{-# LANGUAGE CPP #-}
{-# LANGUAGE LambdaCase #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TemplateHaskell #-}
module Clash.GHC.Evaluator where
import Prelude hiding (lookup)
import Control.Concurrent.Supply (Supply, freshId)
import Data.Either (lefts,rights)
import Data.List (foldl',mapAccumL)
import qualified Data.Primitive.ByteArray as BA
import qualified Data.Text as Text
#if MIN_VERSION_base(4,15,0)
import GHC.Num.Integer (Integer (..))
#else
import GHC.Integer.GMP.Internals
(Integer (..), BigNat (..))
#endif
import Clash.Core.DataCon
import Clash.Core.Evaluator.Types
import Clash.Core.HasFreeVars
import Clash.Core.HasType
import Clash.Core.Literal
import Clash.Core.Name
import Clash.Core.Pretty
import Clash.Core.Subst
import Clash.Core.Term
import Clash.Core.TyCon
import Clash.Core.Type
import Clash.Core.Util
import Clash.Core.Var
import Clash.Core.VarEnv
import Clash.Debug
import qualified Clash.Normalize.Primitives as NP (removedArg, undefined, undefinedX)
import Clash.Unique
import Clash.Util (curLoc)
import Clash.GHC.Evaluator.Primitive
evaluator :: Evaluator
evaluator :: Evaluator
evaluator = Evaluator :: Step -> Unwind -> PrimStep -> PrimUnwind -> Evaluator
Evaluator
{ step :: Step
step = Step
ghcStep
, unwind :: Unwind
unwind = Unwind
ghcUnwind
, primStep :: PrimStep
primStep = PrimStep
ghcPrimStep
, primUnwind :: PrimUnwind
primUnwind = PrimUnwind
ghcPrimUnwind
}
stepVar :: Id -> Step
stepVar :: Id -> Step
stepVar Id
i Machine
m TyConMap
_
| Just Term
e <- IdScope -> Id -> Machine -> Maybe Term
heapLookup IdScope
LocalId Id
i Machine
m
= IdScope -> Term -> Maybe Machine
go IdScope
LocalId Term
e
| Just Term
e <- IdScope -> Id -> Machine -> Maybe Term
heapLookup IdScope
GlobalId Id
i Machine
m
, Id -> Bool
forall a. Var a -> Bool
isGlobalId Id
i
= IdScope -> Term -> Maybe Machine
go IdScope
GlobalId Term
e
| Bool
otherwise
= Maybe Machine
forall a. Maybe a
Nothing
where
go :: IdScope -> Term -> Maybe Machine
go IdScope
s Term
e =
let term :: Term
term = HasCallStack => InScopeSet -> Term -> Term
InScopeSet -> Term -> Term
deShadowTerm (Machine -> InScopeSet
mScopeNames Machine
m) (Term -> Term
tickExpr Term
e)
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
term (Machine -> Machine) -> (Machine -> Machine) -> Machine -> Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. StackFrame -> Machine -> Machine
stackPush (IdScope -> Id -> StackFrame
Update IdScope
s Id
i) (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ IdScope -> Id -> Machine -> Machine
heapDelete IdScope
s Id
i Machine
m
tickExpr :: Term -> Term
tickExpr = TickInfo -> Term -> Term
Tick (NameMod -> Type -> TickInfo
NameMod NameMod
PrefixName (LitTy -> Type
LitTy (LitTy -> Type) -> (String -> LitTy) -> String -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. String -> LitTy
SymTy (String -> Type) -> String -> Type
forall a b. (a -> b) -> a -> b
$ Id -> String
forall a. Var a -> String
toStr Id
i))
unQualName :: Text -> Text
unQualName = (Text, Text) -> Text
forall a b. (a, b) -> b
snd ((Text, Text) -> Text) -> (Text -> (Text, Text)) -> Text -> Text
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Text -> Text -> (Text, Text)
Text.breakOnEnd Text
"."
toStr :: Var a -> String
toStr = Text -> String
Text.unpack (Text -> String) -> (Var a -> Text) -> Var a -> String
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Text -> Text
unQualName (Text -> Text) -> (Var a -> Text) -> Var a -> Text
forall b c a. (b -> c) -> (a -> b) -> a -> c
. (Text -> Char -> Text) -> Char -> Text -> Text
forall a b c. (a -> b -> c) -> b -> a -> c
flip Text -> Char -> Text
Text.snoc Char
'_' (Text -> Text) -> (Var a -> Text) -> Var a -> Text
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Name a -> Text
forall a. Name a -> Text
nameOcc (Name a -> Text) -> (Var a -> Name a) -> Var a -> Text
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Var a -> Name a
forall a. Var a -> Name a
varName
stepData :: DataCon -> Step
stepData :: DataCon -> Step
stepData DataCon
dc = Unwind
ghcUnwind (DataCon -> [Either Term Type] -> Value
DC DataCon
dc [])
stepLiteral :: Literal -> Step
stepLiteral :: Literal -> Step
stepLiteral Literal
l = Unwind
ghcUnwind (Literal -> Value
Lit Literal
l)
stepPrim :: PrimInfo -> Step
stepPrim :: PrimInfo -> Step
stepPrim PrimInfo
pInfo Machine
m TyConMap
tcm
| PrimInfo -> Text
primName PrimInfo
pInfo Text -> Text -> Bool
forall a. Eq a => a -> a -> Bool
== Text
"GHC.Prim.realWorld#" =
Unwind
ghcUnwind (PrimInfo -> [Type] -> [Value] -> Value
PrimVal PrimInfo
pInfo [] []) Machine
m TyConMap
tcm
| Bool
otherwise =
case ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a, b) -> a
fst (([Either TyVar Type], Type) -> [Either TyVar Type])
-> ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a -> b) -> a -> b
$ Type -> ([Either TyVar Type], Type)
splitFunForallTy (PrimInfo -> Type
primType PrimInfo
pInfo) of
[] -> PrimStep
ghcPrimStep TyConMap
tcm (Machine -> Bool
forcePrims Machine
m) PrimInfo
pInfo [] [] Machine
m
[Either TyVar Type]
tys -> [Either TyVar Type] -> Term -> Step
newBinder [Either TyVar Type]
tys (PrimInfo -> Term
Prim PrimInfo
pInfo) Machine
m TyConMap
tcm
stepLam :: Id -> Term -> Step
stepLam :: Id -> Term -> Step
stepLam Id
x Term
e = Unwind
ghcUnwind (Id -> Term -> Value
Lambda Id
x Term
e)
stepTyLam :: TyVar -> Term -> Step
stepTyLam :: TyVar -> Term -> Step
stepTyLam TyVar
x Term
e = Unwind
ghcUnwind (TyVar -> Term -> Value
TyLambda TyVar
x Term
e)
stepApp :: Term -> Term -> Step
stepApp :: Term -> Term -> Step
stepApp Term
x Term
y Machine
m TyConMap
tcm =
case Term
term of
Data DataCon
dc ->
let tys :: [Either TyVar Type]
tys = ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a, b) -> a
fst (([Either TyVar Type], Type) -> [Either TyVar Type])
-> ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a -> b) -> a -> b
$ Type -> ([Either TyVar Type], Type)
splitFunForallTy (DataCon -> Type
dcType DataCon
dc)
in case Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ([Either Term Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either Term Type]
args) ([Either TyVar Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either TyVar Type]
tys) of
Ordering
EQ -> Unwind
ghcUnwind (DataCon -> [Either Term Type] -> Value
