{-# LANGUAGE CPP #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE OverloadedStrings #-}
module Clash.GHC.PartialEval.Eval
( eval
, apply
, applyTy
) where
import Control.Monad (foldM)
import Data.Bifunctor
import Data.Bitraversable
import Data.Either
import Data.Maybe
import Data.Primitive.ByteArray (ByteArray(..))
#if MIN_VERSION_base(4,15,0)
import GHC.Num.Integer (Integer (..))
#else
import GHC.Integer.GMP.Internals (BigNat(..), Integer(..))
#endif
import GHC.BasicTypes.Extra (isNoInline)
import Clash.Core.DataCon (DataCon(..))
import Clash.Core.HasType
import Clash.Core.Literal (Literal(..))
import Clash.Core.PartialEval.AsTerm
import Clash.Core.PartialEval.Monad
import Clash.Core.PartialEval.NormalForm
import Clash.Core.Subst (substTy)
import Clash.Core.Term
import Clash.Core.TyCon (tyConDataCons)
import Clash.Core.Type
import Clash.Core.TysPrim (integerPrimTy)
import Clash.Core.Var
import qualified Clash.Data.UniqMap as UniqMap
import Clash.Driver.Types (Binding(..), IsPrim(..))
import qualified Clash.Normalize.Primitives as NP (undefined, undefinedX)
eval :: Term -> Eval Value
eval :: Term -> Eval Value
eval = \case
Var Id
i -> Id -> Eval Value
evalVar Id
i
Literal Literal
lit -> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Literal -> Value
VLiteral Literal
lit)
Data DataCon
dc -> DataCon -> Eval Value
evalData DataCon
dc
Prim PrimInfo
pr -> PrimInfo -> Eval Value
evalPrim PrimInfo
pr
Lam Id
i Term
x -> Id -> Term -> Eval Value
evalLam Id
i Term
x
TyLam TyVar
i Term
x -> TyVar -> Term -> Eval Value
evalTyLam TyVar
i Term
x
App Term
x Term
y -> Term -> Arg Term -> Eval Value
evalApp Term
x (Term -> Arg Term
forall a b. a -> Either a b
Left Term
y)
TyApp Term
x Type
ty -> Term -> Arg Term -> Eval Value
evalApp Term
x (Type -> Arg Term
forall a b. b -> Either a b
Right Type
ty)
Let Bind Term
bs Term
x -> Bind Term -> Term -> Eval Value
evalLet Bind Term
bs Term
x
Case Term
x Type
ty [Alt]
alts -> Term -> Type -> [Alt] -> Eval Value
evalCase Term
x Type
ty [Alt]
alts
Cast Term
x Type
a Type
b -> Term -> Type -> Type -> Eval Value
evalCast Term
x Type
a Type
b
Tick TickInfo
tick Term
x -> TickInfo -> Term -> Eval Value
evalTick TickInfo
tick Term
x
delayEval :: Term -> Eval Value
delayEval :: Term -> Eval Value
delayEval = \case
Literal Literal
lit -> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Literal -> Value
VLiteral Literal
lit)
Lam Id
i Term
x -> Id -> Term -> Eval Value
evalLam Id
i Term
x
TyLam TyVar
i Term
x -> TyVar -> Term -> Eval Value
evalTyLam TyVar
i Term
x
Tick TickInfo
t Term
x -> (Value -> TickInfo -> Value) -> TickInfo -> Value -> Value
forall a b c. (a -> b -> c) -> b -> a -> c
flip Value -> TickInfo -> Value
VTick TickInfo
t (Value -> Value) -> Eval Value -> Eval Value
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> Eval Value
delayEval Term
x
Term
term -> Term -> LocalEnv -> Value
VThunk Term
term (LocalEnv -> Value) -> Eval LocalEnv -> Eval Value
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Eval LocalEnv
getLocalEnv
forceEval :: Value -> Eval Value
forceEval :: Value -> Eval Value
forceEval = [(TyVar, Type)] -> [(Id, Value)] -> Value -> Eval Value
forceEvalWith [] []
forceEvalWith :: [(TyVar, Type)] -> [(Id, Value)] -> Value -> Eval Value
forceEvalWith :: [(TyVar, Type)] -> [(Id, Value)] -> Value -> Eval Value
forceEvalWith [(TyVar, Type)]
tvs [(Id, Value)]
ids = \case
VThunk Term
term LocalEnv
env -> do
[(TyVar, Type)]
tvs' <- ((TyVar, Type) -> Eval (TyVar, Type))
-> [(TyVar, Type)] -> Eval [(TyVar, Type)]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse ((Type -> Eval Type) -> (TyVar, Type) -> Eval (TyVar, Type)
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Type -> Eval Type
evalType) [(TyVar, Type)]
tvs
LocalEnv -> Eval Value -> Eval Value
forall a. LocalEnv -> Eval a -> Eval a
setLocalEnv LocalEnv
env ([(TyVar, Type)] -> Eval Value -> Eval Value
forall a. [(TyVar, Type)] -> Eval a -> Eval a
withTyVars [(TyVar, Type)]
tvs' (Eval Value -> Eval Value)
-> (Eval Value -> Eval Value) -> Eval Value -> Eval Value
forall b c a. (b -> c) -> (a -> b) -> a -> c
. [(Id, Value)] -> Eval Value -> Eval Value
forall a. [(Id, Value)] -> Eval a -> Eval a
withIds [(Id, Value)]
ids (Eval Value -> Eval Value) -> Eval Value -> Eval Value
forall a b. (a -> b) -> a -> b
$ Term -> Eval Value
eval Term
term)
Value
value -> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Value
value
delayArg :: Arg Term -> Eval (Arg Value)
delayArg :: Arg Term -> Eval (Arg Value)
delayArg = (Term -> Eval Value)
-> (Type -> Eval Type) -> Arg Term -> Eval (Arg Value)
forall (t :: Type -> Type -> Type) (f :: Type -> Type) a c b d.
