{-# LANGUAGE CPP #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE NamedFieldPuns #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE UnboxedTuples #-}
module Clash.GHC.Evaluator
( primEvaluator
, isUndefinedPrimVal
) where
import Control.Concurrent.Supply (Supply,freshId)
import Control.DeepSeq (force)
import Control.Exception (ArithException(..), Exception, tryJust, evaluate)
import Control.Monad.State.Strict (State, MonadState)
import qualified Control.Monad.State.Strict as State
import Control.Monad.Trans.Except (runExcept)
import Data.Bits
import Data.Char (chr,ord)
import qualified Data.Either as Either
import Data.Maybe (fromMaybe, mapMaybe)
import qualified Data.List as List
import qualified Data.Primitive.ByteArray as ByteArray
import Data.Proxy (Proxy)
import Data.Reflection (reifyNat)
import Data.Text (Text)
import qualified Data.Text as Text
import qualified Data.Vector.Primitive as Vector
import GHC.Float
import GHC.Int
import GHC.Integer
(decodeDoubleInteger,encodeDoubleInteger,compareInteger,orInteger,andInteger,
xorInteger,complementInteger,absInteger,signumInteger)
import GHC.Integer.GMP.Internals
(Integer (..), BigNat (..))
import GHC.Natural
import GHC.Prim
import GHC.Real (Ratio (..))
import GHC.TypeLits (KnownNat)
import GHC.Types (IO (..))
import GHC.Word
import System.IO.Unsafe (unsafeDupablePerformIO)
import BasicTypes (Boxity (..))
import Name (getSrcSpan, nameOccName, occNameString)
import PrelNames (trueDataConKey, falseDataConKey)
import qualified TyCon
import TysWiredIn (tupleTyCon)
import Unique (getKey)
import Clash.Class.BitPack (pack,unpack)
import Clash.Core.DataCon (DataCon (..))
import Clash.Core.Evaluator
import Clash.Core.Evaluator.Types
import Clash.Core.Literal (Literal (..))
import Clash.Core.Name
(Name (..), NameSort (..), mkUnsafeSystemName)
import Clash.Core.Pretty (showPpr)
import Clash.Core.Term
(Pat (..), PrimInfo (..), Term (..), WorkInfo (..), mkApps)
import Clash.Core.TermInfo (piResultTys, applyTypeToArgs)
import Clash.Core.Type
(Type (..), ConstTy (..), LitTy (..), TypeView (..), mkFunTy, mkTyConApp,
splitFunForallTy, tyView)
import Clash.Core.TyCon
(TyConMap, TyConName, tyConDataCons)
import Clash.Core.TysPrim
import Clash.Core.Util
(mkRTree,mkVec,tyNatSize,dataConInstArgTys,primCo,
undefinedTm)
import Clash.Core.Var (mkLocalId, mkTyVar)
import Clash.Debug
import Clash.GHC.GHC2Core (modNameM)
import Clash.Rewrite.Util (mkSelectorCase)
import Clash.Unique (lookupUniqMap)
import Clash.Util
(MonadUnique (..), clogBase, flogBase, curLoc)
import Clash.Normalize.PrimitiveReductions
(typeNatMul, typeNatSub, typeNatAdd, vecLastPrim, vecInitPrim, vecHeadPrim,
vecTailPrim, mkVecCons, mkVecNil)
import Clash.Promoted.Nat.Unsafe (unsafeSNat)
import qualified Clash.Sized.Internal.BitVector as BitVector
import qualified Clash.Sized.Internal.Signed as Signed
import qualified Clash.Sized.Internal.Unsigned as Unsigned
import Clash.Sized.Internal.BitVector(BitVector(..), Bit(..))
import Clash.Sized.Internal.Signed (Signed (..))
import Clash.Sized.Internal.Unsigned (Unsigned (..))
import Clash.XException (isX)
primEvaluator :: PrimEvaluator
primEvaluator = (reduceConstant, unwindPrim)
unwindPrim :: PrimUnwind
unwindPrim tcm p tys vs v [] m
| primName p `elem` [ "Clash.Sized.Internal.Index.fromInteger#"
, "GHC.CString.unpackCString#"
, "Clash.Transformations.removedArg"
, "GHC.Prim.MutableByteArray#"
, "Clash.Transformations.undefined"
]
= unwind tcm m (PrimVal p tys (vs ++ [v]))
| primName p == "Clash.Sized.Internal.BitVector.fromInteger#"
= case (vs,v) of
([naturalLiteral -> Just n,mask], integerLiteral -> Just i) ->
unwind tcm m (PrimVal p tys [Lit (NaturalLiteral n), mask, Lit (IntegerLiteral (wrapUnsigned n i))])
_ -> error ($(curLoc) ++ "Internal error" ++ show (vs,v))
| primName p == "Clash.Sized.Internal.BitVector.fromInteger##"
= case (vs,v) of
([mask], integerLiteral -> Just i) ->
unwind tcm m (PrimVal p tys [mask, Lit (IntegerLiteral (wrapUnsigned 1 i))])
_ -> error ($(curLoc) ++ "Internal error" ++ show (vs,v))
| primName p == "Clash.Sized.Internal.Signed.fromInteger#"
= case (vs,v) of
([naturalLiteral -> Just n],integerLiteral -> Just i) ->
unwind tcm m (PrimVal p tys [Lit (NaturalLiteral n), Lit (IntegerLiteral (wrapSigned n i))])
_ -> error ($(curLoc) ++ "Internal error" ++ show (vs,v))
| primName p == "Clash.Sized.Internal.Unsigned.fromInteger#"
= case (vs,v) of
([naturalLiteral -> Just n],integerLiteral -> Just i) ->
unwind tcm m (PrimVal p tys [Lit (NaturalLiteral n), Lit (IntegerLiteral (wrapUnsigned n i))])
_ -> error ($(curLoc) ++ "Internal error" ++ show (vs,v))
| isUndefinedPrimVal v
= let tyArgs = map Right tys
tmArgs = map (Left . valToTerm) (vs ++ [v])
in Just $ flip setTerm m $ undefinedTm $
applyTypeToArgs (Prim p) tcm (primType p) (tyArgs ++ tmArgs)
| otherwise
= mPrimStep m tcm (forcePrims m) p tys (vs ++ [v]) m
unwindPrim tcm p tys vs v [e] m0
| primName p `elem` [ "Clash.Sized.Vector.lazyV"
, "Clash.Sized.Vector.replicate"
, "Clash.Sized.Vector.replace_int"
, "GHC.Classes.&&"
, "GHC.Classes.||"
]
= if isUndefinedPrimVal v then
let tyArgs = map Right tys
tmArgs = map (Left . valToTerm) (vs ++ [v]) ++ [Left e]
in Just $ flip setTerm m0 $ undefinedTm $
applyTypeToArgs (Prim p) tcm (primType p) (tyArgs ++ tmArgs)
else
let (m1,i) = newLetBinding tcm m0 e
in mPrimStep m0 tcm (forcePrims m0) p tys (vs ++ [v,Suspend (Var i)]) m1
unwindPrim tcm p tys vs (collectValueTicks -> (v, ts)) (e:es) m
| isUndefinedPrimVal v
= let tyArgs = map Right tys
tmArgs = map (Left . valToTerm) (vs ++ [v]) ++ map Left (e:es)
in Just $ flip setTerm m $ undefinedTm $
applyTypeToArgs (Prim p) tcm (primType p) (tyArgs ++ tmArgs)
| otherwise
= Just . setTerm e $ stackPush (PrimApply p tys (vs ++ [foldr TickValue v ts]) es) m
newtype PrimEvalMonad a = PEM (State Supply a)
deriving (Functor, Applicative, Monad, MonadState Supply)
instance MonadUnique PrimEvalMonad where
getUniqueM = PEM $ State.state (\s -> case freshId s of (!i,!s') -> (i,s'))
runPEM :: PrimEvalMonad a -> Supply -> (a, Supply)
runPEM (PEM m) = State.runState m
reduceConstant :: PrimStep
reduceConstant tcm isSubj pInfo tys args mach = case primName pInfo of
"GHC.Prim.gtChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i > j))
"GHC.Prim.geChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i >= j))
"GHC.Prim.eqChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i == j))
"GHC.Prim.neChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i /= j))
"GHC.Prim.ltChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i < j))
"GHC.Prim.leChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i <= j))
"GHC.Prim.ord#" | [i] <- charLiterals' args
-> reduce (integerToIntLiteral (toInteger $ ord i))
"GHC.Prim.+#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i+j))
"GHC.Prim.-#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i-j))
"GHC.Prim.*#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i*j))
"GHC.Prim.mulIntMayOflo#" | Just (i,j) <- intLiterals args
-> let !(I# a) = fromInteger i
!(I# b) = fromInteger j
c :: Int#
c = mulIntMayOflo# a b
in reduce (integerToIntLiteral (toInteger $ I# c))
"GHC.Prim.quotInt#" | Just (i,j) <- intLiterals args
-> reduce $ catchDivByZero (integerToIntLiteral (i `quot` j))
"GHC.Prim.remInt#" | Just (i,j) <- intLiterals args
-> reduce $ catchDivByZero (integerToIntLiteral (i `rem` j))
"GHC.Prim.quotRemInt#" | Just (i,j) <- intLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
(q,r) = quotRem i j
ret = mkApps (Data tupDc) (map Right tyArgs ++
[Left $ catchDivByZero (integerToIntLiteral q)
,Left $ catchDivByZero (integerToIntLiteral r)])
in reduce ret
"GHC.Prim.andI#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i .&. j))
"GHC.Prim.orI#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i .|. j))
"GHC.Prim.xorI#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i `xor` j))
"GHC.Prim.notI#" | [i] <- intLiterals' args
-> reduce (integerToIntLiteral (complement i))
"GHC.Prim.negateInt#"
| [Lit (IntLiteral i)] <- args
-> reduce (integerToIntLiteral (negate i))
"GHC.Prim.addIntC#" | Just (i,j) <- intLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(I# a) = fromInteger i
!(I# b) = fromInteger j
!(# d, c #) = addIntC# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I# d)
, Left (Literal . IntLiteral . toInteger $ I# c)])
"GHC.Prim.subIntC#" | Just (i,j) <- intLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(I# a) = fromInteger i
!(I# b) = fromInteger j
!(# d, c #) = subIntC# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I# d)
, Left (Literal . IntLiteral . toInteger $ I# c)])
"GHC.Prim.>#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i > j))
"GHC.Prim.>=#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i >= j))
"GHC.Prim.==#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i == j))
"GHC.Prim./=#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i /= j))
"GHC.Prim.<#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i < j))
"GHC.Prim.<=#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i <= j))
"GHC.Prim.chr#" | [i] <- intLiterals' args
-> reduce (charToCharLiteral (chr $ fromInteger i))
"GHC.Prim.int2Word#"
| [Lit (IntLiteral i)] <- args
-> reduce . Literal . WordLiteral . toInteger $ (fromInteger :: Integer -> Word) i
"GHC.Prim.int2Float#"
| [Lit (IntLiteral i)] <- args
-> reduce . Literal . FloatLiteral . toRational $ (fromInteger i :: Float)
"GHC.Prim.int2Double#"
| [Lit (IntLiteral i)] <- args
-> reduce . Literal . DoubleLiteral . toRational $ (fromInteger i :: Double)
"GHC.Prim.word2Float#"
| [Lit (WordLiteral i)] <- args
-> reduce . Literal . FloatLiteral . toRational $ (fromInteger i :: Float)
"GHC.Prim.word2Double#"
| [Lit (WordLiteral i)] <- args
-> reduce . Literal . DoubleLiteral . toRational $ (fromInteger i :: Double)
"GHC.Prim.uncheckedIShiftL#"
| [ Lit (IntLiteral i)
, Lit (IntLiteral s)
] <- args
-> reduce (integerToIntLiteral (i `shiftL` fromInteger s))
"GHC.Prim.uncheckedIShiftRA#"
| [ Lit (IntLiteral i)
, Lit (IntLiteral s)
] <- args
-> reduce (integerToIntLiteral (i `shiftR` fromInteger s))
"GHC.Prim.uncheckedIShiftRL#" | Just (i,j) <- intLiterals args
-> let !(I# a) = fromInteger i
!(I# b) = fromInteger j
c :: Int#
c = uncheckedIShiftRL# a b
in reduce (integerToIntLiteral (toInteger $ I# c))
"GHC.Prim.plusWord#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i+j))
"GHC.Prim.subWordC#" | Just (i,j) <- wordLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(W# a) = fromInteger i
!(W# b) = fromInteger j
!(# d, c #) = subWordC# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . WordLiteral . toInteger $ W# d)
, Left (Literal . IntLiteral . toInteger $ I# c)])
"GHC.Prim.plusWord2#" | Just (i,j) <- wordLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(W# a) = fromInteger i
!(W# b) = fromInteger j
!(# h', l #) = plusWord2# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . WordLiteral . toInteger $ W# h')
, Left (Literal . WordLiteral . toInteger $ W# l)])
"GHC.Prim.minusWord#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i-j))
"GHC.Prim.timesWord#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i*j))
"GHC.Prim.timesWord2#" | Just (i,j) <- wordLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(W# a) = fromInteger i
!(W# b) = fromInteger j
!(# h', l #) = timesWord2# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . WordLiteral . toInteger $ W# h')
, Left (Literal . WordLiteral . toInteger $ W# l)])
"GHC.Prim.quotWord#" | Just (i,j) <- wordLiterals args
-> reduce $ catchDivByZero (integerToWordLiteral (i `quot` j))
"GHC.Prim.remWord#" | Just (i,j) <- wordLiterals args
-> reduce $ catchDivByZero (integerToWordLiteral (i `rem` j))
"GHC.Prim.quotRemWord#" | Just (i,j) <- wordLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
(q,r) = quotRem i j
ret = mkApps (Data tupDc) (map Right tyArgs ++
[Left $ catchDivByZero (integerToWordLiteral q)
,Left $ catchDivByZero (integerToWordLiteral r)])
in reduce ret