DC DataCon
dc [Either Term Type]
args) Machine
m TyConMap
tcm
Ordering
LT -> [Either TyVar Type] -> Term -> Step
newBinder [Either TyVar Type]
tys' (Term -> Term -> Term
App Term
x Term
y) Machine
m TyConMap
tcm
Ordering
GT -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error String
"Overapplied DC"
Prim PrimInfo
p ->
let tys :: [Either TyVar Type]
tys = ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a, b) -> a
fst (([Either TyVar Type], Type) -> [Either TyVar Type])
-> ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a -> b) -> a -> b
$ Type -> ([Either TyVar Type], Type)
splitFunForallTy (PrimInfo -> Type
primType PrimInfo
p)
in case Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ([Either Term Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either Term Type]
args) ([Either TyVar Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either TyVar Type]
tys) of
Ordering
EQ -> case [Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
lefts [Either Term Type]
args of
[Term
a0, Term
a1] | PrimInfo -> Text
primName PrimInfo
p Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` [Text
"GHC.Classes.&&",Text
"GHC.Classes.||"] ->
let (Machine
m0,Id
i) = TyConMap -> Machine -> Term -> (Machine, Id)
newLetBinding TyConMap
tcm Machine
m Term
a0
(Machine
m1,Id
j) = TyConMap -> Machine -> Term -> (Machine, Id)
newLetBinding TyConMap
tcm Machine
m0 Term
a1
in PrimStep
ghcPrimStep TyConMap
tcm (Machine -> Bool
forcePrims Machine
m) PrimInfo
p [] [Term -> Value
Suspend (Id -> Term
Var Id
i), Term -> Value
Suspend (Id -> Term
Var Id
j)] Machine
m1
(Term
e':[Term]
es)
| PrimInfo -> Text
primName PrimInfo
p Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` ([Text]
undefinedXPrims [Text] -> [Text] -> [Text]
forall a. [a] -> [a] -> [a]
++ [Text]
undefinedPrims)
-> Unwind
ghcUnwind (PrimInfo -> [Type] -> [Value] -> Value
PrimVal PrimInfo
p ([Either Term Type] -> [Type]
forall a b. [Either a b] -> [b]
rights [Either Term Type]
args) ((Term -> Value) -> [Term] -> [Value]
forall a b. (a -> b) -> [a] -> [b]
map Term -> Value
Suspend (Term
e'Term -> [Term] -> [Term]
forall a. a -> [a] -> [a]
:[Term]
es))) Machine
m TyConMap
tcm
| Bool
otherwise
-> Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
e' (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ StackFrame -> Machine -> Machine
stackPush (PrimInfo -> [Type] -> [Value] -> [Term] -> StackFrame
PrimApply PrimInfo
p ([Either Term Type] -> [Type]
forall a b. [Either a b] -> [b]
rights [Either Term Type]
args) [] [Term]
es) Machine
m
[Term]
_ -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error String
"internal error"
Ordering
LT -> [Either TyVar Type] -> Term -> Step
newBinder [Either TyVar Type]
tys' (Term -> Term -> Term
App Term
x Term
y) Machine
m TyConMap
tcm
Ordering
GT -> let (Machine
m0, Id
n) = TyConMap -> Machine -> Term -> (Machine, Id)
newLetBinding TyConMap
tcm Machine
m Term
y
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
x (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ StackFrame -> Machine -> Machine
stackPush (Id -> StackFrame
Apply Id
n) Machine
m0
Term
_ -> let (Machine
m0, Id
n) = TyConMap -> Machine -> Term -> (Machine, Id)
newLetBinding TyConMap
tcm Machine
m Term
y
in Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
x (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ StackFrame -> Machine -> Machine
stackPush (Id -> StackFrame
Apply Id
n) Machine
m0
where
(Term
term, [Either Term Type]
args, [TickInfo]
_) = Term -> (Term, [Either Term Type], [TickInfo])
collectArgsTicks (Term -> Term -> Term
App Term
x Term
y)
tys' :: [Either TyVar Type]
tys' = ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a, b) -> a
fst (([Either TyVar Type], Type) -> [Either TyVar Type])
-> (Term -> ([Either TyVar Type], Type))
-> Term
-> [Either TyVar Type]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> ([Either TyVar Type], Type)
splitFunForallTy (Type -> ([Either TyVar Type], Type))
-> (Term -> Type) -> Term -> ([Either TyVar Type], Type)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Term -> Type
forall a. InferType a => TyConMap -> a -> Type
inferCoreTypeOf TyConMap
tcm (Term -> [Either TyVar Type]) -> Term -> [Either TyVar Type]
forall a b. (a -> b) -> a -> b
$ Term -> Term -> Term
App Term
x Term
y
stepTyApp :: Term -> Type -> Step
stepTyApp :: Term -> Type -> Step
stepTyApp Term
x Type
ty Machine
m TyConMap
tcm =
case Term
term of
Data DataCon
dc ->
let tys :: [Either TyVar Type]
tys = ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a, b) -> a
fst (([Either TyVar Type], Type) -> [Either TyVar Type])
-> ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a -> b) -> a -> b
$ Type -> ([Either TyVar Type], Type)
splitFunForallTy (DataCon -> Type
dcType DataCon
dc)
in case Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ([Either Term Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either Term Type]
args) ([Either TyVar Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either TyVar Type]
tys) of
Ordering
EQ -> Unwind
ghcUnwind (DataCon -> [Either Term Type] -> Value
DC DataCon
dc [Either Term Type]
args) Machine
m TyConMap
tcm
Ordering
LT -> [Either TyVar Type] -> Term -> Step
newBinder [Either TyVar Type]
tys' (Term -> Type -> Term
TyApp Term
x Type
ty) Machine
m TyConMap
tcm
Ordering
GT -> String -> Maybe Machine
forall a. HasCallStack => String -> a
error String
"Overapplied DC"
Prim PrimInfo
p ->
let tys :: [Either TyVar Type]
tys = ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a, b) -> a
fst (([Either TyVar Type], Type) -> [Either TyVar Type])
-> ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a -> b) -> a -> b
$ Type -> ([Either TyVar Type], Type)
splitFunForallTy (PrimInfo -> Type
primType PrimInfo
p)
in case Int -> Int -> Ordering
forall a. Ord a => a -> a -> Ordering
compare ([Either Term Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either Term Type]
args) ([Either TyVar Type] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length [Either TyVar Type]
tys) of
Ordering
EQ -> case [Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
lefts [Either Term Type]
args of
[] | PrimInfo -> Text
primName PrimInfo
p Text -> [Text] -> Bool
forall (t :: Type -> Type) a.
