monad m => a -> m a
return Term
e