"GHC.Prim.quotRemWord2#" | [i,j,k'] <- wordLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(W# a) = fromInteger i
!(W# b) = fromInteger j
!(W# c) = fromInteger k'
!(# x, y #) = quotRemWord2# a b c
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left $ catchDivByZero (Literal . WordLiteral . toInteger $ W# x)
, Left $ catchDivByZero (Literal . WordLiteral . toInteger $ W# y)])
"GHC.Prim.and#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i .&. j))
"GHC.Prim.or#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i .|. j))
"GHC.Prim.xor#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i `xor` j))
"GHC.Prim.not#" | [i] <- wordLiterals' args
-> reduce (integerToWordLiteral (complement i))
"GHC.Prim.uncheckedShiftL#"
| [ Lit (WordLiteral w)
, Lit (IntLiteral i)
] <- args
-> reduce (Literal (WordLiteral (w `shiftL` fromInteger i)))
"GHC.Prim.uncheckedShiftRL#"
| [ Lit (WordLiteral w)
, Lit (IntLiteral i)
] <- args
-> reduce (Literal (WordLiteral (w `shiftR` fromInteger i)))
"GHC.Prim.word2Int#"
| [Lit (WordLiteral i)] <- args
-> reduce . Literal . IntLiteral . toInteger $ (fromInteger :: Integer -> Int) i
"GHC.Prim.gtWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i > j))
"GHC.Prim.geWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i >= j))
"GHC.Prim.eqWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i == j))
"GHC.Prim.neWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i /= j))
"GHC.Prim.ltWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i < j))
"GHC.Prim.leWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i <= j))
"GHC.Prim.popCnt8#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word8) $ i
"GHC.Prim.popCnt16#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word16) $ i
"GHC.Prim.popCnt32#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word32) $ i
"GHC.Prim.popCnt64#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word64) $ i
"GHC.Prim.popCnt#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word) $ i
"GHC.Prim.clz8#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word8) $ i
"GHC.Prim.clz16#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word16) $ i
"GHC.Prim.clz32#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word32) $ i
"GHC.Prim.clz64#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word64) $ i
"GHC.Prim.clz#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word) $ i
"GHC.Prim.ctz8#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i .&. (bit 8 - 1)
"GHC.Prim.ctz16#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i .&. (bit 16 - 1)
"GHC.Prim.ctz32#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i .&. (bit 32 - 1)
"GHC.Prim.ctz64#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word64) $ i .&. (bit 64 - 1)
"GHC.Prim.ctz#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i
"GHC.Prim.byteSwap16#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . byteSwap16 . (fromInteger :: Integer -> Word16) $ i
"GHC.Prim.byteSwap32#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . byteSwap32 . (fromInteger :: Integer -> Word32) $ i
"GHC.Prim.byteSwap64#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . byteSwap64 . (fromInteger :: Integer -> Word64) $ i
"GHC.Prim.byteSwap#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . byteSwap64 . (fromInteger :: Integer -> Word64) $ i
#if MIN_VERSION_base(4,14,0)
"GHC.Prim.bitReverse#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . bitReverse64 . fromInteger $ i
"GHC.Prim.bitReverse8#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . bitReverse8 . fromInteger $ i
"GHC.Prim.bitReverse16#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . bitReverse16 . fromInteger $ i
"GHC.Prim.bitReverse32#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . bitReverse32 . fromInteger $ i
"GHC.Prim.bitReverse64#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . bitReverse64 . fromInteger $ i
#endif
"GHC.Prim.narrow8Int#" | [i] <- intLiterals' args
-> let !(I# a) = fromInteger i
b = narrow8Int# a
in reduce . Literal . IntLiteral . toInteger $ I# b
"GHC.Prim.narrow16Int#" | [i] <- intLiterals' args
-> let !(I# a) = fromInteger i
b = narrow16Int# a
in reduce . Literal . IntLiteral . toInteger $ I# b
"GHC.Prim.narrow32Int#" | [i] <- intLiterals' args
-> let !(I# a) = fromInteger i
b = narrow32Int# a
in reduce . Literal . IntLiteral . toInteger $ I# b
"GHC.Prim.narrow8Word#" | [i] <- wordLiterals' args
-> let !(W# a) = fromInteger i
b = narrow8Word# a
in reduce . Literal . WordLiteral . toInteger $ W# b
"GHC.Prim.narrow16Word#" | [i] <- wordLiterals' args
-> let !(W# a) = fromInteger i
b = narrow16Word# a
in reduce . Literal . WordLiteral . toInteger $ W# b
"GHC.Prim.narrow32Word#" | [i] <- wordLiterals' args
-> let !(W# a) = fromInteger i
b = narrow32Word# a
in reduce . Literal . WordLiteral . toInteger $ W# b
"GHC.Prim.>##" | Just r <- liftDDI (>##) args
-> reduce r
"GHC.Prim.>=##" | Just r <- liftDDI (>=##) args
-> reduce r
"GHC.Prim.==##" | Just r <- liftDDI (==##) args
-> reduce r
"GHC.Prim./=##" | Just r <- liftDDI (/=##) args
-> reduce r
"GHC.Prim.<##" | Just r <- liftDDI (<##) args
-> reduce r
"GHC.Prim.<=##" | Just r <- liftDDI (<=##) args
-> reduce r
"GHC.Prim.+##" | Just r <- liftDDD (+##) args
-> reduce r
"GHC.Prim.-##" | Just r <- liftDDD (-##) args
-> reduce r
"GHC.Prim.*##" | Just r <- liftDDD (*##) args
-> reduce r
"GHC.Prim./##" | Just r <- liftDDD (/##) args
-> reduce r
"GHC.Prim.negateDouble#" | Just r <- liftDD negateDouble# args
-> reduce r
"GHC.Prim.fabsDouble#" | Just r <- liftDD fabsDouble# args
-> reduce r
"GHC.Prim.double2Int#" | [i] <- doubleLiterals' args
-> let !(D# a) = fromRational i
r = double2Int# a
in reduce . Literal . IntLiteral . toInteger $ I# r
"GHC.Prim.double2Float#"
| [Lit (DoubleLiteral d)] <- args
-> reduce (Literal (FloatLiteral (toRational (fromRational d :: Float))))
"GHC.Prim.expDouble#" | Just r <- liftDD expDouble# args
-> reduce r
"GHC.Prim.logDouble#" | Just r <- liftDD logDouble# args
-> reduce r
"GHC.Prim.sqrtDouble#" | Just r <- liftDD sqrtDouble# args
-> reduce r
"GHC.Prim.sinDouble#" | Just r <- liftDD sinDouble# args
-> reduce r
"GHC.Prim.cosDouble#" | Just r <- liftDD cosDouble# args
-> reduce r
"GHC.Prim.tanDouble#" | Just r <- liftDD tanDouble# args
-> reduce r
"GHC.Prim.asinDouble#" | Just r <- liftDD asinDouble# args
-> reduce r
"GHC.Prim.acosDouble#" | Just r <- liftDD acosDouble# args
-> reduce r
"GHC.Prim.atanDouble#" | Just r <- liftDD atanDouble# args
-> reduce r
"GHC.Prim.sinhDouble#" | Just r <- liftDD sinhDouble# args
-> reduce r
"GHC.Prim.coshDouble#" | Just r <- liftDD coshDouble# args
-> reduce r
"GHC.Prim.tanhDouble#" | Just r <- liftDD tanhDouble# args
-> reduce r
#if MIN_VERSION_ghc(8,7,0)
"GHC.Prim.asinhDouble#" | Just r <- liftDD asinhDouble# args
-> reduce r
"GHC.Prim.acoshDouble#" | Just r <- liftDD acoshDouble# args
-> reduce r
"GHC.Prim.atanhDouble#" | Just r <- liftDD atanhDouble# args
-> reduce r
#endif
"GHC.Prim.**##" | Just r <- liftDDD (**##) args
-> reduce r
"GHC.Prim.decodeDouble_2Int#" | [i] <- doubleLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(D# a) = fromRational i
!(# p, q, r, s #) = decodeDouble_2Int# a
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I# p)
, Left (Literal . WordLiteral . toInteger $ W# q)
, Left (Literal . WordLiteral . toInteger $ W# r)
, Left (Literal . IntLiteral . toInteger $ I# s)])
"GHC.Prim.decodeDouble_Int64#" | [i] <- doubleLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(D# a) = fromRational i
!(# p, q #) = decodeDouble_Int64# a
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I64# p)
, Left (Literal . IntLiteral . toInteger $ I# q)])
"GHC.Prim.gtFloat#" | Just r <- liftFFI gtFloat# args
-> reduce r
"GHC.Prim.geFloat#" | Just r <- liftFFI geFloat# args
-> reduce r
"GHC.Prim.eqFloat#" | Just r <- liftFFI eqFloat# args
-> reduce r
"GHC.Prim.neFloat#" | Just r <- liftFFI neFloat# args
-> reduce r
"GHC.Prim.ltFloat#" | Just r <- liftFFI ltFloat# args
-> reduce r
"GHC.Prim.leFloat#" | Just r <- liftFFI leFloat# args
-> reduce r
"GHC.Prim.plusFloat#" | Just r <- liftFFF plusFloat# args
-> reduce r
"GHC.Prim.minusFloat#" | Just r <- liftFFF minusFloat# args
-> reduce r
"GHC.Prim.timesFloat#" | Just r <- liftFFF timesFloat# args
-> reduce r
"GHC.Prim.divideFloat#" | Just r <- liftFFF divideFloat# args
-> reduce r
"GHC.Prim.negateFloat#" | Just r <- liftFF negateFloat# args
-> reduce r
"GHC.Prim.fabsFloat#" | Just r <- liftFF fabsFloat# args
-> reduce r
"GHC.Prim.float2Int#" | [i] <- floatLiterals' args
-> let !(F# a) = fromRational i
r = float2Int# a
in reduce . Literal . IntLiteral . toInteger $ I# r
"GHC.Prim.expFloat#" | Just r <- liftFF expFloat# args
-> reduce r
"GHC.Prim.logFloat#" | Just r <- liftFF logFloat# args
-> reduce r
"GHC.Prim.sqrtFloat#" | Just r <- liftFF sqrtFloat# args
-> reduce r
"GHC.Prim.sinFloat#" | Just r <- liftFF sinFloat# args
-> reduce r
"GHC.Prim.cosFloat#" | Just r <- liftFF cosFloat# args
-> reduce r
"GHC.Prim.tanFloat#" | Just r <- liftFF tanFloat# args
-> reduce r
"GHC.Prim.asinFloat#" | Just r <- liftFF asinFloat# args
-> reduce r
"GHC.Prim.acosFloat#" | Just r <- liftFF acosFloat# args
-> reduce r
"GHC.Prim.atanFloat#" | Just r <- liftFF atanFloat# args
-> reduce r
"GHC.Prim.sinhFloat#" | Just r <- liftFF sinhFloat# args
-> reduce r
"GHC.Prim.coshFloat#" | Just r <- liftFF coshFloat# args
-> reduce r
"GHC.Prim.tanhFloat#" | Just r <- liftFF tanhFloat# args
-> reduce r
"GHC.Prim.powerFloat#" | Just r <- liftFFF powerFloat# args
-> reduce r
#if MIN_VERSION_base(4,12,0)
"GHC.Float.$w$casinh" | Just r <- liftDD go args
-> reduce r
where go f = case asinh (D# f) of
D# f' -> f'
"GHC.Float.$w$casinh1" | Just r <- liftFF go args
-> reduce r
where go f = case asinh (F# f) of
F# f' -> f'
#endif
#if MIN_VERSION_ghc(8,7,0)
"GHC.Prim.asinhFloat#" | Just r <- liftFF asinhFloat# args
-> reduce r
"GHC.Prim.acoshFloat#" | Just r <- liftFF acoshFloat# args
-> reduce r
"GHC.Prim.atanhFloat#" | Just r <- liftFF atanhFloat# args
-> reduce r
#endif
"GHC.Prim.float2Double#" | [i] <- floatLiterals' args
-> let !(F# a) = fromRational i
r = float2Double# a
in reduce . Literal . DoubleLiteral . toRational $ D# r
"GHC.Prim.newByteArray#"
| [iV,PrimVal rwTy _ _] <- args
, [i] <- intLiterals' [iV]
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
p = primCount mach
lit = Literal (ByteArrayLiteral (Vector.replicate (fromInteger i) 0))
mbaTy = mkFunTy intPrimTy (last tyArgs)
newE = mkApps (Data tupDc) (map Right tyArgs ++
[Left (Prim rwTy)
,Left (mkApps (Prim (PrimInfo "GHC.Prim.MutableByteArray#" mbaTy WorkNever))
[Left (Literal . IntLiteral $ toInteger p)])
])
in Just . setTerm newE $ primInsert p lit mach
"GHC.Prim.setByteArray#"
| [PrimVal _mbaTy _ [baV]
,offV,lenV,cV
,PrimVal rwTy _ _
] <- args
, [ba,off,len,c] <- intLiterals' [baV,offV,lenV,cV]
-> let Just (Literal (ByteArrayLiteral (Vector.Vector voff vlen ba1))) =
primLookup (fromInteger ba) mach
!(I# off') = fromInteger off
!(I# len') = fromInteger len
!(I# c') = fromInteger c
ba2 = unsafeDupablePerformIO $ do
ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1
svoid (setByteArray# mba off' len' c')
ByteArray.unsafeFreezeByteArray (ByteArray.MutableByteArray mba)
ba3 = Literal (ByteArrayLiteral (Vector.Vector voff vlen ba2))
in Just . setTerm (Prim rwTy) $ primUpdate (fromInteger ba) ba3 mach
"GHC.Prim.writeWordArray#"
| [PrimVal _mbaTy _ [baV]
,iV,wV
,PrimVal rwTy _ _
] <- args
, [ba,i] <- intLiterals' [baV,iV]
, [w] <- wordLiterals' [wV]
-> let Just (Literal (ByteArrayLiteral (Vector.Vector off len ba1))) =
primLookup (fromInteger ba) mach
!(I# i') = fromInteger i
!(W# w') = fromIntegral w
ba2 = unsafeDupablePerformIO $ do
ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1
svoid (writeWordArray# mba i' w')
ByteArray.unsafeFreezeByteArray (ByteArray.MutableByteArray mba)
ba3 = Literal (ByteArrayLiteral (Vector.Vector off len ba2))
in Just . setTerm (Prim rwTy) $ primUpdate (fromInteger ba) ba3 mach
"GHC.Prim.unsafeFreezeByteArray#"
| [PrimVal _mbaTy _ [baV]
,PrimVal rwTy _ _