(Foldable t, Eq a) =>
a -> t a -> Bool
`elem` (PrimInfo -> Text) -> [PrimInfo] -> [Text]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap PrimInfo -> Text
primName [ PrimInfo
NP.removedArg
, PrimInfo
NP.undefined
, PrimInfo
NP.undefinedX ] ->
Unwind
ghcUnwind (PrimInfo -> [Type] -> [Value] -> Value
PrimVal PrimInfo
p ([Either Term Type] -> [Type]
forall a b. [Either a b] -> [b]
rights [Either Term Type]
args) []) Machine
m TyConMap
tcm
| Bool
otherwise ->
PrimStep
ghcPrimStep TyConMap
tcm (Machine -> Bool
forcePrims Machine
m) PrimInfo
p ([Either Term Type] -> [Type]
forall a b. [Either a b] -> [b]
rights [Either Term Type]
args) [] Machine
m
(Term
e':[Term]
es) ->
Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
e' (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ StackFrame -> Machine -> Machine
stackPush (PrimInfo -> [Type] -> [Value] -> [Term] -> StackFrame
PrimApply PrimInfo
p ([Either Term Type] -> [Type]
forall a b. [Either a b] -> [b]
rights [Either Term Type]
args) [] [Term]
es) Machine
m
Ordering
LT -> [Either TyVar Type] -> Term -> Step
newBinder [Either TyVar Type]
tys' (Term -> Type -> Term
TyApp Term
x Type
ty) Machine
m TyConMap
tcm
Ordering
GT -> Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
x (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ StackFrame -> Machine -> Machine
stackPush (Type -> StackFrame
Instantiate Type
ty) Machine
m
Term
_ -> Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
x (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ StackFrame -> Machine -> Machine
stackPush (Type -> StackFrame
Instantiate Type
ty) Machine
m
where
(Term
term, [Either Term Type]
args, [TickInfo]
_) = Term -> (Term, [Either Term Type], [TickInfo])
collectArgsTicks (Term -> Type -> Term
TyApp Term
x Type
ty)
tys' :: [Either TyVar Type]
tys' = ([Either TyVar Type], Type) -> [Either TyVar Type]
forall a b. (a, b) -> a
fst (([Either TyVar Type], Type) -> [Either TyVar Type])
-> (Term -> ([Either TyVar Type], Type))
-> Term
-> [Either TyVar Type]
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Type -> ([Either TyVar Type], Type)
splitFunForallTy (Type -> ([Either TyVar Type], Type))
-> (Term -> Type) -> Term -> ([Either TyVar Type], Type)
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Term -> Type
forall a. InferType a => TyConMap -> a -> Type
inferCoreTypeOf TyConMap
tcm (Term -> [Either TyVar Type]) -> Term -> [Either TyVar Type]
forall a b. (a -> b) -> a -> b
$ Term -> Type -> Term
TyApp Term
x Type
ty
stepLet :: Bind Term -> Term -> Step
stepLet :: Bind Term -> Term -> Step
stepLet (NonRec Id
i Term
b) Term
x Machine
m TyConMap
_ = Machine -> Maybe Machine
forall a. a -> Maybe a
Just ([LetBinding] -> Term -> Machine -> Machine
allocate [(Id
i,Term
b)] Term
x Machine
m)
stepLet (Rec [LetBinding]
bs) Term
x Machine
m TyConMap
_ = Machine -> Maybe Machine
forall a. a -> Maybe a
Just ([LetBinding] -> Term -> Machine -> Machine
allocate [LetBinding]
bs Term
x Machine
m)
stepCase :: Term -> Type -> [Alt] -> Step
stepCase :: Term -> Type -> [Alt] -> Step
stepCase Term
scrut Type
ty [Alt]
alts Machine
m TyConMap
_ =
Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
scrut (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ StackFrame -> Machine -> Machine
stackPush (Type -> [Alt] -> StackFrame
Scrutinise Type
ty [Alt]
alts) Machine
m
stepCast :: Term -> Type -> Type -> Step
stepCast :: Term -> Type -> Type -> Step
stepCast Term
_ Type
_ Type
_ Machine
_ TyConMap
_ =
(String -> Maybe Machine -> Maybe Machine)
-> Maybe Machine -> String -> Maybe Machine
forall a b c. (a -> b -> c) -> b -> a -> c
flip String -> Maybe Machine -> Maybe Machine
forall a. String -> a -> a
trace Maybe Machine
forall a. Maybe a
Nothing (String -> Maybe Machine) -> String -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ [String] -> String
unlines
[ String
"WARNING: " String -> String -> String
forall a. Semigroup a => a -> a -> a
<> $(String
curLoc) String -> String -> String
forall a. Semigroup a => a -> a -> a
<> String
"Clash can't symbolically evaluate casts"
, String
"Please file an issue at https://github.com/clash-lang/clash-compiler/issues"
]
stepTick :: TickInfo -> Term -> Step
stepTick :: TickInfo -> Term -> Step
stepTick TickInfo
tick Term
x Machine
m TyConMap
_ =
Machine -> Maybe Machine
forall a. a -> Maybe a
Just (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm Term
x (Machine -> Maybe Machine) -> Machine -> Maybe Machine
forall a b. (a -> b) -> a -> b
$ StackFrame -> Machine -> Machine
stackPush (TickInfo -> StackFrame
Tickish TickInfo
tick) Machine
m
ghcStep :: Step
ghcStep :: Step
ghcStep Machine
m = case Machine -> Term
mTerm Machine
m of
Var Id
i -> Id -> Step
stepVar Id
i Machine
m
Data DataCon
dc -> DataCon -> Step
stepData DataCon
dc Machine
m
Literal Literal
l -> Literal -> Step
stepLiteral Literal
l Machine
m
Prim PrimInfo
p -> PrimInfo -> Step
stepPrim PrimInfo
p Machine
m
Lam Id
v Term
x -> Id -> Term -> Step
stepLam Id
v Term
x Machine
m
TyLam TyVar
v Term
x -> TyVar -> Term -> Step