(Bitraversable t, Applicative f) =>
(a -> f c) -> (b -> f d) -> t a b -> f (t c d)
bitraverse Term -> Eval Value
delayEval Type -> Eval Type
evalType
delayArgs :: Args Term -> Eval (Args Value)
delayArgs :: Args Term -> Eval (Args Value)
delayArgs = (Arg Term -> Eval (Arg Value)) -> Args Term -> Eval (Args Value)
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Arg Term -> Eval (Arg Value)
delayArg
evalType :: Type -> Eval Type
evalType :: Type -> Eval Type
evalType Type
ty = do
TyConMap
tcm <- Eval TyConMap
getTyConMap
Subst
subst <- Eval Subst
getTvSubst
Type -> Eval Type
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (TyConMap -> Type -> Type
normalizeType TyConMap
tcm (HasCallStack => Subst -> Type -> Type
Subst -> Type -> Type
substTy Subst
subst Type
ty))
evalVar :: Id -> Eval Value
evalVar :: Id -> Eval Value
evalVar Id
i
| Id -> Bool
forall a. Var a -> Bool
isLocalId Id
i = Id -> Eval Value
lookupLocal Id
i
| Bool
otherwise = Id -> Eval Value
lookupGlobal Id
i
lookupLocal :: Id -> Eval Value
lookupLocal :: Id -> Eval Value
lookupLocal Id
i = do
Maybe Value
var <- Id -> Eval (Maybe Value)
findId Id
i
Type
varTy <- Type -> Eval Type
evalType (Id -> Type
forall a. Var a -> Type
varType Id
i)
let i' :: Id
i' = Id
i { varType :: Type
varType = Type
varTy }
case Maybe Value
var of
Just Value
x -> do
Bool
workFree <- Value -> Eval Bool
workFreeValue Value
x
if Bool
workFree then Value -> Eval Value
forceEval Value
x else Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Id -> Neutral Value
forall a. Id -> Neutral a
NeVar Id
i'))
Maybe Value
Nothing -> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Id -> Neutral Value
forall a. Id -> Neutral a
NeVar Id
i'))
lookupGlobal :: Id -> Eval Value
lookupGlobal :: Id -> Eval Value
lookupGlobal Id
i = do
Word
fuel <- Eval Word
getFuel
Maybe (Binding Value)
var <- Id -> Eval (Maybe (Binding Value))
findBinding Id
i
case Maybe (Binding Value)
var of
Just Binding Value
x
| InlineSpec -> Bool
isNoInline (Binding Value -> InlineSpec
forall a. Binding a -> InlineSpec
bindingSpec Binding Value
x)
, Binding Value -> IsPrim
forall a. Binding a -> IsPrim
bindingIsPrim Binding Value
x IsPrim -> IsPrim -> Bool
forall a. Eq a => a -> a -> Bool
== IsPrim
IsFun
-> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Id -> Neutral Value
forall a. Id -> Neutral a
NeVar Id
i))
| Word
fuel Word -> Word -> Bool
forall a. Eq a => a -> a -> Bool
== Word
0
-> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Id -> Neutral Value
forall a. Id -> Neutral a
NeVar Id
i))
| Bool
otherwise
-> Id -> Eval Value -> Eval Value
forall a. Id -> Eval a -> Eval a
withContext Id
i (Eval Value -> Eval Value)
-> (Eval Value -> Eval Value) -> Eval Value -> Eval Value
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Eval Value -> Eval Value
forall a. Eval a -> Eval a
withFuel (Eval Value -> Eval Value) -> Eval Value -> Eval Value
forall a b. (a -> b) -> a -> b
$ do
Value
val <- Value -> Eval Value
forceEval (Binding Value -> Value
forall a. Binding a -> a
bindingTerm Binding Value
x)
Binding Value -> Eval ()
replaceBinding (Binding Value
x { bindingTerm :: Value
bindingTerm = Value
val })
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Value
val
Maybe (Binding Value)
Nothing
-> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Id -> Neutral Value
forall a. Id -> Neutral a
NeVar Id
i))
evalData :: DataCon -> Eval Value
evalData :: DataCon -> Eval Value
evalData DataCon
dc
| Type -> Args Any -> Bool
forall a. Type -> Args a -> Bool
fullyApplied (DataCon -> Type
dcType DataCon
dc) [] =
DataCon -> Args Value -> LocalEnv -> Value
VData DataCon
dc [] (LocalEnv -> Value) -> Eval LocalEnv -> Eval Value
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Eval LocalEnv
getLocalEnv
| Bool
otherwise =
Term -> Eval Term
etaExpand (DataCon -> Term
Data DataCon
dc) Eval Term -> (Term -> Eval Value) -> Eval Value
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= Term -> Eval Value
eval
evalPrim :: PrimInfo -> Eval Value
evalPrim :: PrimInfo -> Eval Value
evalPrim PrimInfo
pr
| Type -> Args Any -> Bool
forall a. Type -> Args a -> Bool
fullyApplied (PrimInfo -> Type
primType PrimInfo
pr) [] =
PrimInfo -> Args Value -> Eval Value
evalPrimOp PrimInfo
pr []
| Bool
otherwise =
Term -> Eval Term
etaExpand (PrimInfo -> Term
Prim PrimInfo
pr) Eval Term -> (Term -> Eval Value) -> Eval Value
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= Term -> Eval Value
eval
evalPrimOp :: PrimInfo -> Args Value -> Eval Value
evalPrimOp :: PrimInfo -> Args Value -> Eval Value
evalPrimOp PrimInfo
pr Args Value
args = Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (PrimInfo -> Args Value -> Neutral Value
forall a. PrimInfo -> Args a -> Neutral a
NePrim PrimInfo
pr Args Value
args))
fullyApplied :: Type -> Args a -> Bool
fullyApplied :: Type -> Args a -> Bool
fullyApplied Type
ty Args a
args =
[Either TyVar Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length (([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a, b) -> a
fst (([Either TyVar Type], Type) -> [Either TyVar Type])
-> ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a -> b) -> a -> b
$ Type -> ([Either TyVar Type], Type)
splitFunForallTy Type
ty) Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Args a -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length Args a
args
etaExpand :: Term -> Eval Term
etaExpand :: Term -> Eval Term
etaExpand Term
term = do
TyConMap
tcm <- Eval TyConMap
getTyConMap
case Term -> (Term, Args Term)
collectArgs Term
term of
x :: (Term, Args Term)
x@(Data DataCon
dc, Args Term
_) -> TyConMap -> Type -> (Term, Args Term) -> Eval Term
expand TyConMap
tcm (DataCon -> Type
dcType DataCon
dc) (Term, Args Term)
x
x :: (Term, Args Term)
x@(Prim PrimInfo
pr, Args Term
_) -> TyConMap -> Type -> (Term, Args Term) -> Eval Term
expand TyConMap
tcm (PrimInfo -> Type
primType PrimInfo
pr) (Term, Args Term)
x
(Term, Args Term)
_ -> Term -> Eval Term
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Term
term
where
etaNameOf :: Either b Type -> Eval (Either Id b)
etaNameOf =
(b -> Eval (Either Id b))
-> (Type -> Eval (Either Id b))