] <- args
, [ba] <- intLiterals' [baV]
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
Just ba' = primLookup (fromInteger ba) mach
in reduce $ mkApps (Data tupDc) (map Right tyArgs ++
[Left (Prim rwTy)
,Left ba'])
"GHC.Prim.sizeofByteArray#"
| [Lit (ByteArrayLiteral ba)] <- args
-> reduce (Literal (IntLiteral (toInteger (Vector.length ba))))
"GHC.Prim.indexWordArray#"
| [Lit (ByteArrayLiteral (Vector.Vector _ _ (ByteArray.ByteArray ba))),iV] <- args
, [i] <- intLiterals' [iV]
-> let !(I# i') = fromInteger i
!w = indexWordArray# ba i'
in reduce (Literal (WordLiteral (toInteger (W# w))))
"GHC.Prim.getSizeofMutBigNat#"
| [PrimVal _mbaTy _ [baV]
,PrimVal rwTy _ _
] <- args
, [ba] <- intLiterals' [baV]
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
Just (Literal (ByteArrayLiteral ba')) = primLookup (fromInteger ba) mach
lit = Literal (IntLiteral (toInteger (Vector.length ba')))
in reduce $ mkApps (Data tupDc) (map Right tyArgs ++
[Left (Prim rwTy)
,Left lit])
"GHC.Prim.resizeMutableByteArray#"
| [PrimVal mbaTy _ [baV]
,iV
,PrimVal rwTy _ _
] <- args
, [ba,i] <- intLiterals' [baV,iV]
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
p = primCount mach
Just (Literal (ByteArrayLiteral (Vector.Vector 0 _ ba1)))
= primLookup (fromInteger ba) mach
!(I# i') = fromInteger i
ba2 = unsafeDupablePerformIO $ do
ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1
mba' <- IO (\s -> case resizeMutableByteArray# mba i' s of
(# s', mba' #) -> (# s', ByteArray.MutableByteArray mba' #))
ByteArray.unsafeFreezeByteArray mba'
ba3 = Literal (ByteArrayLiteral (Vector.Vector 0 (I# i') ba2))
newE = mkApps (Data tupDc) (map Right tyArgs ++
[Left (Prim rwTy)
,Left (mkApps (Prim mbaTy)
[Left (Literal . IntLiteral $ toInteger p)])
])
in Just . setTerm newE $ primInsert p ba3 mach
"GHC.Prim.shrinkMutableByteArray#"
| [PrimVal _mbaTy _ [baV]
,lenV
,PrimVal rwTy _ _
] <- args
, [ba,len] <- intLiterals' [baV,lenV]
-> let Just (Literal (ByteArrayLiteral (Vector.Vector voff vlen ba1))) =
primLookup (fromInteger ba) mach
!(I# len') = fromInteger len
ba2 = unsafeDupablePerformIO $ do
ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1
svoid (shrinkMutableByteArray# mba len')
ByteArray.unsafeFreezeByteArray (ByteArray.MutableByteArray mba)
ba3 = Literal (ByteArrayLiteral (Vector.Vector voff vlen ba2))
in Just . setTerm (Prim rwTy) $ primUpdate (fromInteger ba) ba3 mach
"GHC.Prim.copyByteArray#"
| [Lit (ByteArrayLiteral (Vector.Vector _ _ (ByteArray.ByteArray src_ba)))
,src_offV
,PrimVal _mbaTy _ [dst_mbaV]
,dst_offV, nV
,PrimVal rwTy _ _
] <- args
, [src_off,dst_mba,dst_off,n] <- intLiterals' [src_offV,dst_mbaV,dst_offV,nV]
-> let Just (Literal (ByteArrayLiteral (Vector.Vector voff vlen dst_ba))) =
primLookup (fromInteger dst_mba) mach
!(I# src_off') = fromInteger src_off
!(I# dst_off') = fromInteger dst_off
!(I# n') = fromInteger n
ba2 = unsafeDupablePerformIO $ do
ByteArray.MutableByteArray dst_mba1 <- ByteArray.unsafeThawByteArray dst_ba
svoid (copyByteArray# src_ba src_off' dst_mba1 dst_off' n')
ByteArray.unsafeFreezeByteArray (ByteArray.MutableByteArray dst_mba1)
ba3 = Literal (ByteArrayLiteral (Vector.Vector voff vlen ba2))
in Just . setTerm (Prim rwTy) $ primUpdate (fromInteger dst_mba) ba3 mach
"GHC.Prim.readWordArray#"
| [PrimVal _mbaTy _ [baV]
,offV
,PrimVal rwTy _ _
] <- args
, [ba,off] <- intLiterals' [baV,offV]
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
Just (Literal (ByteArrayLiteral (Vector.Vector _ _ ba1))) =
primLookup (fromInteger ba) mach
!(I# off') = fromInteger off
w = unsafeDupablePerformIO $ do
ByteArray.MutableByteArray mba <- ByteArray.unsafeThawByteArray ba1
IO (\s -> case readWordArray# mba off' s of
(# s', w' #) -> (# s', W# w' #))
newE = mkApps (Data tupDc) (map Right tyArgs ++
[Left (Prim rwTy)
,Left (Literal (WordLiteral (toInteger w)))
])
in reduce newE
"GHC.Prim.decodeFloat_Int#" | [i] <- floatLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(F# a) = fromRational i
!(# p, q #) = decodeFloat_Int# a
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I# p)
, Left (Literal . IntLiteral . toInteger $ I# q)])
"GHC.Prim.tagToEnum#"
| [ConstTy (TyCon tcN)] <- tys
, [Lit (IntLiteral i)] <- args
-> let dc = do { tc <- lookupUniqMap tcN tcm
; let dcs = tyConDataCons tc
; List.find ((== (i+1)) . toInteger . dcTag) dcs
}
in (\e -> setTerm (Data e) mach) <$> dc
"GHC.Classes.geInt" | Just (i,j) <- intCLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"GHC.Classes.&&"
| [ lArg , rArg ] <- args
, mach1@Machine{mStack=[],mTerm=lArgWHNF} <- whnf tcm True (setTerm (valToTerm lArg) $ stackClear mach)
, mach2@Machine{mStack=[],mTerm=rArgWHNF} <- whnf tcm True (setTerm (valToTerm rArg) $ stackClear mach1)
-> case [ lArgWHNF, rArgWHNF ] of
[ Data lCon, Data rCon ] ->
Just $ mach2
{ mStack = mStack mach
, mTerm = boolToBoolLiteral tcm ty (isTrueDC lCon && isTrueDC rCon)
}
[ Data lCon, _ ]
| isTrueDC lCon -> reduce rArgWHNF
| otherwise -> reduce (boolToBoolLiteral tcm ty False)
[ _, Data rCon ]
| isTrueDC rCon -> reduce lArgWHNF
| otherwise -> reduce (boolToBoolLiteral tcm ty False)
_ -> Nothing
"GHC.Classes.||"
| [ lArg , rArg ] <- args
, mach1@Machine{mStack=[],mTerm=lArgWHNF} <- whnf tcm True (setTerm (valToTerm lArg) $ stackClear mach)
, mach2@Machine{mStack=[],mTerm=rArgWHNF} <- whnf tcm True (setTerm (valToTerm rArg) $ stackClear mach1)
-> case [ lArgWHNF, rArgWHNF ] of
[ Data lCon, Data rCon ] ->
Just $ mach2
{ mStack = mStack mach
, mTerm = boolToBoolLiteral tcm ty (isTrueDC lCon || isTrueDC rCon)
}
[ Data lCon, _ ]
| isFalseDC lCon -> reduce rArgWHNF
| otherwise -> reduce (boolToBoolLiteral tcm ty True)
[ _, Data rCon ]
| isFalseDC rCon -> reduce lArgWHNF
| otherwise -> reduce (boolToBoolLiteral tcm ty True)
_ -> Nothing
"GHC.Classes.divInt#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i `div` j))
"GHC.Classes.modInt#"
| [dividend, divisor] <- intLiterals' args
->
if divisor == 0 then
let iTy = snd (splitFunForallTy ty) in
reduce (undefinedTm iTy)
else
reduce (Literal (IntLiteral (dividend `mod` divisor)))
"GHC.Classes.not"
| [DC bCon _] <- args
-> reduce (boolToBoolLiteral tcm ty (nameOcc (dcName bCon) == "GHC.Types.False"))
"GHC.Integer.Logarithms.integerLogBase#"
| Just (a,b) <- integerLiterals args
, Just c <- flogBase a b
-> (reduce . Literal . IntLiteral . toInteger) c
"GHC.Integer.Type.smallInteger"
| [Lit (IntLiteral i)] <- args
-> reduce (Literal (IntegerLiteral i))
"GHC.Integer.Type.integerToInt"
| [i] <- integerLiterals' args
-> reduce (integerToIntLiteral i)
"GHC.Integer.Type.decodeDoubleInteger"
| [Lit (DoubleLiteral i)] <- args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
!(D# a) = fromRational i
!(# b, c #) = decodeDoubleInteger a
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (integerToIntegerLiteral b)
, Left (integerToIntLiteral . toInteger $ I# c)])
"GHC.Integer.Type.encodeDoubleInteger"
| [iV, Lit (IntLiteral j)] <- args
, [i] <- integerLiterals' [iV]
-> let !(I# k') = fromInteger j
r = encodeDoubleInteger i k'
in reduce . Literal . DoubleLiteral . toRational $ D# r
"GHC.Integer.Type.quotRemInteger"
| [i, j] <- integerLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
(q,r) = quotRem i j
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left $ catchDivByZero (integerToIntegerLiteral q)
, Left $ catchDivByZero (integerToIntegerLiteral r)])
"GHC.Integer.Type.plusInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i+j))
"GHC.Integer.Type.minusInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i-j))
"GHC.Integer.Type.timesInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i*j))
"GHC.Integer.Type.negateInteger"
| [i] <- integerLiterals' args
-> reduce (integerToIntegerLiteral (negate i))
"GHC.Integer.Type.divInteger" | Just (i,j) <- integerLiterals args
-> reduce $ catchDivByZero (integerToIntegerLiteral (i `div` j))
"GHC.Integer.Type.modInteger" | Just (i,j) <- integerLiterals args
-> reduce $ catchDivByZero (integerToIntegerLiteral (i `mod` j))
"GHC.Integer.Type.quotInteger" | Just (i,j) <- integerLiterals args
-> reduce $ catchDivByZero (integerToIntegerLiteral (i `quot` j))
"GHC.Integer.Type.remInteger" | Just (i,j) <- integerLiterals args
-> reduce $ catchDivByZero (integerToIntegerLiteral (i `rem` j))
"GHC.Integer.Type.divModInteger" | Just (i,j) <- integerLiterals args
-> let (_,tyView -> TyConApp ubTupTcNm [liftedKi,_,intTy,_]) = splitFunForallTy ty
(Just ubTupTc) = lookupUniqMap ubTupTcNm tcm
[ubTupDc] = tyConDataCons ubTupTc
(d,m) = divMod i j
in reduce $
mkApps (Data ubTupDc) [ Right liftedKi, Right liftedKi
, Right intTy, Right intTy
, Left $ catchDivByZero (Literal (IntegerLiteral d))
, Left $ catchDivByZero (Literal (IntegerLiteral m))
]
"GHC.Integer.Type.gtInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"GHC.Integer.Type.geInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"GHC.Integer.Type.eqInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"GHC.Integer.Type.neqInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"GHC.Integer.Type.ltInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"GHC.Integer.Type.leInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"GHC.Integer.Type.gtInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i > j))
"GHC.Integer.Type.geInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i >= j))
"GHC.Integer.Type.eqInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i == j))
"GHC.Integer.Type.neqInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i /= j))
"GHC.Integer.Type.ltInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i < j))
"GHC.Integer.Type.leInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i <= j))
"GHC.Integer.Type.compareInteger"
| [i, j] <- integerLiterals' args
-> let
(_,tyView -> TyConApp tupTcNm []) = splitFunForallTy ty
(Just tupTc) = lookupUniqMap tupTcNm tcm
[ltDc, eqDc, gtDc] = tyConDataCons tupTc
ordVal = compareInteger i j
in reduce $ case ordVal of
LT -> Data ltDc
EQ -> Data eqDc
GT -> Data gtDc
"GHC.Integer.Type.shiftRInteger"
| [iV, Lit (IntLiteral j)] <- args
, [i] <- integerLiterals' [iV]
-> reduce (integerToIntegerLiteral (i `shiftR` fromInteger j))
"GHC.Integer.Type.shiftLInteger"
| [iV, Lit (IntLiteral j)] <- args
, [i] <- integerLiterals' [iV]
-> reduce (integerToIntegerLiteral (i `shiftL` fromInteger j))
"GHC.Integer.Type.wordToInteger"
| [Lit (WordLiteral w)] <- args
-> reduce (Literal (IntegerLiteral w))
"GHC.Integer.Type.integerToWord"
| [i] <- integerLiterals' args
-> reduce (integerToWordLiteral i)
"GHC.Integer.Type.testBitInteger"
| [Lit (IntegerLiteral i), Lit (IntLiteral j)] <- args
-> reduce (boolToBoolLiteral tcm ty (testBit i (fromInteger j)))
"GHC.Natural.NatS#"
| [Lit (WordLiteral w)] <- args
-> reduce (Literal (NaturalLiteral w))
"GHC.Natural.naturalToInteger"
| [i] <- naturalLiterals' args
-> reduce (Literal (IntegerLiteral (toInteger i)))
"GHC.Natural.naturalFromInteger"
| [i] <- integerLiterals' args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange1 nTy i id)
"GHC.Natural.$wshiftLNatural"
| [nV,iV] <- args
, [n] <- naturalLiterals' [nV]
, [i] <- fromInteger <$> intLiterals' [iV]
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange1 nTy n ((flip shiftL) i))
"GHC.Natural.plusNatural"
| Just (i,j) <- naturalLiterals args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange2 nTy i j (+))
"GHC.Natural.timesNatural"
| Just (i,j) <- naturalLiterals args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange2 nTy i j (*))
"GHC.Natural.minusNatural"
| Just (i,j) <- naturalLiterals args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange nTy [i, j] (\[i', j'] ->
case minusNaturalMaybe i' j' of
Nothing -> checkNaturalRange1 nTy (-1) id
Just n -> naturalToNaturalLiteral n))
"GHC.Natural.wordToNatural#"
| [Lit (WordLiteral w)] <- args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange1 nTy w id)
"GHC.Natural.gcdNatural"
| Just (i,j) <- naturalLiterals args
->
let nTy = snd (splitFunForallTy ty) in
reduce (checkNaturalRange2 nTy i j gcd)
"GHC.Real.^_f"