stepTyLam TyVar
v Term
x Machine
m
App Term
x Term
y -> Term -> Term -> Step
stepApp Term
x Term
y Machine
m
TyApp Term
x Type
ty -> Term -> Type -> Step
stepTyApp Term
x Type
ty Machine
m
Let Bind Term
bs Term
x -> Bind Term -> Term -> Step
stepLet Bind Term
bs Term
x Machine
m
Case Term
s Type
ty [Alt]
as -> Term -> Type -> [Alt] -> Step
stepCase Term
s Type
ty [Alt]
as Machine
m
Cast Term
x Type
a Type
b -> Term -> Type -> Type -> Step
stepCast Term
x Type
a Type
b Machine
m
Tick TickInfo
t Term
x -> TickInfo -> Term -> Step
stepTick TickInfo
t Term
x Machine
m
newBinder :: [Either TyVar Type] -> Term -> Step
newBinder :: [Either TyVar Type] -> Term -> Step
newBinder [Either TyVar Type]
tys Term
x Machine
m TyConMap
tcm =
let (Supply
s', InScopeSet
iss', Term
x') = (Supply, InScopeSet, Term)
-> [Either TyVar Type] -> (Supply, InScopeSet, Term)
mkAbstr (Machine -> Supply
mSupply Machine
m, Machine -> InScopeSet
mScopeNames Machine
m, Term
x) [Either TyVar Type]
tys
m' :: Machine
m' = Machine
m { mSupply :: Supply
mSupply = Supply
s', mScopeNames :: InScopeSet
mScopeNames = InScopeSet
iss', mTerm :: Term
mTerm = Term
x' }
in Step
ghcStep Machine
m' TyConMap
tcm
where
mkAbstr :: (Supply, InScopeSet, Term)
-> [Either TyVar Type] -> (Supply, InScopeSet, Term)
mkAbstr = (Either TyVar Type
-> (Supply, InScopeSet, Term) -> (Supply, InScopeSet, Term))
-> (Supply, InScopeSet, Term)
-> [Either TyVar Type]
-> (Supply, InScopeSet, Term)
forall (t :: Type -> Type) a b.
Foldable t =>
(a -> b -> b) -> b -> t a -> b
foldr Either TyVar Type
-> (Supply, InScopeSet, Term) -> (Supply, InScopeSet, Term)
go
where
go :: Either TyVar Type
-> (Supply, InScopeSet, Term) -> (Supply, InScopeSet, Term)
go (Left TyVar
tv) (Supply
s', InScopeSet
iss', Term
e') =
(Supply
s', InScopeSet
iss', TyVar -> Term -> Term
TyLam TyVar
tv (Term -> Type -> Term
TyApp Term
e' (TyVar -> Type
VarTy TyVar
tv)))
go (Right Type
ty) (Supply
s', InScopeSet
iss', Term
e') =
let ((Supply
s'', InScopeSet
_), Id
n) = (Supply, InScopeSet) -> (Text, Type) -> ((Supply, InScopeSet), Id)
mkUniqSystemId (Supply
s', InScopeSet
iss') (Text
"x", Type
ty)
in (Supply
s'', InScopeSet
iss' ,Id -> Term -> Term
Lam Id
n (Term -> Term -> Term
App Term
e' (Id -> Term
Var Id
n)))
newLetBinding
:: TyConMap
-> Machine
-> Term
-> (Machine, Id)
newLetBinding :: TyConMap -> Machine -> Term -> (Machine, Id)
newLetBinding TyConMap
tcm Machine
m Term
e
| Var Id
v <- Term
e
, IdScope -> Id -> Machine -> Bool
heapContains IdScope
LocalId Id
v Machine
m
= (Machine
m, Id
v)
| Bool
otherwise
= let m' :: Machine
m' = IdScope -> Id -> Term -> Machine -> Machine
heapInsert IdScope
LocalId Id
id_ Term
e Machine
m
in (Machine
m' { mSupply :: Supply
mSupply = Supply
ids', mScopeNames :: InScopeSet
mScopeNames = InScopeSet
is1 }, Id
id_)
where
ty :: Type
ty = TyConMap -> Term -> Type
forall a. InferType a => TyConMap -> a -> Type
inferCoreTypeOf TyConMap
tcm Term
e
((Supply
ids', InScopeSet
is1), Id
id_) = (Supply, InScopeSet) -> (Text, Type) -> ((Supply, InScopeSet), Id)
mkUniqSystemId (Machine -> Supply
mSupply Machine
m, Machine -> InScopeSet
mScopeNames Machine
m) (Text
"x", Type
ty)
ghcUnwind :: Unwind
ghcUnwind :: Unwind
ghcUnwind Value
v Machine
m TyConMap
tcm = do
(Machine
m', StackFrame
kf) <- Machine -> Maybe (Machine, StackFrame)
stackPop Machine
m
StackFrame -> Machine -> Maybe Machine
go StackFrame
kf Machine
m'
where
go :: StackFrame -> Machine -> Maybe Machine
go (Update IdScope
s Id
x) = Machine -> Maybe Machine
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IdScope -> Id -> Value -> Machine -> Machine
update IdScope
s Id
x Value
v
go (Apply Id
x) = Machine -> Maybe Machine
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Value -> Id -> Machine -> Machine
apply TyConMap
tcm Value
v Id
x
go (Instantiate Type
ty) = Machine -> Maybe Machine
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. TyConMap -> Value -> Type -> Machine -> Machine
instantiate TyConMap
tcm Value
v Type
ty
go (PrimApply PrimInfo
p [Type]
tys [Value]
vs [Term]
tms) = PrimUnwind
ghcPrimUnwind TyConMap
tcm PrimInfo
p [Type]
tys [Value]
vs Value
v [Term]
tms
go (Scrutinise Type
altTy [Alt]
as) = Machine -> Maybe Machine
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value -> Type -> [Alt] -> Machine -> Machine
scrutinise Value
v Type
altTy [Alt]
as
go (Tickish TickInfo
_) = Machine -> Maybe Machine
forall (m :: Type -> Type) a. Monad m => a -> m a
return (Machine -> Maybe Machine)
-> (Machine -> Machine) -> Machine -> Maybe Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Term -> Machine -> Machine
setTerm (Value -> Term
valToTerm Value
v)
update :: IdScope -> Id -> Value -> Machine -> Machine
update :: IdScope -> Id -> Value -> Machine -> Machine
update IdScope
s Id
x (Value -> Term
valToTerm -> Term
term) =
Term -> Machine -> Machine
setTerm Term
term (Machine -> Machine) -> (Machine -> Machine) -> Machine -> Machine
forall b c a. (b -> c) -> (a -> b) -> a -> c
. IdScope -> Id -> Term -> Machine -> Machine
heapInsert IdScope