-> Either b Type
-> Eval (Either Id b)
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (Either Id b -> Eval (Either Id b)
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Either Id b -> Eval (Either Id b))
-> (b -> Either Id b) -> b -> Eval (Either Id b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. b -> Either Id b
forall a b. b -> Either a b
Right) ((Id -> Either Id b) -> Eval Id -> Eval (Either Id b)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap Id -> Either Id b
forall a b. a -> Either a b
Left (Eval Id -> Eval (Either Id b))
-> (Type -> Eval Id) -> Type -> Eval (Either Id b)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. OccName -> Type -> Eval Id
getUniqueId OccName
"eta")
expand :: TyConMap -> Type -> (Term, Args Term) -> Eval Term
expand TyConMap
tcm Type
ty (Term
tm, Args Term
args) = do
let ([Either TyVar Type]
missingTys, Type
_) = Type -> ([Either TyVar Type], Type)
splitFunForallTy (Term -> TyConMap -> Type -> Args Term -> Type
applyTypeToArgs Term
tm TyConMap
tcm Type
ty Args Term
args)
[Either Id TyVar]
missingArgs <- (Either TyVar Type -> Eval (Either Id TyVar))
-> [Either TyVar Type] -> Eval [Either Id TyVar]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Either TyVar Type -> Eval (Either Id TyVar)
forall b. Either b Type -> Eval (Either Id b)
etaNameOf [Either TyVar Type]
missingTys
Term -> Eval Term
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Term -> Eval Term) -> Term -> Eval Term
forall a b. (a -> b) -> a -> b
$ Term -> [Either Id TyVar] -> Term
mkAbstraction
(Term -> Args Term -> Term
mkApps Term
term ((Either Id TyVar -> Arg Term) -> [Either Id TyVar] -> Args Term
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap ((Id -> Term) -> (TyVar -> Type) -> Either Id TyVar -> Arg Term
forall (p :: Type -> Type -> Type) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap Id -> Term
Var TyVar -> Type
VarTy) [Either Id TyVar]
missingArgs))
[Either Id TyVar]
missingArgs
evalLam :: Id -> Term -> Eval Value
evalLam :: Id -> Term -> Eval Value
evalLam Id
i Term
x = do
Type
varTy <- Type -> Eval Type
evalType (Id -> Type
forall a. Var a -> Type
varType Id
i)
let i' :: Id
i' = Id
i { varType :: Type
varType = Type
varTy }
LocalEnv
env <- Eval LocalEnv
getLocalEnv
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Id -> Term -> LocalEnv -> Value
VLam Id
i' Term
x LocalEnv
env)
evalTyLam :: TyVar -> Term -> Eval Value
evalTyLam :: TyVar -> Term -> Eval Value
evalTyLam TyVar
i Term
x = do
Type
varTy <- Type -> Eval Type
evalType (TyVar -> Type
forall a. Var a -> Type
varType TyVar
i)
let i' :: TyVar
i' = TyVar
i { varType :: Type
varType = Type
varTy }
LocalEnv
env <- Eval LocalEnv
getLocalEnv
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (TyVar -> Term -> LocalEnv -> Value
VTyLam TyVar
i' Term
x LocalEnv
env)
evalApp :: Term -> Arg Term -> Eval Value
evalApp :: Term -> Arg Term -> Eval Value
evalApp Term
x Arg Term
y
| Data DataCon
dc <- Term
f
= if Type -> Args Term -> Bool
forall a. Type -> Args a -> Bool
fullyApplied (DataCon -> Type
dcType DataCon
dc) Args Term
args
then do
Args Value
argThunks <- Args Term -> Eval (Args Value)
delayArgs Args Term
args
DataCon -> Args Value -> LocalEnv -> Value
VData DataCon
dc Args Value
argThunks (LocalEnv -> Value) -> Eval LocalEnv -> Eval Value
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Eval LocalEnv
getLocalEnv
else Term -> Eval Term
etaExpand Term
term Eval Term -> (Term -> Eval Value) -> Eval Value
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= Term -> Eval Value
eval
| Prim PrimInfo
pr <- Term
f
, [Either TyVar Type]
prArgs <- ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a, b) -> a
fst (([Either TyVar Type], Type) -> [Either TyVar Type])
-> ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a -> b) -> a -> b
$ Type -> ([Either TyVar Type], Type)
splitFunForallTy (PrimInfo -> Type
primType PrimInfo
pr)
, Int
numArgs <- [Either TyVar Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either TyVar Type]
prArgs
= case Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare (Args Term -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length Args Term
args) Int
numArgs of
Ordering
LT ->
Term -> Eval Term
etaExpand Term
term Eval Term -> (Term -> Eval Value) -> Eval Value
forall (m :: Type -> Type) a b. Monad m => m a -> (a -> m b) -> m b
>>= Term -> Eval Value
eval
Ordering
EQ -> do
Args Value
argThunks <- Args Term -> Eval (Args Value)
delayArgs Args Term
args
let tyVars :: [TyVar]
tyVars = [Either TyVar Type] -> [TyVar]
forall a b. [Either a b] -> [a]
lefts [Either TyVar Type]
prArgs
tyArgs :: [Type]
tyArgs = Args Term -> [Type]
forall a b. [Either a b] -> [b]
rights Args Term
args
[(TyVar, Type)] -> Eval Value -> Eval Value
forall a. [(TyVar, Type)] -> Eval a -> Eval a
withTyVars ([TyVar] -> [Type] -> [(TyVar, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TyVar]
tyVars [Type]
tyArgs) (PrimInfo -> Args Value -> Eval Value
evalPrimOp PrimInfo
pr Args Value
argThunks)
Ordering
GT -> do
let (Args Term
pArgs, Args Term
rArgs) = Int -> Args Term -> (Args Term, Args Term)
forall a. Int -> [a] -> ([a], [a])
splitAt Int
numArgs Args Term
args
Args Value
pArgThunks <- Args Term -> Eval (Args Value)
delayArgs Args Term
pArgs
Value
primRes <- PrimInfo -> Args Value -> Eval Value
evalPrimOp PrimInfo
pr Args Value
pArgThunks
Args Value
rArgThunks <- Args Term -> Eval (Args Value)
delayArgs Args Term
rArgs
(Value -> Arg Value -> Eval Value)
-> Value -> Args Value -> Eval Value
forall (t :: Type -> Type) (m :: Type -> Type) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM Value -> Arg Value -> Eval Value
applyArg Value
primRes Args Value
rArgThunks
| Bool
otherwise
= Eval Value -> Eval Value
forall a. Eval a -> Eval a
preserveFuel (Eval Value -> Eval Value) -> Eval Value -> Eval Value
forall a b. (a -> b) -> a -> b
$ do
Value
evalF <- Term -> Eval Value
eval Term
f
Args Value
argThunks <- Args Term -> Eval (Args Value)
delayArgs Args Term
args
(Value -> Arg Value -> Eval Value)
-> Value -> Args Value -> Eval Value
forall (t :: Type -> Type) (m :: Type -> Type) b a.