| [i,j] <- integerLiterals' args
-> reduce (integerToIntegerLiteral $ i ^ j)
"GHC.Real.$wf"
| [iV, Lit (IntLiteral j)] <- args
, [i] <- integerLiterals' [iV]
-> reduce (integerToIntegerLiteral $ i ^ j)
"GHC.Real.$wf1"
| [Lit (IntLiteral i), Lit (IntLiteral j)] <- args
-> reduce (integerToIntLiteral $ i ^ j)
"Data.Singletons.TypeLits.Internal.$s^_f"
| [i,j] <- naturalLiterals' args
-> reduce (Literal (NaturalLiteral (i ^ j)))
"Data.Singletons.TypeLits.Internal.$fSingI->^@#@$_f"
| [i,j] <- naturalLiterals' args
-> reduce (Literal (NaturalLiteral (i ^ j)))
"Data.Singletons.TypeLits.Internal.%^_f"
| [i,j] <- naturalLiterals' args
-> reduce (Literal (NaturalLiteral (i ^ j)))
"GHC.TypeLits.natVal"
| [Lit (NaturalLiteral n), _] <- args
-> reduce (integerToIntegerLiteral n)
"GHC.TypeNats.natVal"
| [Lit (NaturalLiteral n), _] <- args
-> reduce (Literal (NaturalLiteral n))
"GHC.Types.C#"
| isSubj
, [Lit (CharLiteral c)] <- args
-> let (_,tyView -> TyConApp charTcNm []) = splitFunForallTy ty
(Just charTc) = lookupUniqMap charTcNm tcm
[charDc] = tyConDataCons charTc
in reduce (mkApps (Data charDc) [Left (Literal (CharLiteral c))])
"GHC.Types.I#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Int.I8#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Int.I16#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Int.I32#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Int.I64#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Types.W#"
| isSubj
, [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = lookupUniqMap wordTcNm tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Word.W8#"
| isSubj
, [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = lookupUniqMap wordTcNm tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Word.W16#"
| isSubj
, [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = lookupUniqMap wordTcNm tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Word.W32#"
| isSubj
, [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = lookupUniqMap wordTcNm tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Word.W64#"
| [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = lookupUniqMap wordTcNm tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Float.$w$sfromRat''"
| [Lit (IntLiteral _minEx)
,Lit (IntLiteral matDigs)
,nV
,dV] <- args
, [n,d] <- integerLiterals' [nV,dV]
-> case fromInteger matDigs of
matDigs'
| matDigs' == floatDigits (undefined :: Float)
-> reduce (Literal (FloatLiteral (toRational (fromRational (n :% d) :: Float))))
| matDigs' == floatDigits (undefined :: Double)
-> reduce (Literal (DoubleLiteral (toRational (fromRational (n :% d) :: Double))))
_ -> error $ $(curLoc) ++ "GHC.Float.$w$sfromRat'': Not a Float or Double"
"GHC.Float.$w$sfromRat''1"
| [Lit (IntLiteral _minEx)
,Lit (IntLiteral matDigs)
,nV
,dV] <- args
, [n,d] <- integerLiterals' [nV,dV]
-> case fromInteger matDigs of
matDigs'
| matDigs' == floatDigits (undefined :: Float)
-> reduce (Literal (FloatLiteral (toRational (fromRational (n :% d) :: Float))))
| matDigs' == floatDigits (undefined :: Double)
-> reduce (Literal (DoubleLiteral (toRational (fromRational (n :% d) :: Double))))
_ -> error $ $(curLoc) ++ "GHC.Float.$w$sfromRat'': Not a Float or Double"
"GHC.Integer.Type.$wsignumInteger"
| [i] <- integerLiterals' args
-> reduce (Literal (IntLiteral (signum i)))
"GHC.Integer.Type.signumInteger"
| [i] <- integerLiterals' args
-> reduce (Literal (IntegerLiteral (signumInteger i)))
"GHC.Integer.Type.absInteger"
| [i] <- integerLiterals' args
-> reduce (Literal (IntegerLiteral (absInteger i)))
"GHC.Integer.Type.bitInteger"
| [i] <- intLiterals' args
-> reduce (Literal (IntegerLiteral (bit (fromInteger i))))
"GHC.Integer.Type.complementInteger"
| [i] <- integerLiterals' args
-> reduce (Literal (IntegerLiteral (complementInteger i)))
"GHC.Integer.Type.orInteger"
| [i, j] <- integerLiterals' args
-> reduce (Literal (IntegerLiteral (orInteger i j)))
"GHC.Integer.Type.xorInteger"
| [i, j] <- integerLiterals' args
-> reduce (Literal (IntegerLiteral (xorInteger i j)))
"GHC.Integer.Type.andInteger"
| [i, j] <- integerLiterals' args
-> reduce (Literal (IntegerLiteral (andInteger i j)))
"GHC.Integer.Type.doubleFromInteger"
| [i] <- integerLiterals' args
-> reduce (Literal (DoubleLiteral (toRational (fromInteger i :: Double))))
"GHC.Base.eqString"
| [PrimVal _ _ [Lit (StringLiteral s1)]
,PrimVal _ _ [Lit (StringLiteral s2)]
] <- args
-> reduce (boolToBoolLiteral tcm ty (s1 == s2))
| otherwise -> error (show args)
"Clash.Class.BitPack.packDouble#"
| [DC _ [Left arg]] <- args
, mach2@Machine{mStack=[],mTerm=Literal (DoubleLiteral i)} <- whnf tcm True (setTerm arg $ stackClear mach)
-> let resTyInfo = extractTySizeInfo tcm ty tys
in Just $ mach2
{ mStack = mStack mach
, mTerm = mkBitVectorLit' resTyInfo 0 (toInteger $ (pack :: Double -> BitVector 64) $ fromRational i)
}
"Clash.Class.BitPack.packFloat#"
| [DC _ [Left arg]] <- args
, mach2@Machine{mStack=[],mTerm=Literal (FloatLiteral i)} <- whnf tcm True (setTerm arg $ stackClear mach)
-> let resTyInfo = extractTySizeInfo tcm ty tys
in Just $ mach2
{ mStack = mStack mach
, mTerm = mkBitVectorLit' resTyInfo 0 (toInteger $ (pack :: Float -> BitVector 32) $ fromRational i)
}
"Clash.Class.BitPack.unpackFloat#"
| [i] <- bitVectorLiterals' args
-> reduce (Literal (FloatLiteral (toRational $ (unpack :: BitVector 32 -> Float) (toBV i))))
"Clash.Class.BitPack.unpackDouble#"
| [i] <- bitVectorLiterals' args
-> reduce (Literal (DoubleLiteral (toRational $ (unpack :: BitVector 64 -> Double) (toBV i))))
"Clash.Class.Exp.expIndex#"
| [b] <- indexLiterals' args
, [(_mTy, km), (_, e)] <- extractKnownNats tcm tys
-> reduce (mkIndexLit ty (LitTy (NumTy (km^e))) (km^e) (b^e))
"Clash.Class.Exp.expSigned#"
| [b] <- signedLiterals' args
, [(_mTy, km), (_, e)] <- extractKnownNats tcm tys
-> reduce (mkSignedLit ty (LitTy (NumTy (km*e))) (km*e) (b^e))
"Clash.Class.Exp.expUnsigned#"
| [b] <- unsignedLiterals' args
, [(_mTy, km), (_, e)] <- extractKnownNats tcm tys
-> reduce (mkUnsignedLit ty (LitTy (NumTy (km*e))) (km*e) (b^e))
"Clash.Promoted.Nat.powSNat"
| [Right a, Right b] <- map (runExcept . tyNatSize tcm) tys
-> let c = case a of
2 -> 1 `shiftL` (fromInteger b)
_ -> a ^ b
(_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty
(Just snatTc) = lookupUniqMap snatTcNm tcm
[snatDc] = tyConDataCons snatTc
in reduce $
mkApps (Data snatDc) [ Right (LitTy (NumTy c))
, Left (Literal (NaturalLiteral c))]
"Clash.Promoted.Nat.flogBaseSNat"
| [_,_,Right a, Right b] <- map (runExcept . tyNatSize tcm) tys
, Just c <- flogBase a b
, let c' = toInteger c
-> let (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty
(Just snatTc) = lookupUniqMap snatTcNm tcm
[snatDc] = tyConDataCons snatTc
in reduce $
mkApps (Data snatDc) [ Right (LitTy (NumTy c'))
, Left (Literal (NaturalLiteral c'))]
"Clash.Promoted.Nat.clogBaseSNat"
| [_,_,Right a, Right b] <- map (runExcept . tyNatSize tcm) tys
, Just c <- clogBase a b
, let c' = toInteger c
-> let (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty
(Just snatTc) = lookupUniqMap snatTcNm tcm
[snatDc] = tyConDataCons snatTc
in reduce $
mkApps (Data snatDc) [ Right (LitTy (NumTy c'))
, Left (Literal (NaturalLiteral c'))]
"Clash.Promoted.Nat.logBaseSNat"
| [_,Right a, Right b] <- map (runExcept . tyNatSize tcm) tys
, Just c <- flogBase a b
, let c' = toInteger c
-> let (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty
(Just snatTc) = lookupUniqMap snatTcNm tcm
[snatDc] = tyConDataCons snatTc
in reduce $
mkApps (Data snatDc) [ Right (LitTy (NumTy c'))
, Left (Literal (NaturalLiteral c'))]
"Clash.Sized.Internal.BitVector.BV"
| [Right _] <- map (runExcept . tyNatSize tcm) tys
, Just (m,i) <- integerLiterals args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo m i)
"Clash.Sized.Internal.BitVector.Bit"
| Just (m,i) <- integerLiterals args
-> reduce (mkBitLit ty m i)
"Clash.Sized.Internal.BitVector.size#"
| Just (_, kn) <- extractKnownNat tcm tys
-> let (_,tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral kn))])
"Clash.Sized.Internal.BitVector.maxIndex#"
| Just (_, kn) <- extractKnownNat tcm tys
-> let (_,tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral (kn-1)))])
"Clash.Sized.Internal.BitVector.high"
-> reduce (mkBitLit ty 0 1)
"Clash.Sized.Internal.BitVector.low"
-> reduce (mkBitLit ty 0 0)
"Clash.Sized.Internal.BitVector.undefined#"
| Just (_, kn) <- extractKnownNat tcm tys
-> let resTyInfo = extractTySizeInfo tcm ty tys
mask = bit (fromInteger kn) - 1
in reduce (mkBitVectorLit' resTyInfo mask 0)
"Clash.Sized.Internal.BitVector.eq##" | [(0,i),(0,j)] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Internal.BitVector.neq##" | [(0,i),(0,j)] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"Clash.Sized.Internal.BitVector.lt##" | [(0,i),(0,j)] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"Clash.Sized.Internal.BitVector.ge##" | [(0,i),(0,j)] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"Clash.Sized.Internal.BitVector.gt##" | [(0,i),(0,j)] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"Clash.Sized.Internal.BitVector.le##" | [(0,i),(0,j)] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"Clash.Sized.Internal.BitVector.and##"
| [i,j] <- bitLiterals args
-> let Bit msk val = BitVector.and## (toBit i) (toBit j)
in reduce (mkBitLit ty (toInteger msk) (toInteger val))
"Clash.Sized.Internal.BitVector.or##"
| [i,j] <- bitLiterals args
-> let Bit msk val = BitVector.or## (toBit i) (toBit j)
in reduce (mkBitLit ty (toInteger msk) (toInteger val))
"Clash.Sized.Internal.BitVector.xor##"
| [i,j] <- bitLiterals args
-> let Bit msk val = BitVector.xor## (toBit i) (toBit j)
in reduce (mkBitLit ty (toInteger msk) (toInteger val))
"Clash.Sized.Internal.BitVector.complement##"
| [i] <- bitLiterals args
-> let Bit msk val = BitVector.complement## (toBit i)
in reduce (mkBitLit ty (toInteger msk) (toInteger val))
"Clash.Sized.Internal.BitVector.pack#"
| [(msk,i)] <- bitLiterals args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo msk i)
"Clash.Sized.Internal.BitVector.unpack#"
| [(msk,i)] <- bitVectorLiterals' args
-> reduce (mkBitLit ty msk i)
"Clash.Sized.Internal.BitVector.++#"
| Just (_,m) <- extractKnownNat tcm tys
, [(mski,i),(mskj,j)] <- bitVectorLiterals' args
-> let val = i `shiftL` fromInteger m .|. j
msk = mski `shiftL` fromInteger m .|. mskj
resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo msk val)
"Clash.Sized.Internal.BitVector.reduceAnd#"
| [i] <- bitVectorLiterals' args
, Just (_, kn) <- extractKnownNat tcm tys
-> let resTy = getResultTy tcm ty tys
val = reifyNat kn (op (toBV i))
in reduce (mkBitLit resTy 0 val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.reduceAnd# u)
"Clash.Sized.Internal.BitVector.reduceOr#"
| [i] <- bitVectorLiterals' args
, Just (_, kn) <- extractKnownNat tcm tys
-> let resTy = getResultTy tcm ty tys
val = reifyNat kn (op (toBV i))
in reduce (mkBitLit resTy 0 val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.reduceOr# u)
"Clash.Sized.Internal.BitVector.reduceXor#"
| [i] <- bitVectorLiterals' args
, Just (_, kn) <- extractKnownNat tcm tys
-> let resTy = getResultTy tcm ty tys
val = reifyNat kn (op (toBV i))
in reduce (mkBitLit resTy 0 val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.reduceXor# u)
"Clash.Sized.Internal.BitVector.index#"
| Just (_,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let resTy = getResultTy tcm ty tys
(msk,val) = reifyNat kn (op (toBV i) (fromInteger j))
in reduce (mkBitLit resTy msk val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op u i _ = (toInteger m, toInteger v)
where Bit m v = (BitVector.index# u i)
"Clash.Sized.Internal.BitVector.replaceBit#"
| Just (_, n) <- extractKnownNat tcm tys
, [ _
, PrimVal bvP _ [_, Lit (NaturalLiteral mskBv), Lit (IntegerLiteral bv)]
, valArgs -> Just [Literal (IntLiteral i)]
, PrimVal bP _ [Lit (WordLiteral mskB), Lit (IntegerLiteral b)]
] <- args
, primName bvP == "Clash.Sized.Internal.BitVector.fromInteger#"
, primName bP == "Clash.Sized.Internal.BitVector.fromInteger##"