s Id
x Term
term
apply :: TyConMap -> Value -> Id -> Machine -> Machine
apply :: TyConMap -> Value -> Id -> Machine -> Machine
apply TyConMap
_tcm (Lambda Id
x' Term
e) Id
x Machine
m =
Term -> Machine -> Machine
setTerm (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"Evaluator.apply" Subst
subst Term
e) Machine
m
where
subst :: Subst
subst = Subst -> Id -> Term -> Subst
extendIdSubst Subst
subst0 Id
x' (Id -> Term
Var Id
x)
subst0 :: Subst
subst0 = InScopeSet -> Subst
mkSubst (InScopeSet -> Subst) -> InScopeSet -> Subst
forall a b. (a -> b) -> a -> b
$ InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet (Machine -> InScopeSet
mScopeNames Machine
m) Id
x
apply TyConMap
tcm pVal :: Value
pVal@(PrimVal (PrimInfo{Type
primType :: Type
primType :: PrimInfo -> Type
primType}) [Type]
tys [Value]
vs) Id
x Machine
m
| Value -> Bool
isUndefinedXPrimVal Value
pVal
= Term -> Machine -> Machine
setTerm (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefinedX) Type
ty) Machine
m
| Value -> Bool
isUndefinedPrimVal Value
pVal
= Term -> Machine -> Machine
setTerm (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) Type
ty) Machine
m
where
ty :: Type
ty = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
primType ([Type]
tys [Type] -> [Type] -> [Type]
forall a. [a] -> [a] -> [a]
++ (Value -> Type) -> [Value] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (TyConMap -> Term -> Type
forall a. InferType a => TyConMap -> a -> Type
inferCoreTypeOf TyConMap
tcm (Term -> Type) -> (Value -> Term) -> Value -> Type
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Value -> Term
valToTerm) [Value]
vs [Type] -> [Type] -> [Type]
forall a. [a] -> [a] -> [a]
++ [Id -> Type
forall a. Var a -> Type
varType Id
x])
apply TyConMap
_ Value
v Id
_ Machine
m = String -> Machine
forall a. HasCallStack => String -> a
error (String -> Machine) -> String -> Machine
forall a b. (a -> b) -> a -> b
$ String
"Evaluator.apply: Not a lambda: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Value -> String
forall a. Show a => a -> String
show Value
v String -> String -> String
forall a. [a] -> [a] -> [a]
++ String
"\n" String -> String -> String
forall a. [a] -> [a] -> [a]
++ Machine -> String
forall a. Show a => a -> String
show Machine
m
instantiate :: TyConMap -> Value -> Type -> Machine -> Machine
instantiate :: TyConMap -> Value -> Type -> Machine -> Machine
instantiate TyConMap
_tcm (TyLambda TyVar
x Term
e) Type
ty Machine
m =
Term -> Machine -> Machine
setTerm (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"Evaluator.instantiate1" Subst
subst Term
e) Machine
m
where
subst :: Subst
subst = Subst -> TyVar -> Type -> Subst
extendTvSubst Subst
subst0 TyVar
x Type
ty
subst0 :: Subst
subst0 = InScopeSet -> Subst
mkSubst InScopeSet
iss0
iss0 :: InScopeSet
iss0 = VarSet -> InScopeSet
mkInScopeSet (Term -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf Term
e VarSet -> VarSet -> VarSet
forall a. UniqSet a -> UniqSet a -> UniqSet a
`unionUniqSet` Type -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf Type
ty)
instantiate TyConMap
tcm pVal :: Value
pVal@(PrimVal (PrimInfo{Type
primType :: Type
primType :: PrimInfo -> Type
primType}) [Type]
tys [Value]
es) Type
ty Machine
m
| Value -> Bool
isUndefinedXPrimVal Value
pVal
= Term -> Machine -> Machine
setTerm (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefinedX) Type
primType1) Machine
m
| Value -> Bool
isUndefinedPrimVal Value
pVal
= Term -> Machine -> Machine
setTerm (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) Type
primType1) Machine
m
where
esTys :: [Type]
esTys = (Value -> Type) -> [Value] -> [Type]
forall a b. (a -> b) -> [a] -> [b]
map (TyConMap -> Value -> Type
forall a. InferType a => TyConMap -> a -> Type
inferCoreTypeOf TyConMap
tcm) [Value]
es
primType1 :: Type
primType1 = HasCallStack => TyConMap -> Type -> [Type] -> Type
TyConMap -> Type -> [Type] -> Type
piResultTys TyConMap
tcm Type
primType ([Type]
tys [Type] -> [Type] -> [Type]
forall a. [a] -> [a] -> [a]
++ [Type]
esTys [Type] -> [Type] -> [Type]
forall a. [a] -> [a] -> [a]
++ [Type
ty])
instantiate TyConMap
_ Value
p Type
_ Machine
_ = String -> Machine
forall a. HasCallStack => String -> a
error (String -> Machine) -> String -> Machine
forall a b. (a -> b) -> a -> b
$ String
"Evaluator.instantiate: Not a tylambda: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Value -> String
forall a. Show a => a -> String
show Value
p
scrutinise :: Value -> Type -> [Alt] -> Machine -> Machine
scrutinise :: Value -> Type -> [Alt] -> Machine -> Machine
scrutinise Value
v Type
_altTy [] Machine
m = Term -> Machine -> Machine
setTerm (Value -> Term
valToTerm Value
v) Machine
m
scrutinise (Lit Literal
l) Type
_altTy [Alt]
alts Machine
m = case [Alt]
alts of
(Pat
DefaultPat, Term
altE):[Alt]
alts1 -> Term -> Machine -> Machine
setTerm (Term -> [Alt] -> Term
go Term
altE [Alt]
alts1) Machine
m
[Alt]
_ -> let term :: Term
term = Term -> [Alt] -> Term
go (String -> Term
forall a. HasCallStack => String -> a