(Foldable t, Monad m) =>
(b -> a -> m b) -> b -> t a -> m b
foldM Value -> Arg Value -> Eval Value
applyArg Value
evalF Args Value
argThunks
where
term :: Term
term = (Term -> Term) -> (Type -> Term) -> Arg Term -> Term
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (Term -> Term -> Term
App Term
x) (Term -> Type -> Term
TyApp Term
x) Arg Term
y
(Term
f, Args Term
args, [TickInfo]
_ticks) = Term -> (Term, Args Term, [TickInfo])
collectArgsTicks Term
term
evalLet :: Bind Term -> Term -> Eval Value
evalLet :: Bind Term -> Term -> Eval Value
evalLet (NonRec Id
i Term
x) Term
body = do
Type
iTy <- Type -> Eval Type
evalType (Id -> Type
forall a. Var a -> Type
varType Id
i)
Value
eX <- Term -> Eval Value
delayEval Term
x
Bool
wfX <- Value -> Eval Bool
workFreeValue Value
eX
Value
eBody <- Id -> Value -> Eval Value -> Eval Value
forall a. Id -> Value -> Eval a -> Eval a
withId Id
i Value
eX (Term -> Eval Value
eval Term
body)
if Bool
wfX
then Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Value
eBody
else Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Bind Value -> Value -> Neutral Value
forall a. Bind a -> a -> Neutral a
NeLet (Id -> Value -> Bind Value
forall a. Id -> a -> Bind a
NonRec Id
i{varType :: Type
varType=Type
iTy} Value
eX) Value
eBody))
evalLet (Rec [(Id, Term)]
xs) Term
body = do
[(Id, Value)]
binds <- ((Id, Term) -> Eval (Id, Value))
-> [(Id, Term)] -> Eval [(Id, Value)]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse (Id, Term) -> Eval (Id, Value)
forall a. (Var a, Term) -> Eval (Var a, Value)
evalBind [(Id, Term)]
xs
Value
eBody <- [(Id, Value)] -> Eval Value -> Eval Value
forall a. [(Id, Value)] -> Eval a -> Eval a
withIds [(Id, Value)]
binds (Term -> Eval Value
eval Term
body)
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Bind Value -> Value -> Neutral Value
forall a. Bind a -> a -> Neutral a
NeLet ([(Id, Value)] -> Bind Value
forall a. [(Id, a)] -> Bind a
Rec [(Id, Value)]
binds) Value
eBody))
where
evalBind :: (Var a, Term) -> Eval (Var a, Value)
evalBind (Var a
i, Term
x) = do
Type
iTy <- Type -> Eval Type
evalType (Var a -> Type
forall a. Var a -> Type
varType Var a
i)
Value
eX <- Term -> Eval Value
delayEval Term
x
(Var a, Value) -> Eval (Var a, Value)
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Var a
i{varType :: Type
varType=Type
iTy}, Value
eX)
evalCase :: Term -> Type -> [Alt] -> Eval Value
evalCase :: Term -> Type -> [Alt] -> Eval Value
evalCase Term
term Type
ty [Alt]
as = do
Value
subject <- Term -> Eval Value
delayEval Term
term
Type
resTy <- Type -> Eval Type
evalType Type
ty
[(Pat, Value)]
alts <- [Alt] -> Eval [(Pat, Value)]
delayAlts [Alt]
as
Value -> Type -> [(Pat, Value)] -> Eval Value
caseCon Value
subject Type
resTy [(Pat, Value)]
alts
caseCon :: Value -> Type -> [(Pat, Value)] -> Eval Value
caseCon :: Value -> Type -> [(Pat, Value)] -> Eval Value
caseCon Value
subject Type
ty [(Pat, Value)]
alts = do
Value
forcedSubject <- Eval Value -> Eval Value
forall a. Eval a -> Eval a
keepLifted (Value -> Eval Value
forceEval Value
subject)
case Value -> Bool
isUndefinedX Value
forcedSubject of
Bool
True -> Term -> Eval Value
eval (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefinedX) Type
ty)
Bool
False -> case Value -> Bool
isUndefined Value
forcedSubject of
Bool
True -> Term -> Eval Value
eval (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) Type
ty)
Bool
False ->
case Value -> Value
stripValue Value
forcedSubject of
VLiteral Literal
lit -> do
let def :: a
def = [Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char]
"caseCon: No pattern matched " [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> Literal -> [Char]
forall a. Show a => a -> [Char]
show Literal
lit [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> [Char]
" in " [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> [(Pat, Value)] -> [Char]
forall a. Show a => a -> [Char]
show [(Pat, Value)]
alts)
PatResult
match <- ((Pat, Value) -> Eval PatResult)
-> [(Pat, Value)] -> Eval PatResult
findBestAlt (Literal -> (Pat, Value) -> Eval PatResult
matchLiteral Literal
lit) [(Pat, Value)]
alts
Value -> PatResult -> Eval Value
evalAlt Value
forall a. a
def PatResult
match
VData DataCon
dc Args Value
args LocalEnv
_env -> do
let def :: a
def = [Char] -> a
forall a. HasCallStack => [Char] -> a
error ([Char]
"caseCon: No pattern matched " [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> DataCon -> [Char]
forall a. Show a => a -> [Char]
show DataCon
dc [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> [Char]
" in " [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> [(Pat, Value)] -> [Char]
forall a. Show a => a -> [Char]
show [(Pat, Value)]
alts)
PatResult
match <- ((Pat, Value) -> Eval PatResult)
-> [(Pat, Value)] -> Eval PatResult
findBestAlt (DataCon -> Args Value -> (Pat, Value) -> Eval PatResult
matchData DataCon
dc Args Value
args) [(Pat, Value)]
alts
Value -> PatResult -> Eval Value
evalAlt Value
forall a. a
def PatResult
match
VNeutral (NePrim PrimInfo
pr Args Value
args) -> do
let def :: Value
def = Neutral Value -> Value
VNeutral (Value -> Type -> [(Pat, Value)] -> Neutral Value
forall a. a -> Type -> [(Pat, a)] -> Neutral a
NeCase Value
forcedSubject Type
ty [(Pat, Value)]
alts)
PatResult
match <- ((Pat, Value) -> Eval PatResult)
-> [(Pat, Value)] -> Eval PatResult