-> let resTyInfo = extractTySizeInfo tcm ty tys
(mskVal,val) = reifyNat n (op (BV (fromInteger mskBv) (fromInteger bv))
(fromInteger i)
(Bit (fromInteger mskB) (fromInteger b)))
in reduce (mkBitVectorLit' resTyInfo mskVal val)
where
op :: KnownNat n => BitVector n -> Int -> Bit -> Proxy n -> (Integer,Integer)
op bv i b _ = splitBV (BitVector.replaceBit# bv i b)
"Clash.Sized.Internal.BitVector.setSlice#"
| mTy : iTy : nTy : _ <- tys
, Right m <- runExcept (tyNatSize tcm mTy)
, Right iN <- runExcept (tyNatSize tcm iTy)
, Right n <- runExcept (tyNatSize tcm nTy)
, [i,j] <- bitVectorLiterals' args
-> let BV msk val = BitVector.setSlice# (unsafeSNat (m+1+iN)) (toBV i) (unsafeSNat m) (unsafeSNat n) (toBV j)
resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo (toInteger msk) (toInteger val))
"Clash.Sized.Internal.BitVector.slice#"
| mTy : _ : nTy : _ <- tys
, Right m <- runExcept (tyNatSize tcm mTy)
, Right n <- runExcept (tyNatSize tcm nTy)
, [i] <- bitVectorLiterals' args
-> let BV msk val = BitVector.slice# (toBV i) (unsafeSNat m) (unsafeSNat n)
resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo (toInteger msk) (toInteger val))
"Clash.Sized.Internal.BitVector.split#"
| nTy : mTy : _ <- tys
, Right n <- runExcept (tyNatSize tcm nTy)
, Right m <- runExcept (tyNatSize tcm mTy)
, [(mski,i)] <- bitVectorLiterals' args
-> let ty' = piResultTys tcm ty tys
(_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty'
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
bvTy : _ = tyArgs
valM = i `shiftR` fromInteger n
mskM = mski `shiftR` fromInteger n
valN = i .&. mask
mskN = mski .&. mask
mask = bit (fromInteger n) - 1
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (mkBitVectorLit bvTy mTy m mskM valM)
, Left (mkBitVectorLit bvTy nTy n mskN valN)])
"Clash.Sized.Internal.BitVector.msb#"
| [i] <- bitVectorLiterals' args
, Just (_, kn) <- extractKnownNat tcm tys
-> let resTy = getResultTy tcm ty tys
(msk,val) = reifyNat kn (op (toBV i))
in reduce (mkBitLit resTy (toInteger msk) (toInteger val))
where
op :: KnownNat n => BitVector n -> Proxy n -> (Word,Word)
op u _ = (unsafeMask# res, BitVector.unsafeToInteger# res)
where
res = BitVector.msb# u
"Clash.Sized.Internal.BitVector.lsb#"
| [i] <- bitVectorLiterals' args
-> let resTy = getResultTy tcm ty tys
Bit msk val = BitVector.lsb# (toBV i)
in reduce (mkBitLit resTy (toInteger msk) (toInteger val))
"Clash.Sized.Internal.BitVector.eq#"
| nTy : _ <- tys
, Right 0 <- runExcept (tyNatSize tcm nTy)
-> reduce (boolToBoolLiteral tcm ty True)
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2Bool BitVector.eq# ty tcm args)
-> reduce val
"Clash.Sized.Internal.BitVector.neq#"
| nTy : _ <- tys
, Right 0 <- runExcept (tyNatSize tcm nTy)
-> reduce (boolToBoolLiteral tcm ty False)
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2Bool BitVector.neq# ty tcm args)
-> reduce val
"Clash.Sized.Internal.BitVector.lt#"
| nTy : _ <- tys
, Right 0 <- runExcept (tyNatSize tcm nTy)
-> reduce (boolToBoolLiteral tcm ty False)
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2Bool BitVector.lt# ty tcm args)
-> reduce val
"Clash.Sized.Internal.BitVector.ge#"
| nTy : _ <- tys
, Right 0 <- runExcept (tyNatSize tcm nTy)
-> reduce (boolToBoolLiteral tcm ty True)
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2Bool BitVector.ge# ty tcm args)
-> reduce val
"Clash.Sized.Internal.BitVector.gt#"
| nTy : _ <- tys
, Right 0 <- runExcept (tyNatSize tcm nTy)
-> reduce (boolToBoolLiteral tcm ty False)
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2Bool BitVector.gt# ty tcm args)
-> reduce val
"Clash.Sized.Internal.BitVector.le#"
| nTy : _ <- tys
, Right 0 <- runExcept (tyNatSize tcm nTy)
-> reduce (boolToBoolLiteral tcm ty True)
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2Bool BitVector.le# ty tcm args)
-> reduce val
"Clash.Sized.Internal.BitVector.minBound#"
| Just (nTy,len) <- extractKnownNat tcm tys
-> reduce (mkBitVectorLit ty nTy len 0 0)
"Clash.Sized.Internal.BitVector.maxBound#"
| Just (litTy,mb) <- extractKnownNat tcm tys
-> let maxB = (2 ^ mb) - 1
in reduce (mkBitVectorLit ty litTy mb 0 maxB)
"Clash.Sized.Internal.BitVector.+#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.+#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.-#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.-#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.*#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.*#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.negate#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- bitVectorLiterals' args
-> let (msk,val) = reifyNat kn (op (toBV i))
in reduce (mkBitVectorLit ty nTy kn msk val)
where
op :: KnownNat n => BitVector n -> Proxy n -> (Integer,Integer)
op u _ = splitBV (BitVector.negate# u)
"Clash.Sized.Internal.BitVector.plus#"
| [(0,i),(0,j)] <- bitVectorLiterals' args
-> let ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkBitVectorLit resTy resSizeTy resSizeInt 0 (i+j))
"Clash.Sized.Internal.BitVector.minus#"
| [(0,i),(0,j)] <- bitVectorLiterals' args
-> let ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
val = reifyNat resSizeInt (runSizedF (BitVector.-#) i j)
in reduce (mkBitVectorLit resTy resSizeTy resSizeInt 0 val)
"Clash.Sized.Internal.BitVector.times#"
| [(0,i),(0,j)] <- bitVectorLiterals' args
-> let ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkBitVectorLit resTy resSizeTy resSizeInt 0 (i*j))
"Clash.Sized.Internal.BitVector.quot#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.quot#) ty tcm tys args)
-> reduce $ catchDivByZero val
"Clash.Sized.Internal.BitVector.rem#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.rem#) ty tcm tys args)
-> reduce $ catchDivByZero val
"Clash.Sized.Internal.BitVector.toInteger#"
| Just (_, kn) <- extractKnownNat tcm tys
, [i] <- bitVectorLiterals' args
-> let val = reifyNat kn (op (toBV i))
in reduce (integerToIntegerLiteral val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = BitVector.toInteger# u
"Clash.Sized.Internal.BitVector.and#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.and#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.or#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.or#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.xor#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.xor#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.complement#"
| [i] <- bitVectorLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> let (msk,val) = reifyNat kn (op (toBV i))
in reduce (mkBitVectorLit ty nTy kn msk val)
where
op :: KnownNat n => BitVector n -> Proxy n -> (Integer,Integer)
op u _ = splitBV $ BitVector.complement# u
"Clash.Sized.Internal.BitVector.shiftL#"
| Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let (msk,val) = reifyNat kn (op (toBV i) (fromInteger j))
in reduce (mkBitVectorLit ty nTy kn msk val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op u i _ = splitBV (BitVector.shiftL# u i)
"Clash.Sized.Internal.BitVector.shiftR#"
| Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let (msk,val) = reifyNat kn (op (toBV i) (fromInteger j))
in reduce (mkBitVectorLit ty nTy kn msk val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op u i _ = splitBV (BitVector.shiftR# u i)
"Clash.Sized.Internal.BitVector.rotateL#"
| Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let (msk,val) = reifyNat kn (op (toBV i) (fromInteger j))
in reduce (mkBitVectorLit ty nTy kn msk val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op u i _ = splitBV (BitVector.rotateL# u i)
"Clash.Sized.Internal.BitVector.rotateR#"
| Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let (msk,val) = reifyNat kn (op (toBV i) (fromInteger j))
in reduce (mkBitVectorLit ty nTy kn msk val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> (Integer,Integer)
op u i _ = splitBV (BitVector.rotateR# u i)
"Clash.Sized.Internal.BitVector.truncateB#"
| aTy : _ <- tys
, Right ka <- runExcept (tyNatSize tcm aTy)
, [(mski,i)] <- bitVectorLiterals' args
-> let bitsKeep = (bit (fromInteger ka)) - 1
val = i .&. bitsKeep
msk = mski .&. bitsKeep
in reduce (mkBitVectorLit ty aTy ka msk val)
"Clash.Sized.Internal.Index.pack#"
| nTy : _ <- tys
, Right _ <- runExcept (tyNatSize tcm nTy)
, [i] <- indexLiterals' args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo 0 i)
"Clash.Sized.Internal.Index.unpack#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, [(0,i)] <- bitVectorLiterals' args
-> reduce (mkIndexLit ty nTy kn i)
"Clash.Sized.Internal.Index.eq#" | Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Internal.Index.neq#" | Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"Clash.Sized.Internal.Index.lt#"
| Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"Clash.Sized.Internal.Index.ge#"
| Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"Clash.Sized.Internal.Index.gt#"
| Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"Clash.Sized.Internal.Index.le#"
| Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"Clash.Sized.Internal.Index.maxBound#"
| Just (nTy,mb) <- extractKnownNat tcm tys
-> reduce (mkIndexLit ty nTy mb (mb - 1))
"Clash.Sized.Internal.Index.+#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, [i,j] <- indexLiterals' args
-> reduce (mkIndexLit ty nTy kn (i + j))
"Clash.Sized.Internal.Index.-#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, [i,j] <- indexLiterals' args
-> reduce (mkIndexLit ty nTy kn (i - j))
"Clash.Sized.Internal.Index.*#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, [i,j] <- indexLiterals' args
-> reduce (mkIndexLit ty nTy kn (i * j))
"Clash.Sized.Internal.Index.plus#"
| mTy : nTy : _ <- tys
, Right _ <- runExcept (tyNatSize tcm mTy)
, Right _ <- runExcept (tyNatSize tcm nTy)
, Just (i,j) <- indexLiterals args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkIndexLit' resTyInfo (i + j))
"Clash.Sized.Internal.Index.minus#"
| mTy : nTy : _ <- tys
, Right _ <- runExcept (tyNatSize tcm mTy)
, Right _ <- runExcept (tyNatSize tcm nTy)
, Just (i,j) <- indexLiterals args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkIndexLit' resTyInfo (i - j))
"Clash.Sized.Internal.Index.times#"
| mTy : nTy : _ <- tys
, Right _ <- runExcept (tyNatSize tcm mTy)
, Right _ <- runExcept (tyNatSize tcm nTy)
, Just (i,j) <- indexLiterals args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkIndexLit' resTyInfo (i * j))
"Clash.Sized.Internal.Index.quot#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, Just (i,j) <- indexLiterals args
-> reduce $ catchDivByZero (mkIndexLit ty nTy kn (i `quot` j))
"Clash.Sized.Internal.Index.rem#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, Just (i,j) <- indexLiterals args
-> reduce $ catchDivByZero (mkIndexLit ty nTy kn (i `rem` j))
"Clash.Sized.Internal.Index.toInteger#"
| [PrimVal p _ [_, Lit (IntegerLiteral i)]] <- args
, primName p == "Clash.Sized.Internal.Index.fromInteger#"
-> reduce (integerToIntegerLiteral i)
"Clash.Sized.Internal.Index.resize#"
| Just (mTy,m) <- extractKnownNat tcm tys
, [i] <- indexLiterals' args
-> reduce (mkIndexLit ty mTy m i)
"Clash.Sized.Internal.Signed.size#"
| Just (_, kn) <- extractKnownNat tcm tys
-> let (_,tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral kn))])
"Clash.Sized.Internal.Signed.pack#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- signedLiterals' args
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkBitVectorLit ty nTy kn 0 val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op s _ = toInteger (Signed.pack# s)
"Clash.Sized.Internal.Signed.unpack#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [(0,i)] <- bitVectorLiterals' args
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op s _ = toInteger (Signed.unpack# s)
"Clash.Sized.Internal.Signed.eq#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Internal.Signed.neq#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"Clash.Sized.Internal.Signed.lt#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"Clash.Sized.Internal.Signed.ge#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"Clash.Sized.Internal.Signed.gt#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"Clash.Sized.Internal.Signed.le#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"Clash.Sized.Internal.Signed.minBound#"