error (String -> Term) -> String -> Term
forall a b. (a -> b) -> a -> b
$ String
"Evaluator.scrutinise: no match "
String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Term -> Type -> [Alt] -> Term
Case (Value -> Term
valToTerm (Literal -> Value
Lit Literal
l)) (ConstTy -> Type
ConstTy ConstTy
Arrow) [Alt]
alts)) [Alt]
alts
in Term -> Machine -> Machine
setTerm Term
term Machine
m
where
go :: Term -> [Alt] -> Term
go Term
def [] = Term
def
go Term
_ ((LitPat Literal
l1,Term
altE):[Alt]
_) | Literal
l1 Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l = Term
altE
go Term
_ ((DataPat DataCon
dc [] [Id
x],Term
altE):[Alt]
_)
| IntegerLiteral Integer
l1 <- Literal
l
, Just Literal
patE <- case DataCon -> Int
dcTag DataCon
dc of
Int
1 | Integer
l1 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= ((-Integer
2)Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
63::Int)) Bool -> Bool -> Bool
&& Integer
l1 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
63::Int) ->
Literal -> Maybe Literal
forall a. a -> Maybe a
Just (Integer -> Literal
IntLiteral Integer
l1)
Int
2 | Integer
l1 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= (Integer
2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
63::Int)) ->
#if MIN_VERSION_base(4,15,0)
let !(IP ba0) = l1
#else
let !(Jp# !(BN# ByteArray#
ba0)) = Integer
l1
#endif
ba1 :: ByteArray
ba1 = ByteArray# -> ByteArray
BA.ByteArray ByteArray#
ba0
in Literal -> Maybe Literal
forall a. a -> Maybe a
Just (ByteArray -> Literal
ByteArrayLiteral ByteArray
ba1)
Int
3 | Integer
l1 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< ((-Integer
2)Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
63::Int)) ->
#if MIN_VERSION_base(4,15,0)
let !(IN ba0) = l1
#else
let !(Jn# !(BN# ByteArray#
ba0)) = Integer
l1
#endif
ba1 :: ByteArray
ba1 = ByteArray# -> ByteArray
BA.ByteArray ByteArray#
ba0
in Literal -> Maybe Literal
forall a. a -> Maybe a
Just (ByteArray -> Literal
ByteArrayLiteral ByteArray
ba1)
Int
_ -> Maybe Literal
forall a. Maybe a
Nothing
= let inScope :: VarSet
inScope = Term -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf Term
altE
subst0 :: Subst
subst0 = InScopeSet -> Subst
mkSubst (VarSet -> InScopeSet
mkInScopeSet VarSet
inScope)
subst1 :: Subst
subst1 = Subst -> Id -> Term -> Subst
extendIdSubst Subst
subst0 Id
x (Literal -> Term
Literal Literal
patE)
in HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"Evaluator.scrutinise" Subst
subst1 Term
altE
| NaturalLiteral Integer
l1 <- Literal
l
, Just Literal
patE <- case DataCon -> Int
dcTag DataCon
dc of
Int
1 | Integer
l1 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= Integer
0 Bool -> Bool -> Bool
&& Integer
l1 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
< Integer
2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
64::Int) ->
Literal -> Maybe Literal
forall a. a -> Maybe a
Just (Integer -> Literal
WordLiteral Integer
l1)
Int
2 | Integer
l1 Integer -> Integer -> Bool
forall a. Ord a => a -> a -> Bool
>= (Integer
2Integer -> Int -> Integer
forall a b. (Num a, Integral b) => a -> b -> a
^(Int
64::Int)) ->
#if MIN_VERSION_base(4,15,0)
let !(IP ba0) = l1
#else
let !(Jp# !(BN# ByteArray#
ba0)) = Integer
l1
#endif
ba1 :: ByteArray
ba1 = ByteArray# -> ByteArray
BA.ByteArray ByteArray#
ba0
in Literal -> Maybe Literal
forall a. a -> Maybe a
Just (ByteArray -> Literal
ByteArrayLiteral ByteArray
ba1)
Int
_ -> Maybe Literal
forall a. Maybe a
Nothing
= let inScope :: VarSet
inScope = Term -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf Term
altE
subst0 :: Subst
subst0 = InScopeSet -> Subst
mkSubst (VarSet -> InScopeSet
mkInScopeSet VarSet
inScope)
subst1 :: Subst
subst1 = Subst -> Id -> Term -> Subst
extendIdSubst Subst
subst0 Id
x (Literal -> Term
Literal Literal
patE)
in HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"Evaluator.scrutinise" Subst
subst1 Term
altE
go Term
def (Alt
_:[Alt]
alts1) = Term -> [Alt] -> Term
go Term
def [Alt]
alts1
scrutinise (DC DataCon
dc [Either Term Type]
xs) Type
_altTy [Alt]
alts Machine
m
| Term
altE:[Term]
_ <- [DataCon -> [TyVar] -> [Id] -> [Either Term Type] -> Term -> Term
substInAlt DataCon
altDc [TyVar]
tvs [Id]
pxs [Either Term Type]
xs Term
altE
| (DataPat DataCon
altDc [TyVar]
tvs [Id]
pxs,Term
altE) <- [Alt]
alts, DataCon
altDc DataCon -> DataCon -> Bool
forall a. Eq a => a -> a -> Bool
== DataCon
dc ] [Term] -> [Term] -> [Term]
forall a. [a] -> [a] -> [a]
++
[Term
altE | (Pat
DefaultPat,Term
altE) <- [Alt]
alts ]
= Term -> Machine -> Machine
setTerm Term
altE Machine
m
scrutinise v :: Value
v@(PrimVal PrimInfo
p [Type]
_ [Value]
vs) Type
altTy [Alt]
alts Machine
m
| Value -> Bool
isUndefinedXPrimVal Value
v
= Term -> Machine -> Machine
setTerm (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefinedX) Type
altTy) Machine
m
| Value -> Bool
isUndefinedPrimVal Value
v
= Term -> Machine -> Machine
setTerm (Term -> Type -> Term
TyApp (PrimInfo -> Term
Prim PrimInfo
NP.undefined) Type
altTy) Machine
m
| (Alt -> Bool) -> [Alt] -> Bool
forall (t :: Type -> Type) a.