findBestAlt (PrimInfo -> Args Value -> (Pat, Value) -> Eval PatResult
matchClashPrim PrimInfo
pr Args Value
args) [(Pat, Value)]
alts
Value -> PatResult -> Eval Value
evalAlt Value
def PatResult
match
Value
_ -> Value -> Type -> [(Pat, Value)] -> Eval Value
tryTransformCase Value
forcedSubject Type
ty [(Pat, Value)]
alts
tryTransformCase :: Value -> Type -> [(Pat, Value)] -> Eval Value
tryTransformCase :: Value -> Type -> [(Pat, Value)] -> Eval Value
tryTransformCase Value
subject Type
ty [(Pat, Value)]
alts =
case Value -> Value
stripValue Value
subject of
VNeutral (NeCase Value
innerSubject Type
_ [(Pat, Value)]
innerAlts) -> do
[(Pat, Value)]
forcedAlts <- [(Pat, Value)] -> Eval [(Pat, Value)]
forceAlts [(Pat, Value)]
innerAlts
if ((Pat, Value) -> Bool) -> [(Pat, Value)] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
all (Value -> Bool
isKnown (Value -> Bool) -> ((Pat, Value) -> Value) -> (Pat, Value) -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Pat, Value) -> Value
forall a b. (a, b) -> b
snd) [(Pat, Value)]
forcedAlts
then let asCase :: Value -> Value
asCase Value
v = Neutral Value -> Value
VNeutral (Value -> Type -> [(Pat, Value)] -> Neutral Value
forall a. a -> Type -> [(Pat, a)] -> Neutral a
NeCase Value
v Type
ty [(Pat, Value)]
alts)
newAlts :: [(Pat, Value)]
newAlts = (Value -> Value) -> (Pat, Value) -> (Pat, Value)
forall (p :: Type -> Type -> Type) b c a.
Bifunctor p =>
(b -> c) -> p a b -> p a c
second Value -> Value
asCase ((Pat, Value) -> (Pat, Value)) -> [(Pat, Value)] -> [(Pat, Value)]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> [(Pat, Value)]
innerAlts
in Value -> Type -> [(Pat, Value)] -> Eval Value
caseCon Value
innerSubject Type
ty [(Pat, Value)]
newAlts
else Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Value -> Type -> [(Pat, Value)] -> Neutral Value
forall a. a -> Type -> [(Pat, a)] -> Neutral a
NeCase Value
subject Type
ty [(Pat, Value)]
alts))
VNeutral (NeLet Bind Value
bindings Value
innerSubject) -> do
Value
newCase <- Value -> Type -> [(Pat, Value)] -> Eval Value
caseCon Value
innerSubject Type
ty [(Pat, Value)]
alts
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Bind Value -> Value -> Neutral Value
forall a. Bind a -> a -> Neutral a
NeLet Bind Value
bindings Value
newCase))
Value
_ -> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Value -> Type -> [(Pat, Value)] -> Neutral Value
forall a. a -> Type -> [(Pat, a)] -> Neutral a
NeCase Value
subject Type
ty [(Pat, Value)]
alts))
where
isKnown :: Value -> Bool
isKnown = \case
VNeutral (NePrim PrimInfo
pr Args Value
_) ->
PrimInfo -> OccName
primName PrimInfo
pr OccName -> [OccName] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem`
[ OccName
"Clash.Sized.Internal.BitVector.fromInteger##"
, OccName
"Clash.Sized.Internal.BitVector.fromInteger#"
, OccName
"Clash.Sized.Internal.Index.fromInteger#"
, OccName
"Clash.Sized.Internal.Signed.fromInteger#"
, OccName
"Clash.Sized.Internal.Unsigned.fromInteger#"
]
VLiteral{} -> Bool
True
VData{} -> Bool
True
Value
_ -> Bool
False
delayAlts :: [Alt] -> Eval [(Pat, Value)]
delayAlts :: [Alt] -> Eval [(Pat, Value)]
delayAlts = (Alt -> Eval (Pat, Value)) -> [Alt] -> Eval [(Pat, Value)]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse ((Pat -> Eval Pat)
-> (Term -> Eval Value) -> Alt -> Eval (Pat, Value)
forall (t :: Type -> Type -> Type) (f :: Type -> Type) a c b d.
(Bitraversable t, Applicative f) =>
(a -> f c) -> (b -> f d) -> t a b -> f (t c d)
bitraverse Pat -> Eval Pat
delayPat Term -> Eval Value
delayEval)
where
delayPat :: Pat -> Eval Pat
delayPat = \case
DataPat DataCon
dc [TyVar]
tvs [Id]
ids -> do
[Type]
tvsTys <- (Type -> Eval Type) -> [Type] -> Eval [Type]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Type -> Eval Type
evalType ((TyVar -> Type) -> [TyVar] -> [Type]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap TyVar -> Type
forall a. Var a -> Type
varType [TyVar]
tvs)
[Type]
idsTys <- (Type -> Eval Type) -> [Type] -> Eval [Type]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Type -> Eval Type
evalType ((Id -> Type) -> [Id] -> [Type]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap Id -> Type
forall a. Var a -> Type
varType [Id]
ids)
let setTy :: Var a -> Type -> Var a
setTy Var a
v Type
ty = Var a
v { varType :: Type
varType = Type
ty }
tvs' :: [TyVar]
tvs' = (TyVar -> Type -> TyVar) -> [TyVar] -> [Type] -> [TyVar]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith TyVar -> Type -> TyVar
forall a. Var a -> Type -> Var a
setTy [TyVar]
tvs [Type]
tvsTys
ids' :: [Id]
ids' = (Id -> Type -> Id) -> [Id] -> [Type] -> [Id]
forall a b c. (a -> b -> c) -> [a] -> [b] -> [c]
zipWith Id -> Type -> Id
forall a. Var a -> Type -> Var a
setTy [Id]
ids [Type]
idsTys
Pat -> Eval Pat
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (DataCon -> [TyVar] -> [Id] -> Pat
DataPat DataCon
dc [TyVar]
tvs' [Id]
ids')
Pat
pat -> Pat -> Eval Pat
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Pat
pat
forceAlts :: [(Pat, Value)] -> Eval [(Pat, Value)]
forceAlts :: [(Pat, Value)] -> Eval [(Pat, Value)]
forceAlts = ((Pat, Value) -> Eval (Pat, Value))
-> [(Pat, Value)] -> Eval [(Pat, Value)]
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse ((Value -> Eval Value) -> (Pat, Value) -> Eval (Pat, Value)
forall (t :: Type -> Type) (f :: Type -> Type) a b.