| Just (litTy,mb) <- extractKnownNat tcm tys
-> let minB = negate (2 ^ (mb - 1))
in reduce (mkSignedLit ty litTy mb minB)
"Clash.Sized.Internal.Signed.maxBound#"
| Just (litTy,mb) <- extractKnownNat tcm tys
-> let maxB = (2 ^ (mb - 1)) - 1
in reduce (mkSignedLit ty litTy mb maxB)
"Clash.Sized.Internal.Signed.+#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.+#) ty tcm tys args)
-> reduce (val)
"Clash.Sized.Internal.Signed.-#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.-#) ty tcm tys args)
-> reduce (val)
"Clash.Sized.Internal.Signed.*#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.*#) ty tcm tys args)
-> reduce (val)
"Clash.Sized.Internal.Signed.negate#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- signedLiterals' args
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op s _ = toInteger (Signed.negate# s)
"Clash.Sized.Internal.Signed.abs#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- signedLiterals' args
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op s _ = toInteger (Signed.abs# s)
"Clash.Sized.Internal.Signed.plus#"
| Just (i,j) <- signedLiterals args
-> let ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkSignedLit resTy resSizeTy resSizeInt (i+j))
"Clash.Sized.Internal.Signed.minus#"
| Just (i,j) <- signedLiterals args
-> let ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkSignedLit resTy resSizeTy resSizeInt (i-j))
"Clash.Sized.Internal.Signed.times#"
| Just (i,j) <- signedLiterals args
-> let ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkSignedLit resTy resSizeTy resSizeInt (i*j))
"Clash.Sized.Internal.Signed.quot#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.quot#) ty tcm tys args)
-> reduce $ catchDivByZero val
"Clash.Sized.Internal.Signed.rem#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.rem#) ty tcm tys args)
-> reduce $ catchDivByZero val
"Clash.Sized.Internal.Signed.div#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.div#) ty tcm tys args)
-> reduce $ catchDivByZero val
"Clash.Sized.Internal.Signed.mod#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.mod#) ty tcm tys args)
-> reduce $ catchDivByZero val
"Clash.Sized.Internal.Signed.toInteger#"
| [PrimVal p _ [_, Lit (IntegerLiteral i)]] <- args
, primName p == "Clash.Sized.Internal.Signed.fromInteger#"
-> reduce (integerToIntegerLiteral i)
"Clash.Sized.Internal.Signed.and#"
| [i,j] <- signedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkSignedLit ty nTy kn (i .&. j))
"Clash.Sized.Internal.Signed.or#"
| [i,j] <- signedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkSignedLit ty nTy kn (i .|. j))
"Clash.Sized.Internal.Signed.xor#"
| [i,j] <- signedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkSignedLit ty nTy kn (i `xor` j))
"Clash.Sized.Internal.Signed.complement#"
| [i] <- signedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op u _ = toInteger (Signed.complement# u)
"Clash.Sized.Internal.Signed.shiftL#"
| Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Signed.shiftL# u i)
"Clash.Sized.Internal.Signed.shiftR#"
| Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Signed.shiftR# u i)
"Clash.Sized.Internal.Signed.rotateL#"
| Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Signed.rotateL# u i)
"Clash.Sized.Internal.Signed.rotateR#"
| Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Signed.rotateR# u i)
"Clash.Sized.Internal.Signed.resize#"
| mTy : nTy : _ <- tys
, Right mInt <- runExcept (tyNatSize tcm mTy)
, Right nInt <- runExcept (tyNatSize tcm nTy)
, [i] <- signedLiterals' args
-> let val | nInt <= mInt = extended
| otherwise = truncated
extended = i
mask = 1 `shiftL` fromInteger (mInt - 1)
i' = i `mod` mask
truncated = if testBit i (fromInteger nInt - 1)
then (i' - mask)
else i'
in reduce (mkSignedLit ty mTy mInt val)
"Clash.Sized.Internal.Signed.truncateB#"
| Just (mTy, km) <- extractKnownNat tcm tys
, [i] <- signedLiterals' args
-> let bitsKeep = (bit (fromInteger km)) - 1
val = i .&. bitsKeep
in reduce (mkSignedLit ty mTy km val)
"Clash.Sized.Internal.Unsigned.size#"
| Just (_, kn) <- extractKnownNat tcm tys
-> let (_,ty') = splitFunForallTy ty
(TyConApp intTcNm _) = tyView ty'
(Just intTc) = lookupUniqMap intTcNm tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral kn))])
"Clash.Sized.Internal.Unsigned.pack#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- unsignedLiterals' args
-> reduce (mkBitVectorLit ty nTy kn 0 i)
"Clash.Sized.Internal.Unsigned.unpack#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- bitVectorLiterals' args
-> let val = reifyNat kn (op (toBV i))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (Unsigned.unpack# u)
"Clash.Sized.Internal.Unsigned.eq#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Internal.Unsigned.neq#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"Clash.Sized.Internal.Unsigned.lt#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"Clash.Sized.Internal.Unsigned.ge#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"Clash.Sized.Internal.Unsigned.gt#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"Clash.Sized.Internal.Unsigned.le#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"Clash.Sized.Internal.Unsigned.minBound#"
| Just (nTy,len) <- extractKnownNat tcm tys
-> reduce (mkUnsignedLit ty nTy len 0)
"Clash.Sized.Internal.Unsigned.maxBound#"
| Just (litTy,mb) <- extractKnownNat tcm tys
-> let maxB = (2 ^ mb) - 1
in reduce (mkUnsignedLit ty litTy mb maxB)
"Clash.Sized.Internal.Unsigned.+#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.+#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Unsigned.-#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.-#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Unsigned.*#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.*#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Unsigned.negate#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- unsignedLiterals' args
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Proxy n -> Integer
op u _ = toInteger (Unsigned.negate# u)
"Clash.Sized.Internal.Unsigned.plus#"
| Just (i,j) <- unsignedLiterals args
-> let ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkUnsignedLit resTy resSizeTy resSizeInt (i+j))
"Clash.Sized.Internal.Unsigned.minus#"
| [i,j] <- unsignedLiterals' args
-> let ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
val = reifyNat resSizeInt (runSizedF (Unsigned.-#) i j)
in reduce (mkUnsignedLit resTy resSizeTy resSizeInt val)
"Clash.Sized.Internal.Unsigned.times#"
| Just (i,j) <- unsignedLiterals args
-> let ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkUnsignedLit resTy resSizeTy resSizeInt (i*j))
"Clash.Sized.Internal.Unsigned.quot#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.quot#) ty tcm tys args)
-> reduce $ catchDivByZero val
"Clash.Sized.Internal.Unsigned.rem#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.rem#) ty tcm tys args)
-> reduce $ catchDivByZero val
"Clash.Sized.Internal.Unsigned.toInteger#"
| [PrimVal p _ [_, Lit (IntegerLiteral i)]] <- args
, primName p == "Clash.Sized.Internal.Unsigned.fromInteger#"
-> reduce (integerToIntegerLiteral i)
"Clash.Sized.Internal.Unsigned.and#"
| Just (i,j) <- unsignedLiterals args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkUnsignedLit ty nTy kn (i .&. j))
"Clash.Sized.Internal.Unsigned.or#"
| Just (i,j) <- unsignedLiterals args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkUnsignedLit ty nTy kn (i .|. j))
"Clash.Sized.Internal.Unsigned.xor#"
| Just (i,j) <- unsignedLiterals args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkUnsignedLit ty nTy kn (i `xor` j))
"Clash.Sized.Internal.Unsigned.complement#"
| [i] <- unsignedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Proxy n -> Integer
op u _ = toInteger (Unsigned.complement# u)
"Clash.Sized.Internal.Unsigned.shiftL#"
| Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Unsigned.shiftL# u i)
"Clash.Sized.Internal.Unsigned.shiftR#"
| Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Unsigned.shiftR# u i)
"Clash.Sized.Internal.Unsigned.rotateL#"
| Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Unsigned.rotateL# u i)
"Clash.Sized.Internal.Unsigned.rotateR#"
| Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Unsigned.rotateR# u i)
"Clash.Sized.Internal.Unsigned.resize#"
| _ : mTy : _ <- tys
, Right km <- runExcept (tyNatSize tcm mTy)
, [i] <- unsignedLiterals' args
-> let bitsKeep = (bit (fromInteger km)) - 1
val = i .&. bitsKeep
in reduce (mkUnsignedLit ty mTy km val)
"Clash.Sized.Internal.Unsigned.unsignedToWord"
| isSubj
, [a] <- unsignedLiterals' args
-> let b = Unsigned.unsignedToWord (U (fromInteger a))
(_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = lookupUniqMap wordTcNm tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral (toInteger b)))])
"Clash.Sized.Internal.Unsigned.unsigned8toWord8"
| isSubj
, [a] <- unsignedLiterals' args
-> let b = Unsigned.unsigned8toWord8 (U (fromInteger a))
(_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = lookupUniqMap wordTcNm tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral (toInteger b)))])
"Clash.Sized.Internal.Unsigned.unsigned16toWord16"
| isSubj
, [a] <- unsignedLiterals' args
-> let b = Unsigned.unsigned16toWord16 (U (fromInteger a))
(_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = lookupUniqMap wordTcNm tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral (toInteger b)))])
"Clash.Sized.Internal.Unsigned.unsigned32toWord32"
| isSubj
, [a] <- unsignedLiterals' args
-> let b = Unsigned.unsigned32toWord32 (U (fromInteger a))
(_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = lookupUniqMap wordTcNm tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral (toInteger b)))])
"Clash.Annotations.BitRepresentation.Deriving.dontApplyInHDL"
| isSubj
, f : a : _ <- args
-> reduceWHNF (mkApps (valToTerm f) [Left (valToTerm a)])
"Clash.Sized.RTree.textract"
| isSubj
, [DC _ tArgs] <- args
-> reduceWHNF (Either.lefts tArgs !! 1)
"Clash.Sized.RTree.tsplit"
| isSubj
, dTy : aTy : _ <- tys
, [DC _ tArgs] <- args
, (tyArgs,tyView -> TyConApp tupTcNm _) <- splitFunForallTy ty
, TyConApp treeTcNm _ <- tyView (Either.rights tyArgs !! 0)
-> let (Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
in reduce $
mkApps (Data tupDc)
[Right (mkTyConApp treeTcNm [dTy,aTy])
,Right (mkTyConApp treeTcNm [dTy,aTy])
,Left (Either.lefts tArgs !! 1)
,Left (Either.lefts tArgs !! 2)
]
"Clash.Sized.RTree.tdfold"
| isSubj
, pTy : kTy : aTy : _ <- tys
, _ : p : f : g : ts : _ <- args
, DC _ tArgs <- ts
, Right k' <- runExcept (tyNatSize tcm kTy)
-> case k' of
0 -> reduceWHNF (mkApps (valToTerm f) [Left (Either.lefts tArgs !! 1)])
_ -> let k'ty = LitTy (NumTy (k'-1))
(tyArgs,_) = splitFunForallTy ty
(tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 3)
TyConApp snatTcNm _ = tyView (Either.rights tyArgs' !! 0)
Just snatTc = lookupUniqMap snatTcNm tcm
[snatDc] = tyConDataCons snatTc
in reduceWHNF $
mkApps (valToTerm g)
[Right k'ty
,Left (mkApps (Data snatDc)
[Right k'ty
,Left (Literal (NaturalLiteral (k'-1)))])
,Left (mkApps (Prim pInfo)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm g)
,Left (Either.lefts tArgs !! 1)
])
,Left (mkApps (Prim pInfo)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm g)
,Left (Either.lefts tArgs !! 2)
])
]
"Clash.Sized.RTree.treplicate"
| isSubj
, let ty' = piResultTys tcm ty tys
, (_,tyView -> TyConApp treeTcNm [lenTy,argTy]) <- splitFunForallTy ty'
, Right len <- runExcept (tyNatSize tcm lenTy)
-> let (Just treeTc) = lookupUniqMap treeTcNm tcm
[lrCon,brCon] = tyConDataCons treeTc
in reduce (mkRTree lrCon brCon argTy len (replicate (2^len) (valToTerm (last args))))
"Clash.Sized.Vector.length"
| isSubj
, [nTy, _] <- tys
, Right n <-runExcept (tyNatSize tcm nTy)