Foldable t =>
(a -> Bool) -> t a -> Bool
any (\case {(LitPat {},Term
_) -> Bool
True; Alt
_ -> Bool
False}) [Alt]
alts
= case [Alt]
alts of
((Pat
DefaultPat,Term
altE):[Alt]
alts1) -> Term -> Machine -> Machine
setTerm (Term -> [Alt] -> Term
forall t. t -> [(Pat, t)] -> t
go Term
altE [Alt]
alts1) Machine
m
[Alt]
_ -> let term :: Term
term = Term -> [Alt] -> Term
forall t. t -> [(Pat, t)] -> t
go (String -> Term
forall a. HasCallStack => String -> a
error (String -> Term) -> String -> Term
forall a b. (a -> b) -> a -> b
$ String
"Evaluator.scrutinise: no match "
String -> String -> String
forall a. Semigroup a => a -> a -> a
<> Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Term -> Type -> [Alt] -> Term
Case (Value -> Term
valToTerm Value
v) (ConstTy -> Type
ConstTy ConstTy
Arrow) [Alt]
alts)) [Alt]
alts
in Term -> Machine -> Machine
setTerm Term
term Machine
m
where
go :: t -> [(Pat, t)] -> t
go t
def [] = t
def
go t
_ ((LitPat Literal
l1,t
altE):[(Pat, t)]
_) | Literal
l1 Literal -> Literal -> Bool
forall a. Eq a => a -> a -> Bool
== Literal
l = t
altE
go t
def ((Pat, t)
_:[(Pat, t)]
alts1) = t -> [(Pat, t)] -> t
go t
def [(Pat, t)]
alts1
l :: Literal
l = case PrimInfo -> Text
primName PrimInfo
p of
Text
"Clash.Sized.Internal.BitVector.fromInteger##"
| [Lit (WordLiteral Integer
0), Lit Literal
l0] <- [Value]
vs -> Literal
l0
Text
"Clash.Sized.Internal.BitVector.fromInteger#"
| [Value
_,Lit (NaturalLiteral Integer
0),Lit Literal
l0] <- [Value]
vs -> Literal
l0
Text
"Clash.Sized.Internal.Index.fromInteger#"
| [Value
_,Lit Literal
l0] <- [Value]
vs -> Literal
l0
Text
"Clash.Sized.Internal.Signed.fromInteger#"
| [Value
_,Lit Literal
l0] <- [Value]
vs -> Literal
l0
Text
"Clash.Sized.Internal.Unsigned.fromInteger#"
| [Value
_,Lit Literal
l0] <- [Value]
vs -> Literal
l0
Text
_ -> String -> Literal
forall a. HasCallStack => String -> a
error (String
"scrutinise: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Term -> Type -> [Alt] -> Term
Case (Value -> Term
valToTerm Value
v) (ConstTy -> Type
ConstTy ConstTy
Arrow) [Alt]
alts))
scrutinise Value
v Type
_altTy [Alt]
alts Machine
_ =
String -> Machine
forall a. HasCallStack => String -> a
error (String
"scrutinise: " String -> String -> String
forall a. [a] -> [a] -> [a]
++ Term -> String
forall p. PrettyPrec p => p -> String
showPpr (Term -> Type -> [Alt] -> Term
Case (Value -> Term
valToTerm Value
v) (ConstTy -> Type
ConstTy ConstTy
Arrow) [Alt]
alts))
substInAlt :: DataCon -> [TyVar] -> [Id] -> [Either Term Type] -> Term -> Term
substInAlt :: DataCon -> [TyVar] -> [Id] -> [Either Term Type] -> Term -> Term
substInAlt DataCon
dc [TyVar]
tvs [Id]
xs [Either Term Type]
args Term
e = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"Evaluator.substInAlt" Subst
subst Term
e
where
tys :: [Type]
tys = [Either Term Type] -> [Type]
forall a b. [Either a b] -> [b]
rights [Either Term Type]
args
tms :: [Term]
tms = [Either Term Type] -> [Term]
forall a b. [Either a b] -> [a]
lefts [Either Term Type]
args
substTyMap :: [(TyVar, Type)]
substTyMap = [TyVar] -> [Type] -> [(TyVar, Type)]
forall a b. [a] -> [b] -> [(a, b)]
zip [TyVar]
tvs (Int -> [Type] -> [Type]
forall a. Int -> [a] -> [a]
drop ([TyVar] -> Int
forall (t :: Type -> Type) a. Foldable t => t a -> Int
length (DataCon -> [TyVar]
dcUnivTyVars DataCon
dc)) [Type]
tys)
substTmMap :: [LetBinding]
substTmMap = [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
xs [Term]
tms
inScope :: VarSet
inScope = [Type] -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf [Type]
tys VarSet -> VarSet -> VarSet
`unionVarSet` [Term] -> VarSet
forall a. HasFreeVars a => a -> VarSet
freeVarsOf (Term
eTerm -> [Term] -> [Term]
forall a. a -> [a] -> [a]
:[Term]
tms)
subst :: Subst
subst = Subst -> [(TyVar, Type)] -> Subst
extendTvSubstList (Subst -> [LetBinding] -> Subst
extendIdSubstList Subst
subst0 [LetBinding]
substTmMap) [(TyVar, Type)]
substTyMap
subst0 :: Subst