(Traversable t, Applicative f) =>
(a -> f b) -> t a -> f (t b)
traverse Value -> Eval Value
forceEval)
data PatResult
= Match (Pat, Value) [(TyVar, Type)] [(Id, Value)]
| NoMatch
evalAlt :: Value -> PatResult -> Eval Value
evalAlt :: Value -> PatResult -> Eval Value
evalAlt Value
def = \case
Match (Pat
_, Value
val) [(TyVar, Type)]
tvs [(Id, Value)]
ids ->
[(TyVar, Type)] -> [(Id, Value)] -> Value -> Eval Value
forceEvalWith [(TyVar, Type)]
tvs [(Id, Value)]
ids Value
val
PatResult
NoMatch -> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure Value
def
matchLiteral :: Literal -> (Pat, Value) -> Eval PatResult
matchLiteral :: Literal -> (Pat, Value) -> Eval PatResult
matchLiteral Literal
lit alt :: (Pat, Value)
alt@(Pat
pat, Value
_) =
case Pat
pat of
DataPat DataCon
dc [] [Id
i]
| IntegerLiteral Integer
n <- Literal
lit
-> case Integer
n of
#if MIN_VERSION_base(4,15,0)
IS _
#else
S# Int#
_
#endif
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (PatResult -> Eval PatResult) -> PatResult -> Eval PatResult
forall a b. (a -> b) -> a -> b
$ (Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [] [(Id
i, Literal -> Value
VLiteral (Integer -> Literal
IntLiteral Integer
n))]
#if MIN_VERSION_base(4,15,0)
IP bn
#else
Jp# BigNat
bn
#endif
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 -> Id -> BigNat -> Eval PatResult
matchBigNat Id
i BigNat
bn
#if MIN_VERSION_base(4,15,0)
IN bn
#else
Jn# BigNat
bn
#endif
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
3 -> Id -> BigNat -> Eval PatResult
matchBigNat Id
i BigNat
bn
Integer
_ -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
NoMatch
| NaturalLiteral Integer
n <- Literal
lit
-> case Integer
n of
#if MIN_VERSION_base(4,15,0)
IS _
#else
S# Int#
_
#endif
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
1 -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (PatResult -> Eval PatResult) -> PatResult -> Eval PatResult
forall a b. (a -> b) -> a -> b
$ (Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [] [(Id
i, Literal -> Value
VLiteral (Integer -> Literal
WordLiteral Integer
n))]
#if MIN_VERSION_base(4,15,0)
IP bn
#else
Jp# BigNat
bn
#endif
| DataCon -> Int
dcTag DataCon
dc Int -> Int -> Bool
forall a. Eq a => a -> a -> Bool
== Int
2 -> Id -> BigNat -> Eval PatResult
matchBigNat Id
i BigNat
bn
Integer
_ -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
NoMatch
LitPat Literal
n
| Literal
lit Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
n -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (PatResult -> Eval PatResult) -> PatResult -> Eval PatResult
forall a b. (a -> b) -> a -> b
$ (Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [] []
Pat
DefaultPat -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (PatResult -> Eval PatResult) -> PatResult -> Eval PatResult
forall a b. (a -> b) -> a -> b
$ (Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [] []
Pat
_ -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
NoMatch
where
#if MIN_VERSION_base(4,15,0)
matchBigNat i ba = do
#else
matchBigNat :: Id -> BigNat -> Eval PatResult
matchBigNat Id
i (BN# ByteArray#
ba) = do
#endif
TyConMap
tcm <- Eval TyConMap
getTyConMap
let bnDcM :: Maybe DataCon
bnDcM = do
TyConName
integerTcName <- ((TyConName, [Type]) -> TyConName)
-> Maybe (TyConName, [Type]) -> Maybe TyConName
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (TyConName, [Type]) -> TyConName
forall a b. (a, b) -> a
fst (Type -> Maybe (TyConName, [Type])
splitTyConAppM Type
integerPrimTy)
[DataCon
_, DataCon
jpDc, DataCon
_] <- [DataCon] -> Maybe [DataCon]
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (TyCon -> [DataCon]
tyConDataCons (TyConName -> TyConMap -> TyCon
forall a b. Uniquable a => a -> UniqMap b -> b
UniqMap.find TyConName
integerTcName TyConMap
tcm))
([Type
bnTy], Type
_) <- ([Type], Type) -> Maybe ([Type], Type)
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (TyConMap -> Type -> ([Type], Type)
splitFunTys TyConMap
tcm (DataCon -> Type
dcType DataCon
jpDc))
TyConName
bnTcName <- ((TyConName, [Type]) -> TyConName)
-> Maybe (TyConName, [Type]) -> Maybe TyConName
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (TyConName, [Type]) -> TyConName
forall a b. (a, b) -> a
fst (Type -> Maybe (TyConName, [Type])
splitTyConAppM Type
bnTy)
[DataCon] -> Maybe DataCon
forall a. [a] -> Maybe a
listToMaybe (TyCon -> [DataCon]
tyConDataCons (TyConName -> TyConMap -> TyCon
forall a b. Uniquable a => a -> UniqMap b -> b
UniqMap.find TyConName
bnTcName TyConMap
tcm))
bnDc :: DataCon
bnDc = DataCon -> Maybe DataCon -> DataCon
forall a. a -> Maybe a -> a
fromMaybe ([Char] -> DataCon
forall a. HasCallStack => [Char] -> a
error [Char]
"Cannot find BigNat constructor") Maybe DataCon
bnDcM
let arr :: Literal
arr = ByteArray -> Literal
ByteArrayLiteral (ByteArray# -> ByteArray
ByteArray ByteArray#
ba)
Value
val <- DataCon -> Args Value -> LocalEnv -> Value
VData DataCon
bnDc [Value -> Arg Value
forall a b. a -> Either a b
Left (Literal -> Value
VLiteral Literal
arr)] (LocalEnv -> Value) -> Eval LocalEnv -> Eval Value
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Eval LocalEnv
getLocalEnv
PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ((Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [] [(Id
i, Value
val)])
matchData :: DataCon -> Args Value -> (Pat, Value) -> Eval PatResult
matchData :: DataCon -> Args Value -> (Pat, Value) -> Eval PatResult
matchData DataCon
dc Args Value
args alt :: (Pat, Value)
alt@(Pat
pat, Value
_) =
case Pat
pat of
DataPat DataCon
c [TyVar]
tvs [Id]
ids
| DataCon
dc DataCon -> DataCon -> Bool
forall a. Eq a => a -> a -> Bool
== DataCon
c
-> do let ([(Id, Value)]
tms, [(TyVar, Type)]
tys) = ([Value] -> [(Id, Value)])
-> ([Type] -> [(TyVar, Type)])
-> ([Value], [Type])
-> ([(Id, Value)], [(TyVar, Type)])
forall (p :: Type -> Type -> Type) a b c d.