-> let (_, tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral (toInteger n)))])
"Clash.Sized.Vector.maxIndex"
| isSubj
, [nTy, _] <- tys
, Right n <- runExcept (tyNatSize tcm nTy)
-> let (_, tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = lookupUniqMap intTcNm tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral (toInteger (n - 1))))])
"Clash.Sized.Vector.index_int"
| nTy : aTy : _ <- tys
, _ : xs : i : _ <- args
, DC intDc [Left (Literal (IntLiteral i'))] <- i
-> if i' < 0
then Nothing
else case xs of
DC _ vArgs -> case runExcept (tyNatSize tcm nTy) of
Right 0 -> Nothing
Right n' ->
if i' == 0
then reduceWHNF (Either.lefts vArgs !! 1)
else reduceWHNF $
mkApps (Prim pInfo)
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Left (Literal (NaturalLiteral (n'-1)))
,Left (Either.lefts vArgs !! 2)
,Left (mkApps (Data intDc)
[Left (Literal (IntLiteral (i'-1)))])
]
_ -> Nothing
_ -> Nothing
"Clash.Sized.Vector.head"
| isSubj
, [DC _ vArgs] <- args
-> reduceWHNF (Either.lefts vArgs !! 1)
"Clash.Sized.Vector.last"
| isSubj
, [DC _ vArgs] <- args
, (Right _ : Right aTy : Right nTy : _) <- vArgs
, Right n <- runExcept (tyNatSize tcm nTy)
-> if n == 0
then reduceWHNF (Either.lefts vArgs !! 1)
else reduceWHNF
(mkApps (Prim pInfo)
[Right (LitTy (NumTy (n-1)))
,Right aTy
,Left (Either.lefts vArgs !! 2)
])
"Clash.Sized.Vector.tail"
| isSubj
, [DC _ vArgs] <- args
-> reduceWHNF (Either.lefts vArgs !! 2)
"Clash.Sized.Vector.init"
| isSubj
, [DC consCon vArgs] <- args
, (Right _ : Right aTy : Right nTy : _) <- vArgs
, Right n <- runExcept (tyNatSize tcm nTy)
-> if n == 0
then reduceWHNF (Either.lefts vArgs !! 2)
else reduce $
mkVecCons consCon aTy n
(Either.lefts vArgs !! 1)
(mkApps (Prim pInfo)
[Right (LitTy (NumTy (n-1)))
,Right aTy
,Left (Either.lefts vArgs !! 2)])
"Clash.Sized.Vector.select"
| isSubj
, iTy : sTy : nTy : fTy : aTy : _ <- tys
, eq : f : s : n : xs : _ <- args
, Right n' <- runExcept (tyNatSize tcm nTy)
, Right f' <- runExcept (tyNatSize tcm fTy)
, Right i' <- runExcept (tyNatSize tcm iTy)
, Right s' <- runExcept (tyNatSize tcm sTy)
, DC _ vArgs <- xs
-> case n' of
0 -> reduce (mkVecNil nilCon aTy)
_ -> case f' of
0 -> let splitAtCall =
mkApps (splitAtPrim snatTcNm vecTcNm)
[Right sTy
,Right (LitTy (NumTy (i'-s')))
,Right aTy
,Left (valToTerm s)
,Left (valToTerm xs)
]
fVecTy = mkTyConApp vecTcNm [sTy,aTy]
iVecTy = mkTyConApp vecTcNm [LitTy (NumTy (i'-s')),aTy]
fNm = mkUnsafeSystemName "fxs" 0
iNm = mkUnsafeSystemName "ixs" 1
fId = mkLocalId fVecTy fNm
iId = mkLocalId iVecTy iNm
tupPat = DataPat tupDc [] [fId,iId]
iAlt = (tupPat, (Var iId))
in reduce $
mkVecCons consCon aTy n' (Either.lefts vArgs !! 1) $
mkApps (Prim pInfo)
[Right (LitTy (NumTy (i'-s')))
,Right sTy
,Right (LitTy (NumTy (n'-1)))
,Right (LitTy (NumTy 0))
,Right aTy
,Left (valToTerm eq)
,Left (Literal (NaturalLiteral 0))
,Left (valToTerm s)
,Left (Literal (NaturalLiteral (n'-1)))
,Left (Case splitAtCall iVecTy [iAlt])
]
_ -> let splitAtCall =
mkApps (splitAtPrim snatTcNm vecTcNm)
[Right fTy
,Right iTy
,Right aTy
,Left (valToTerm f)
,Left (valToTerm xs)
]
fVecTy = mkTyConApp vecTcNm [fTy,aTy]
iVecTy = mkTyConApp vecTcNm [iTy,aTy]
fNm = mkUnsafeSystemName "fxs" 0
iNm = mkUnsafeSystemName "ixs" 1
fId = mkLocalId fVecTy fNm
iId = mkLocalId iVecTy iNm
tupPat = DataPat tupDc [] [fId,iId]
iAlt = (tupPat, (Var iId))
in reduceWHNF $
mkApps (Prim pInfo)
[Right iTy
,Right sTy
,Right nTy
,Right (LitTy (NumTy 0))
,Right aTy
,Left (valToTerm eq)
,Left (Literal (NaturalLiteral 0))
,Left (valToTerm s)
,Left (valToTerm n)
,Left (Case splitAtCall iVecTy [iAlt])
]
where
(tyArgs,tyView -> TyConApp vecTcNm _) = splitFunForallTy ty
Just vecTc = lookupUniqMap vecTcNm tcm
[nilCon,consCon] = tyConDataCons vecTc
TyConApp snatTcNm _ = tyView (Either.rights tyArgs !! 1)
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
"Clash.Sized.Vector.splitAt"
| isSubj
, DC snatDc (Right mTy:_) <- head args
, Right m <- runExcept (tyNatSize tcm mTy)
-> let _:nTy:aTy:_ = tys
ty1 = piResultTys tcm ty tys
(_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty1
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
TyConApp vecTcNm _ = tyView (head tyArgs)
Just vecTc = lookupUniqMap vecTcNm tcm
[nilCon,consCon] = tyConDataCons vecTc
splitAtRec v =
mkApps (Prim pInfo)
[Right (LitTy (NumTy (m-1)))
,Right nTy
,Right aTy
,Left (mkApps (Data snatDc)
[ Right (LitTy (NumTy (m-1)))
, Left (Literal (NaturalLiteral (m-1)))])
,Left v
]
splitAtSelR v = Case (splitAtRec v)
m1VecTy = mkTyConApp vecTcNm [LitTy (NumTy (m-1)),aTy]
nVecTy = mkTyConApp vecTcNm [nTy,aTy]
lNm = mkUnsafeSystemName "l" 0
rNm = mkUnsafeSystemName "r" 1
lId = mkLocalId m1VecTy lNm
rId = mkLocalId nVecTy rNm
tupPat = DataPat tupDc [] [lId,rId]
lAlt = (tupPat, (Var lId))
rAlt = (tupPat, (Var rId))
in case m of
0 -> reduce $
mkApps (Data tupDc) $ (map Right tyArgs) ++
[ Left (mkVecNil nilCon aTy)
, Left (valToTerm (last args))
]
m' | DC _ vArgs <- last args
-> reduce $
mkApps (Data tupDc) $ (map Right tyArgs) ++
[ Left (mkVecCons consCon aTy m' (Either.lefts vArgs !! 1)
(splitAtSelR (Either.lefts vArgs !! 2) m1VecTy [lAlt]))
, Left (splitAtSelR (Either.lefts vArgs !! 2) nVecTy [rAlt])
]
_ -> Nothing
"Clash.Sized.Vector.unconcat"
| isSubj
, kn : snat : v : _ <- args
, nTy : mTy : aTy :_ <- tys
, Lit (NaturalLiteral n) <- kn
-> let ( Either.rights -> argTys, tyView -> TyConApp vecTcNm _) =
splitFunForallTy ty
Just vecTc = lookupUniqMap vecTcNm tcm
[nilCon,consCon] = tyConDataCons vecTc
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
TyConApp snatTcNm _ = tyView (argTys !! 1)
n1mTy = mkTyConApp typeNatMul
[mkTyConApp typeNatSub [nTy,LitTy (NumTy 1)]
,mTy]
splitAtCall =
mkApps (splitAtPrim snatTcNm vecTcNm)
[Right mTy
,Right n1mTy
,Right aTy
,Left (valToTerm snat)
,Left (valToTerm v)
]
mVecTy = mkTyConApp vecTcNm [mTy,aTy]
n1mVecTy = mkTyConApp vecTcNm [n1mTy,aTy]
asNm = mkUnsafeSystemName "as" 0
bsNm = mkUnsafeSystemName "bs" 1
asId = mkLocalId mVecTy asNm
bsId = mkLocalId n1mVecTy bsNm
tupPat = DataPat tupDc [] [asId,bsId]
asAlt = (tupPat, (Var asId))
bsAlt = (tupPat, (Var bsId))
in case n of
0 -> reduce (mkVecNil nilCon mVecTy)
_ -> reduce $
mkVecCons consCon mVecTy n
(Case splitAtCall mVecTy [asAlt])
(mkApps (Prim pInfo)
[Right (LitTy (NumTy (n-1)))
,Right mTy
,Right aTy
,Left (Literal (NaturalLiteral (n-1)))
,Left (valToTerm snat)
,Left (Case splitAtCall n1mVecTy [bsAlt])])
"Clash.Sized.Vector.replicate"
| isSubj
, let ty' = piResultTys tcm ty tys
, let (_,resTy) = splitFunForallTy ty'
, (TyConApp vecTcNm [lenTy,argTy]) <- tyView resTy
, Right len <- runExcept (tyNatSize tcm lenTy)
-> let (Just vecTc) = lookupUniqMap vecTcNm tcm
[nilCon,consCon] = tyConDataCons vecTc
in reduce $
mkVec nilCon consCon argTy len
(replicate (fromInteger len) (valToTerm (last args)))
"Clash.Sized.Vector.++"
| isSubj
, DC dc vArgs <- head args
, Right nTy : Right aTy : _ <- vArgs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (valToTerm (last args))
n' | (_ : _ : mTy : _) <- tys
, Right m <- runExcept (tyNatSize tcm mTy)
->
reduce $
mkVecCons dc aTy (n' + m) (Either.lefts vArgs !! 1)
(mkApps (Prim pInfo)
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Right mTy
,Left (Either.lefts vArgs !! 2)
,Left (valToTerm (last args))
])
_ -> Nothing
"Clash.Sized.Vector.concat"
| isSubj
, (nTy : mTy : aTy : _) <- tys
, (xs : _) <- args
, DC dc vArgs <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc aTy)
_ | _ : h' : t : _ <- Either.lefts vArgs
, (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
-> reduceWHNF $
mkApps (vecAppendPrim vecTcNm)
[Right mTy
,Right aTy
,Right $ mkTyConApp typeNatMul
[mkTyConApp typeNatSub [nTy,LitTy (NumTy 1)], mTy]
,Left h'
,Left $ mkApps (Prim pInfo)
[ Right (LitTy (NumTy (n-1)))
, Right mTy
, Right aTy
, Left t
]
]
_ -> Nothing
"Clash.Sized.Vector.replace_int"
| nTy : aTy : _ <- tys
, _ : xs : i : a : _ <- args
, DC intDc [Left (Literal (IntLiteral i'))] <- i
-> if i' < 0
then Nothing
else case xs of
DC vecTcNm vArgs -> case runExcept (tyNatSize tcm nTy) of
Right 0 -> Nothing
Right n' ->
if i' == 0
then reduce (mkVecCons vecTcNm aTy n' (valToTerm a) (Either.lefts vArgs !! 2))
else reduce $
mkVecCons vecTcNm aTy n' (Either.lefts vArgs !! 1)
(mkApps (Prim pInfo)
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Left (Literal (NaturalLiteral (n'-1)))
,Left (Either.lefts vArgs !! 2)
,Left (mkApps (Data intDc)
[Left (Literal (IntLiteral (i'-1)))])
,Left (valToTerm a)
])
_ -> Nothing
_ -> Nothing
"Clash.Transformations.eqInt"
| [ DC _ [Left (Literal (IntLiteral i))]
, DC _ [Left (Literal (IntLiteral j))]
] <- args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Vector.reverse"
| isSubj
, nTy : aTy : _ <- tys
, [DC vecDc vArgs] <- args
-> case runExcept (tyNatSize tcm nTy) of
Right 0 -> reduce (mkVecNil vecDc aTy)
Right n
| (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, let (Just vecTc) = lookupUniqMap vecTcNm tcm
, let [nilCon,consCon] = tyConDataCons vecTc
-> reduceWHNF $
mkApps (vecAppendPrim vecTcNm)
[Right (LitTy (NumTy (n-1)))
,Right aTy
,Right (LitTy (NumTy 1))
,Left (mkApps (Prim pInfo)
[Right (LitTy (NumTy (n-1)))
,Right aTy
,Left (Either.lefts vArgs !! 2)
])
,Left (mkVec nilCon consCon aTy 1 [Either.lefts vArgs !! 1])
]
_ -> Nothing
"Clash.Sized.Vector.transpose"
| isSubj
, nTy : mTy : aTy : _ <- tys
, kn : xss : _ <- args
, (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, DC _ vArgs <- xss
, Right n <- runExcept (tyNatSize tcm nTy)
, Right m <- runExcept (tyNatSize tcm mTy)
-> case m of
0 -> let (Just vecTc) = lookupUniqMap vecTcNm tcm
[nilCon,consCon] = tyConDataCons vecTc
in reduce $
mkVec nilCon consCon (mkTyConApp vecTcNm [mTy,aTy]) n
(replicate (fromInteger n) (mkVec nilCon consCon aTy 0 []))
m' -> let (Just vecTc) = lookupUniqMap vecTcNm tcm
[_,consCon] = tyConDataCons vecTc
Just (consCoTy : _) = dataConInstArgTys consCon
[mTy,aTy,LitTy (NumTy (m'-1))]
in reduceWHNF $
mkApps (vecZipWithPrim vecTcNm)
[ Right aTy
, Right (mkTyConApp vecTcNm [LitTy (NumTy (m'-1)),aTy])
, Right (mkTyConApp vecTcNm [mTy,aTy])
, Right nTy
, Left (mkApps (Data consCon)
[Right mTy
,Right aTy
,Right (LitTy (NumTy (m'-1)))
,Left (primCo consCoTy)
])
, Left (Either.lefts vArgs !! 1)
, Left (mkApps (Prim pInfo)
[ Right nTy
, Right (LitTy (NumTy (m'-1)))
, Right aTy
, Left (valToTerm kn)
, Left (Either.lefts vArgs !! 2)
])
]
"Clash.Sized.Vector.rotateLeftS"
| nTy : aTy : _ : _ <- tys
, kn : xs : d : _ <- args
, DC dc vArgs <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc aTy)
n' | DC snatDc [_,Left d'] <- d
, mach2@Machine{mStack=[],mTerm=Literal (NaturalLiteral d2)} <- whnf tcm isSubj (setTerm d' $ stackClear mach)
-> case (d2 `mod` n) of
0 -> reduce (valToTerm xs)
d3 -> let (_,tyView -> TyConApp vecTcNm _) = splitFunForallTy ty
(Just vecTc) = lookupUniqMap vecTcNm tcm
[nilCon,consCon] = tyConDataCons vecTc
in reduceWHNF' mach2 $
mkApps (Prim pInfo)
[Right nTy
,Right aTy
,Right (LitTy (NumTy (d3-1)))
,Left (valToTerm kn)
,Left (mkApps (vecAppendPrim vecTcNm)
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Right (LitTy (NumTy 1))
,Left (Either.lefts vArgs !! 2)
,Left (mkVec nilCon consCon aTy 1 [Either.lefts vArgs !! 1])])
,Left (mkApps (Data snatDc)
[Right (LitTy (NumTy (d3-1)))
,Left (Literal (NaturalLiteral (d3-1)))])
]
_ -> Nothing
"Clash.Sized.Vector.rotateRightS"
| isSubj
, nTy : aTy : _ : _ <- tys
, kn : xs : d : _ <- args
, DC dc _ <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc aTy)
n' | DC snatDc [_,Left d'] <- d
, mach2@Machine{mStack=[],mTerm=Literal (NaturalLiteral d2)} <- whnf tcm isSubj (setTerm d' $ stackClear mach)
-> case (d2 `mod` n) of
0 -> reduce (valToTerm xs)
d3 -> let (_,tyView -> TyConApp vecTcNm _) = splitFunForallTy ty
in reduceWHNF' mach2 $
mkApps (Prim pInfo)
[Right nTy
,Right aTy
,Right (LitTy (NumTy (d3-1)))
,Left (valToTerm kn)
,Left (mkVecCons dc aTy n
(mkApps (vecLastPrim vecTcNm)
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Left (valToTerm xs)])
(mkApps (vecInitPrim vecTcNm)
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Left (valToTerm xs)]))