subst0 = InScopeSet -> Subst
mkSubst (VarSet -> InScopeSet
mkInScopeSet VarSet
inScope)
allocate :: [LetBinding] -> Term -> Machine -> Machine
allocate :: [LetBinding] -> Term -> Machine -> Machine
allocate [LetBinding]
xes Term
e Machine
m =
Machine
m { mHeapLocal :: PureHeap
mHeapLocal = PureHeap -> [LetBinding] -> PureHeap
forall a b. VarEnv a -> [(Var b, a)] -> VarEnv a
extendVarEnvList (Machine -> PureHeap
mHeapLocal Machine
m) [LetBinding]
xes'
, mSupply :: Supply
mSupply = Supply
ids'
, mScopeNames :: InScopeSet
mScopeNames = InScopeSet
isN
, mTerm :: Term
mTerm = Term
e'
}
where
xNms :: [Id]
xNms = (LetBinding -> Id) -> [LetBinding] -> [Id]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap LetBinding -> Id
forall a b. (a, b) -> a
fst [LetBinding]
xes
is1 :: InScopeSet
is1 = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList (Machine -> InScopeSet
mScopeNames Machine
m) [Id]
xNms
(Supply
ids', [(Id, LetBinding)]
s) = (Supply -> Id -> (Supply, (Id, LetBinding)))
-> Supply -> [Id] -> (Supply, [(Id, LetBinding)])
forall (t :: Type -> Type) a b c.
Traversable t =>
(a -> b -> (a, c)) -> a -> t b -> (a, t c)
mapAccumL (PureHeap -> Supply -> Id -> (Supply, (Id, LetBinding))
letSubst (Machine -> PureHeap
mHeapLocal Machine
m)) (Machine -> Supply
mSupply Machine
m) [Id]
xNms
([Id]
nms, [LetBinding]
s') = [(Id, LetBinding)] -> ([Id], [LetBinding])
forall a b. [(a, b)] -> ([a], [b])
unzip [(Id, LetBinding)]
s
isN :: InScopeSet
isN = InScopeSet -> [Id] -> InScopeSet
forall a. InScopeSet -> [Var a] -> InScopeSet
extendInScopeSetList InScopeSet
is1 [Id]
nms
subst :: Subst
subst = Subst -> [LetBinding] -> Subst
extendIdSubstList Subst
subst0 [LetBinding]
s'
subst0 :: Subst
subst0 = InScopeSet -> Subst
mkSubst ((InScopeSet -> Id -> InScopeSet)
-> InScopeSet -> [Id] -> InScopeSet
forall (t :: Type -> Type) b a.
Foldable t =>
(b -> a -> b) -> b -> t a -> b
foldl' InScopeSet -> Id -> InScopeSet
forall a. InScopeSet -> Var a -> InScopeSet
extendInScopeSet InScopeSet
is1 [Id]
nms)
xes' :: [LetBinding]
xes' = [Id] -> [Term] -> [LetBinding]
forall a b. [a] -> [b] -> [(a, b)]
zip [Id]
nms ((LetBinding -> Term) -> [LetBinding] -> [Term]
forall (f :: Type -> Type) a b. Functor f => (a -> b) -> f a -> f b
fmap (HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"Evaluator.allocate0" Subst
subst (Term -> Term) -> (LetBinding -> Term) -> LetBinding -> Term
forall b c a. (b -> c) -> (a -> b) -> a -> c
. LetBinding -> Term
forall a b. (a, b) -> b
snd) [LetBinding]
xes)
e' :: Term
e' = HasCallStack => Doc () -> Subst -> Term -> Term
Doc () -> Subst -> Term -> Term
substTm Doc ()
"Evaluator.allocate1" Subst
subst Term
e
letSubst
:: PureHeap
-> Supply
-> Id
-> (Supply, (Id, (Id, Term)))
letSubst :: PureHeap -> Supply -> Id -> (Supply, (Id, LetBinding))
letSubst PureHeap
h Supply
acc Id
id0 =
let (Supply
acc',Id
id1) = PureHeap -> Supply -> Id -> (Supply, Id)
mkUniqueHeapId PureHeap
h Supply
acc Id
id0
in (Supply
acc',(Id
id1,(Id
id0,Id -> Term
Var Id
id1)))
where
mkUniqueHeapId :: PureHeap -> Supply -> Id -> (Supply, Id)
mkUniqueHeapId :: PureHeap -> Supply -> Id -> (Supply, Id)
mkUniqueHeapId PureHeap
h' Supply
ids Id
x =
(Supply, Id)
-> (Term -> (Supply, Id)) -> Maybe Term -> (Supply, Id)
forall b a. b -> (a -> b) -> Maybe a -> b
maybe (Supply
ids', Id
x') ((Supply, Id) -> Term -> (Supply, Id)
forall a b. a -> b -> a
const ((Supply, Id) -> Term -> (Supply, Id))
-> (Supply, Id) -> Term -> (Supply, Id)
forall a b. (a -> b) -> a -> b
$ PureHeap -> Supply -> Id -> (Supply, Id)
mkUniqueHeapId PureHeap
h' Supply
ids' Id
x) (Id -> PureHeap -> Maybe Term
forall b a. Var b -> VarEnv a -> Maybe a
lookupVarEnv Id
x' PureHeap
h')
where
(Int
i,Supply
ids') = Supply -> (Int, Supply)
freshId Supply
ids
x' :: Id
x' = (Name Term -> Name Term) -> Id -> Id
forall a. (Name a -> Name a) -> Var a -> Var a
modifyVarName (Name Term -> Int -> Name Term
forall a. Uniquable a => a -> Int -> a
`setUnique` Int
i) Id
x