Bifunctor p =>
(a -> b) -> (c -> d) -> p a c -> p b d
bimap ([Id] -> [Value] -> [(Id, Value)]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
ids) ([TyVar] -> [Type] -> [(TyVar, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TyVar]
tvs) (Args Value -> ([Value], [Type])
forall a b. [Either a b] -> ([a], [b])
partitionEithers Args Value
args)
PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ((Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [(TyVar, Type)]
tys [(Id, Value)]
tms)
Pat
DefaultPat -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ((Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [] [])
Pat
_ -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
NoMatch
matchClashPrim :: PrimInfo -> Args Value -> (Pat, Value) -> Eval PatResult
matchClashPrim :: PrimInfo -> Args Value -> (Pat, Value) -> Eval PatResult
matchClashPrim PrimInfo
pr Args Value
args alt :: (Pat, Value)
alt@(Pat
pat, Value
_) =
case Pat
pat of
LitPat Literal
lit
| PrimInfo -> OccName
primName PrimInfo
pr OccName -> OccName -> Bool
forall a. Eq a => a -> a -> Bool
== OccName
"Clash.Sized.BitVector.fromInteger##"
, [Left Value
mask, Left Value
val] <- Args Value
args
-> do VLiteral (WordLiteral Integer
m) <- Value -> Eval Value
forceEval Value
mask
VLiteral Literal
l <- Value -> Eval Value
forceEval Value
val
if Integer
m Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 Bool -> Bool -> Bool
&& Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
lit
then PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ((Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [] [])
else PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
NoMatch
| PrimInfo -> OccName
primName PrimInfo
pr OccName -> OccName -> Bool
forall a. Eq a => a -> a -> Bool
== OccName
"Clash.Sized.BitVector.fromInteger#"
, [Right Type
_n, Left Value
_knN, Left Value
mask, Left Value
val] <- Args Value
args
-> do VLiteral (NaturalLiteral Integer
m) <- Value -> Eval Value
forceEval Value
mask
VLiteral Literal
l <- Value -> Eval Value
forceEval Value
val
if Integer
m Integer -> Integer -> Bool
forall a. Eq a => a -> a -> Bool
== Integer
0 Bool -> Bool -> Bool
&& Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
lit
then PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ((Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [] [])
else PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
NoMatch
| PrimInfo -> OccName
primName PrimInfo
pr OccName -> [OccName] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [OccName]
clashSizedNumbers
, [Right Type
_n, Left Value
_knN, Left Value
val] <- Args Value
args
-> do VLiteral Literal
l <- Value -> Eval Value
forceEval Value
val
if Literal
l Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
lit
then PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure ((Pat, Value) -> [(TyVar, Type)] -> [(Id, Value)] -> PatResult
Match (Pat, Value)
alt [] [])
else PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
NoMatch
Pat
_ -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
NoMatch
where
clashSizedNumbers :: [OccName]
clashSizedNumbers =
[ OccName
"Clash.Sized.Internal.Index.fromInteger#"
, OccName
"Clash.Sized.Internal.Signed.fromInteger#"
, OccName
"Clash.Sized.Internal.Unsigned.fromInteger#"
]
findBestAlt
:: ((Pat, Value) -> Eval PatResult)
-> [(Pat, Value)]
-> Eval PatResult
findBestAlt :: ((Pat, Value) -> Eval PatResult)
-> [(Pat, Value)] -> Eval PatResult
findBestAlt (Pat, Value) -> Eval PatResult
checkAlt =
PatResult -> [(Pat, Value)] -> Eval PatResult
go PatResult
NoMatch
where
go :: PatResult -> [(Pat, Value)] -> Eval PatResult
go !PatResult
acc [] = PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
acc
go !PatResult
acc ((Pat, Value)
a:[(Pat, Value)]
as) = do
PatResult
match <- (Pat, Value) -> Eval PatResult
checkAlt (Pat, Value)
a
case PatResult
match of
Match (Pat
pat, Value
_term) [(TyVar, Type)]
_tvs [(Id, Value)]
_ids
| Pat
pat Pat -> Pat -> Bool
forall a. Eq a => a -> a -> Bool
== Pat
DefaultPat -> PatResult -> [(Pat, Value)] -> Eval PatResult
go PatResult
match [(Pat, Value)]
as
| Bool
otherwise -> PatResult -> Eval PatResult
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure PatResult
match
PatResult
NoMatch -> PatResult -> [(Pat, Value)] -> Eval PatResult
go PatResult
acc [(Pat, Value)]
as
evalCast :: Term -> Type -> Type -> Eval Value
evalCast :: Term -> Type -> Type -> Eval Value
evalCast Term
x Type
a Type
b = Value -> Type -> Type -> Value
VCast (Value -> Type -> Type -> Value)
-> Eval Value -> Eval (Type -> Type -> Value)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> Eval Value
eval Term
x Eval (Type -> Type -> Value) -> Eval Type -> Eval (Type -> Value)
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Type -> Eval Type
evalType Type
a Eval (Type -> Value) -> Eval Type -> Eval Value
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> Type -> Eval Type
evalType Type
b
evalTick :: TickInfo -> Term -> Eval Value
evalTick :: TickInfo -> Term -> Eval Value
evalTick TickInfo
tick Term
x = Value -> TickInfo -> Value
VTick (Value -> TickInfo -> Value)
-> Eval Value -> Eval (TickInfo -> Value)
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
<$> Term -> Eval Value
eval Term
x Eval (TickInfo -> Value) -> Eval TickInfo -> Eval Value
forall (f :: Type -> Type) a b.
Applicative f =>
f (a -> b) -> f a -> f b
<*> TickInfo -> Eval TickInfo
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure TickInfo
tick
applyArg :: Value -> Arg Value -> Eval Value
applyArg :: Value -> Arg Value -> Eval Value
applyArg Value
val =
(Value -> Eval Value)
-> (Type -> Eval Value) -> Arg Value -> Eval Value
forall a c b. (a -> c) -> (b -> c) -> Either a b -> c
either (Value -> Value -> Eval Value
apply Value
val) (Value -> Type -> Eval Value
applyTy Value
val)
apply :: Value -> Value -> Eval Value
apply :: Value -> Value -> Eval Value
apply Value
val Value
arg = do
TyConMap
tcm <- Eval TyConMap
getTyConMap
Value
forced <- Value -> Eval Value
forceEval Value
val
Bool
canApply <- Value -> Eval Bool
workFreeValue Value
arg
case Value -> Value
stripValue Value
forced of
VNeutral (NeLet Bind Value
bs Value
x)
| Bool
canApply -> do
Value
inner <- Value -> Value -> Eval Value
apply Value
x Value
arg
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Bind Value -> Value -> Neutral Value
forall a. Bind a -> a -> Neutral a
NeLet Bind Value
bs Value
inner))
| Bool
otherwise -> do
Type
varTy <- Type -> Eval Type
evalType (TyConMap -> Value -> Type
forall a. AsTerm a => TyConMap -> a -> Type
valueType TyConMap
tcm Value
arg)
Id
var <- OccName -> Type -> Eval Id
getUniqueId OccName
"workArg" Type
varTy
Value
inner <- Value -> Value -> Eval Value
apply Value
x (Neutral Value -> Value
VNeutral (Id -> Neutral Value
forall a. Id -> Neutral a
NeVar Id
var))
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Bind Value -> Value -> Neutral Value
forall a. Bind a -> a -> Neutral a
NeLet Bind Value
bs (Neutral Value -> Value
VNeutral (Bind Value -> Value -> Neutral Value
forall a. Bind a -> a -> Neutral a
NeLet (Id -> Value -> Bind Value
forall a. Id -> a -> Bind a
NonRec Id
var Value
arg) Value
inner))))
VNeutral Neutral Value
neu
| Bool
canApply -> Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Neutral Value -> Value -> Neutral Value
forall a. Neutral a -> a -> Neutral a
NeApp Neutral Value
neu Value
arg))
| Bool
otherwise -> do
Type
varTy <- Type -> Eval Type
evalType (TyConMap -> Value -> Type
forall a. AsTerm a => TyConMap -> a -> Type
valueType TyConMap
tcm Value
arg)
Id
var <- OccName -> Type -> Eval Id
getUniqueId OccName
"workArg" Type
varTy
let inner :: Value
inner = Neutral Value -> Value
VNeutral (Neutral Value -> Value -> Neutral Value
forall a. Neutral a -> a -> Neutral a
NeApp Neutral Value
neu (Neutral Value -> Value
VNeutral (Id -> Neutral Value
forall a. Id -> Neutral a
NeVar Id
var)))
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Bind Value -> Value -> Neutral Value
forall a. Bind a -> a -> Neutral a
NeLet (Id -> Value -> Bind Value
forall a. Id -> a -> Bind a
NonRec Id
var Value
arg) Value
inner))
VLam Id
i Term
x LocalEnv
env
| Bool
canApply -> LocalEnv -> Eval Value -> Eval Value
forall a. LocalEnv -> Eval a -> Eval a
setLocalEnv LocalEnv
env (Eval Value -> Eval Value) -> Eval Value -> Eval Value
forall a b. (a -> b) -> a -> b
$ Id -> Value -> Eval Value -> Eval Value
forall a. Id -> Value -> Eval a -> Eval a
withId Id
i Value
arg (Term -> Eval Value
eval Term
x)
| Bool
otherwise -> LocalEnv -> Eval Value -> Eval Value
forall a. LocalEnv -> Eval a -> Eval a
setLocalEnv LocalEnv
env (Eval Value -> Eval Value) -> Eval Value -> Eval Value
forall a b. (a -> b) -> a -> b
$ do
Value
inner <- Id -> Value -> Eval Value -> Eval Value
forall a. Id -> Value -> Eval a -> Eval a
withId Id
i Value
arg (Term -> Eval Value
eval Term
x)
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Bind Value -> Value -> Neutral Value
forall a. Bind a -> a -> Neutral a
NeLet (Id -> Value -> Bind Value
forall a. Id -> a -> Bind a
NonRec Id
i Value
arg) Value
inner))
Value
f ->
[Char] -> Eval Value
forall a. HasCallStack => [Char] -> a
error ([Char]
"apply: Cannot apply " [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> Value -> [Char]
forall a. Show a => a -> [Char]
show Value
arg [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> [Char]
" to " [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> Value -> [Char]
forall a. Show a => a -> [Char]
show Value
f)
where
valueType :: TyConMap -> a -> Type
valueType TyConMap
tcm = TyConMap -> Term -> Type
forall a. InferType a => TyConMap -> a -> Type
inferCoreTypeOf TyConMap
tcm (Term -> Type) -> (a -> Term) -> a -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. a -> Term
forall a. AsTerm a => a -> Term
asTerm
applyTy :: Value -> Type -> Eval Value
applyTy :: Value -> Type -> Eval Value
applyTy Value
val Type
ty = do
Value
forcedVal <- Value -> Eval Value
forceEval Value
val
Type
argTy <- Type -> Eval Type
evalType Type
ty
case Value -> Value
stripValue Value
forcedVal of
VNeutral Neutral Value
n ->
Value -> Eval Value
forall (f :: Type -> Type) a. Applicative f => a -> f a
pure (Neutral Value -> Value
VNeutral (Neutral Value -> Type -> Neutral Value
forall a. Neutral a -> Type -> Neutral a
NeTyApp Neutral Value
n Type
argTy))
VTyLam TyVar
i Term
x LocalEnv
env ->
LocalEnv -> Eval Value -> Eval Value
forall a. LocalEnv -> Eval a -> Eval a
setLocalEnv LocalEnv
env (Eval Value -> Eval Value) -> Eval Value -> Eval Value
forall a b. (a -> b) -> a -> b
$ TyVar -> Type -> Eval Value -> Eval Value
forall a. TyVar -> Type -> Eval a -> Eval a
withTyVar TyVar
i Type
argTy (Term -> Eval Value
eval Term
x)
Value
f ->
[Char] -> Eval Value
forall a. HasCallStack => [Char] -> a
error ([Char]
"applyTy: Cannot apply " [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> Type -> [Char]
forall a. Show a => a -> [Char]
show Type
argTy [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> [Char]
" to " [Char] -> [Char] -> [Char]
forall a. Semigroup a => a -> a -> a
<> Value -> [Char]
forall a. Show a => a -> [Char]
show Value
f)