,Left (mkApps (Data snatDc)
[Right (LitTy (NumTy (d3-1)))
,Left (Literal (NaturalLiteral (d3-1)))])
]
_ -> Nothing
"Clash.Sized.Vector.map"
| isSubj
, DC dc vArgs <- args !! 1
, aTy : bTy : nTy : _ <- tys
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc bTy)
n' -> reduce $
mkVecCons dc bTy n'
(mkApps (valToTerm (args !! 0)) [Left (Either.lefts vArgs !! 1)])
(mkApps (Prim pInfo)
[Right aTy
,Right bTy
,Right (LitTy (NumTy (n' - 1)))
,Left (valToTerm (args !! 0))
,Left (Either.lefts vArgs !! 2)])
"Clash.Sized.Vector.imap"
| isSubj
, nTy : aTy : bTy : _ <- tys
, (tyArgs,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, let (tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 1)
, TyConApp indexTcNm _ <- tyView (Either.rights tyArgs' !! 0)
, Right n <- runExcept (tyNatSize tcm nTy)
, let iLit = mkIndexLit (Either.rights tyArgs' !! 0) nTy n 0
-> reduceWHNF $
mkApps (Prim (PrimInfo "Clash.Sized.Vector.imap_go" (vecImapGoTy vecTcNm indexTcNm) WorkNever))
[Right nTy
,Right nTy
,Right aTy
,Right bTy
,Left iLit
,Left (valToTerm (args !! 1))
,Left (valToTerm (args !! 2))
]
"Clash.Sized.Vector.imap_go"
| isSubj
, nTy : mTy : aTy : bTy : _ <- tys
, n : f : xs : _ <- args
, DC dc vArgs <- xs
, Right n' <- runExcept (tyNatSize tcm nTy)
, Right m <- runExcept (tyNatSize tcm mTy)
-> case m of
0 -> reduce (mkVecNil dc bTy)
m' -> let (tyArgs,_) = splitFunForallTy ty
TyConApp indexTcNm _ = tyView (Either.rights tyArgs !! 0)
iLit = mkIndexLit (Either.rights tyArgs !! 0) nTy n' 1
in reduce $ mkVecCons dc bTy m'
(mkApps (valToTerm f) [Left (valToTerm n),Left (Either.lefts vArgs !! 1)])
(mkApps (Prim pInfo)
[Right nTy
,Right (LitTy (NumTy (m'-1)))
,Right aTy
,Right bTy
,Left (mkApps (Prim (PrimInfo "Clash.Sized.Internal.Index.+#" (indexAddTy indexTcNm) WorkVariable))
[Right nTy
,Left (Literal (NaturalLiteral n'))
,Left (valToTerm n)
,Left iLit
])
,Left (valToTerm f)
,Left (Either.lefts vArgs !! 2)
])
"Clash.Sized.Vector.iterateI"
| isSubj
, [nTy, aTy] <- tys
, [_n, f, a] <- args
, Right n <- runExcept (tyNatSize tcm nTy)
->
let
TyConApp vecTcNm _ = tyView (getResultTy tcm ty tys)
Just vecTc = lookupUniqMap vecTcNm tcm
[nilCon, consCon] = tyConDataCons vecTc
in case n of
0 -> reduce (mkVecNil nilCon aTy)
_ -> reduce $
mkVecCons consCon aTy n
(valToTerm a)
(mkApps
(Prim pInfo)
[ Right (LitTy (NumTy (n - 1)))
, Right aTy
, Left (valToTerm (Lit (NaturalLiteral (n - 1))))
, Left (valToTerm f)
, Left (mkApps (valToTerm f) [Left (valToTerm a)])
])
"Clash.Sized.Vector.zipWith"
| isSubj
, aTy : bTy : cTy : nTy : _ <- tys
, f : xs : ys : _ <- args
, DC dc vArgs <- xs
, (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc cTy)
n' -> reduce $ mkVecCons dc cTy n'
(mkApps (valToTerm f)
[Left (Either.lefts vArgs !! 1)
,Left (mkApps (vecHeadPrim vecTcNm)
[Right (LitTy (NumTy (n'-1)))
,Right bTy
,Left (valToTerm ys)
])
])
(mkApps (Prim pInfo)
[Right aTy
,Right bTy
,Right cTy
,Right (LitTy (NumTy (n' - 1)))
,Left (valToTerm f)
,Left (Either.lefts vArgs !! 2)
,Left (mkApps (vecTailPrim vecTcNm)
[Right (LitTy (NumTy (n'-1)))
,Right bTy
,Left (valToTerm ys)
])])
"Clash.Sized.Vector.foldr"
| isSubj
, aTy : bTy : nTy : _ <- tys
, f : z : xs : _ <- args
, DC _ vArgs <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (valToTerm z)
_ -> reduceWHNF $
mkApps (valToTerm f)
[Left (Either.lefts vArgs !! 1)
,Left (mkApps (Prim pInfo)
[Right aTy
,Right bTy
,Right (LitTy (NumTy (n-1)))
,Left (valToTerm f)
,Left (valToTerm z)
,Left (Either.lefts vArgs !! 2)
])
]
"Clash.Sized.Vector.fold"
| isSubj
, aTy : nTy : _ <- tys
, f : vs : _ <- args
, DC _ vArgs <- vs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduceWHNF (Either.lefts vArgs !! 1)
_ -> let (tyArgs,_) = splitFunForallTy ty
TyConApp vecTcNm _ = tyView (Either.rights tyArgs !! 1)
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
n' = n+1
m = n' `div` 2
n1 = n' - m
mTy = LitTy (NumTy m)
m'ty = LitTy (NumTy (m-1))
n1mTy = LitTy (NumTy n1)
n1m'ty = LitTy (NumTy (n1-1))
splitAtCall =
mkApps (Prim (PrimInfo "Clash.Sized.Vector.fold_split" (foldSplitAtTy vecTcNm) WorkNever))
[Right mTy
,Right n1mTy
,Right aTy
,Left (Literal (NaturalLiteral m))
,Left (valToTerm vs)
]
mVecTy = mkTyConApp vecTcNm [mTy,aTy]
n1mVecTy = mkTyConApp vecTcNm [n1mTy,aTy]
asNm = mkUnsafeSystemName "as" 0
bsNm = mkUnsafeSystemName "bs" 1
asId = mkLocalId mVecTy asNm
bsId = mkLocalId n1mVecTy bsNm
tupPat = DataPat tupDc [] [asId,bsId]
asAlt = (tupPat, (Var asId))
bsAlt = (tupPat, (Var bsId))
in reduceWHNF $
mkApps (valToTerm f)
[Left (mkApps (Prim pInfo)
[Right aTy
,Right m'ty
,Left (valToTerm f)
,Left (Case splitAtCall mVecTy [asAlt])
])
,Left (mkApps (Prim pInfo)
[Right aTy
,Right n1m'ty
,Left (valToTerm f)
,Left (Case splitAtCall n1mVecTy [bsAlt])
])
]
"Clash.Sized.Vector.fold_split"
| isSubj
, mTy : nTy : aTy : _ <- tys
, Right m <- runExcept (tyNatSize tcm mTy)
-> let
ty1 = piResultTys tcm ty tys
(_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty1
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
TyConApp vecTcNm _ = tyView (head tyArgs)
Just vecTc = lookupUniqMap vecTcNm tcm
[nilCon,consCon] = tyConDataCons vecTc
splitAtRec v =
mkApps (Prim pInfo)
[Right (LitTy (NumTy (m-1)))
,Right nTy
,Right aTy
,Left (Literal (NaturalLiteral (m-1)))
,Left v
]
splitAtSelR v = Case (splitAtRec v)
m1VecTy = mkTyConApp vecTcNm [LitTy (NumTy (m-1)),aTy]
nVecTy = mkTyConApp vecTcNm [nTy,aTy]
lNm = mkUnsafeSystemName "l" 0
rNm = mkUnsafeSystemName "r" 1
lId = mkLocalId m1VecTy lNm
rId = mkLocalId nVecTy rNm
tupPat = DataPat tupDc [] [lId,rId]
lAlt = (tupPat, (Var lId))
rAlt = (tupPat, (Var rId))
in case m of
0 -> reduce $
mkApps (Data tupDc) $ (map Right tyArgs) ++
[ Left (mkVecNil nilCon aTy)
, Left (valToTerm (last args))
]
m' | DC _ vArgs <- last args
-> reduce $
mkApps (Data tupDc) $ (map Right tyArgs) ++
[ Left (mkVecCons consCon aTy m' (Either.lefts vArgs !! 1)
(splitAtSelR (Either.lefts vArgs !! 2) m1VecTy [lAlt]))
, Left (splitAtSelR (Either.lefts vArgs !! 2) nVecTy [rAlt])
]
_ -> Nothing
"Clash.Sized.Vector.dfold"
| isSubj
, pTy : kTy : aTy : _ <- tys
, _ : p : f : z : xs : _ <- args
, DC _ vArgs <- xs
, Right k' <- runExcept (tyNatSize tcm kTy)
-> case k' of
0 -> reduce (valToTerm z)
_ -> let (tyArgs,_) = splitFunForallTy ty
(tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 2)
TyConApp snatTcNm _ = tyView (Either.rights tyArgs' !! 0)
Just snatTc = lookupUniqMap snatTcNm tcm
[snatDc] = tyConDataCons snatTc
k'ty = LitTy (NumTy (k'-1))
in reduceWHNF $
mkApps (valToTerm f)
[Right k'ty
,Left (mkApps (Data snatDc)
[Right k'ty
,Left (Literal (NaturalLiteral (k'-1)))])
,Left (Either.lefts vArgs !! 1)
,Left (mkApps (Prim pInfo)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm z)
,Left (Either.lefts vArgs !! 2)
])
]
"Clash.Sized.Vector.dtfold"
| isSubj
, pTy : kTy : aTy : _ <- tys
, _ : p : f : g : xs : _ <- args
, DC _ vArgs <- xs
, Right k' <- runExcept (tyNatSize tcm kTy)
-> case k' of
0 -> reduceWHNF (mkApps (valToTerm f) [Left (Either.lefts vArgs !! 1)])
_ -> let (tyArgs,_) = splitFunForallTy ty
TyConApp vecTcNm _ = tyView (Either.rights tyArgs !! 4)
(tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 3)
TyConApp snatTcNm _ = tyView (Either.rights tyArgs' !! 0)
Just snatTc = lookupUniqMap snatTcNm tcm
[snatDc] = tyConDataCons snatTc
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
(Just tupTc) = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
k'ty = LitTy (NumTy (k'-1))
k2ty = LitTy (NumTy (2^(k'-1)))
splitAtCall =
mkApps (splitAtPrim snatTcNm vecTcNm)
[Right k2ty
,Right k2ty
,Right aTy
,Left (mkApps (Data snatDc)
[Right k2ty
,Left (Literal (NaturalLiteral (2^(k'-1))))])
,Left (valToTerm xs)
]
xsSVecTy = mkTyConApp vecTcNm [k2ty,aTy]
xsLNm = mkUnsafeSystemName "xsL" 0
xsRNm = mkUnsafeSystemName "xsR" 1
xsLId = mkLocalId k2ty xsLNm
xsRId = mkLocalId k2ty xsRNm
tupPat = DataPat tupDc [] [xsLId,xsRId]
asAlt = (tupPat, (Var xsLId))
bsAlt = (tupPat, (Var xsRId))
in reduceWHNF $
mkApps (valToTerm g)
[Right k'ty
,Left (mkApps (Data snatDc)
[Right k'ty
,Left (Literal (NaturalLiteral (k'-1)))])
,Left (mkApps (Prim pInfo)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm g)
,Left (Case splitAtCall xsSVecTy [asAlt])])
,Left (mkApps (Prim pInfo)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm g)
,Left (Case splitAtCall xsSVecTy [bsAlt])])
]
"Clash.Sized.Vector.lazyV"
| isSubj
, nTy : aTy : _ <- tys
, _ : xs : _ <- args
, (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> let (Just vecTc) = lookupUniqMap vecTcNm tcm
[nilCon,_] = tyConDataCons vecTc
in reduce (mkVecNil nilCon aTy)
n' -> let (Just vecTc) = lookupUniqMap vecTcNm tcm
[_,consCon] = tyConDataCons vecTc
in reduce $ mkVecCons consCon aTy n'
(mkApps (vecHeadPrim vecTcNm)
[ Right (LitTy (NumTy (n' - 1)))
, Right aTy
, Left (valToTerm xs)
])
(mkApps (Prim pInfo)
[ Right (LitTy (NumTy (n' - 1)))
, Right aTy
, Left (Literal (NaturalLiteral (n'-1)))
, Left (mkApps (vecTailPrim vecTcNm)
[ Right (LitTy (NumTy (n'-1)))
, Right aTy
, Left (valToTerm xs)
])
])
"Clash.Sized.Vector.traverse#"
| isSubj
, aTy : fTy : bTy : nTy : _ <- tys
, apDict : f : xs : _ <- args
, DC dc vArgs <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> let (pureF,ids') = runPEM (mkSelectorCase $(curLoc) is0 tcm (valToTerm apDict) 1 1) ids
in reduceWHNF' (mach { mSupply = ids' }) $
mkApps pureF
[Right (mkTyConApp (vecTcNm) [nTy,bTy])
,Left (mkVecNil dc bTy)]
_ -> let ((fmapF,apF),ids') = flip runPEM ids $ do
fDict <- mkSelectorCase $(curLoc) is0 tcm (valToTerm apDict) 1 0
fmapF' <- mkSelectorCase $(curLoc) is0 tcm fDict 1 0
apF' <- mkSelectorCase $(curLoc) is0 tcm (valToTerm apDict) 1 2
return (fmapF',apF')
n'ty = LitTy (NumTy (n-1))
Just (consCoTy : _) = dataConInstArgTys dc [nTy,bTy,n'ty]
in reduceWHNF' (mach { mSupply = ids' }) $
mkApps apF
[Right (mkTyConApp vecTcNm [n'ty,bTy])
,Right (mkTyConApp vecTcNm [nTy,bTy])
,Left (mkApps fmapF
[Right bTy
,Right (mkFunTy (mkTyConApp vecTcNm [n'ty,bTy])
(mkTyConApp vecTcNm [nTy,bTy]))
,Left (mkApps (Data dc)
[Right nTy
,Right bTy
,Right n'ty
,Left (primCo consCoTy)])
,Left (mkApps (valToTerm f)
[Left (Either.lefts vArgs !! 1)])
])
,Left (mkApps (Prim pInfo)
[Right aTy
,Right fTy
,Right bTy
,Right n'ty
,Left (valToTerm apDict)
,Left (valToTerm f)
,Left (Either.lefts vArgs !! 2)
])
]
where
(tyArgs,_) = splitFunForallTy ty
TyConApp vecTcNm _ = tyView (Either.rights tyArgs !! 2)
(ids, is0) = (mSupply mach, mScopeNames mach)
"Clash.Sized.Vector.concatBitVector#"
| isSubj
, nTy : mTy : _ <- tys
, _ : km : v : _ <- args
, DC _ vArgs <- v
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo 0 0)
n' | Right m <- runExcept (tyNatSize tcm mTy)
, (_,tyView -> TyConApp bvTcNm _) <- splitFunForallTy ty
-> reduceWHNF $
mkApps (bvAppendPrim bvTcNm)
[ Right (mkTyConApp typeNatMul [LitTy (NumTy (n'-1)),mTy])
, Right mTy
, Left (Literal (NaturalLiteral ((n'-1)*m)))
, Left (Either.lefts vArgs !! 1)
, Left (mkApps (Prim pInfo)
[ Right (LitTy (NumTy (n'-1)))
, Right mTy
, Left (Literal (NaturalLiteral (n'-1)))
, Left (valToTerm km)
, Left (Either.lefts vArgs !! 2)
])
]
_ -> Nothing
"Clash.Sized.Vector.unconcatBitVector#"
| isSubj
, nTy : mTy : _ <- tys
, _ : km : bv : _ <- args
, (_,tyView -> TyConApp vecTcNm [_,bvMTy]) <- splitFunForallTy ty
, TyConApp bvTcNm _ <- tyView bvMTy
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 ->
let (Just vecTc) = lookupUniqMap vecTcNm tcm
[nilCon,_] = tyConDataCons vecTc
in reduce (mkVecNil nilCon (mkTyConApp bvTcNm [mTy]))
n' | Right m <- runExcept (tyNatSize tcm mTy) ->
let Just vecTc = lookupUniqMap vecTcNm tcm
[_,consCon] = tyConDataCons vecTc
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
Just tupTc = lookupUniqMap tupTcNm tcm
[tupDc] = tyConDataCons tupTc
splitCall =
mkApps (bvSplitPrim bvTcNm)
[ Right (mkTyConApp typeNatMul [LitTy (NumTy (n'-1)),mTy])
, Right mTy
, Left (Literal (NaturalLiteral ((n'-1)*m)))
, Left (valToTerm bv)
]
mBVTy = mkTyConApp bvTcNm [mTy]
n1BVTy = mkTyConApp bvTcNm
[mkTyConApp typeNatMul
[LitTy (NumTy (n'-1))
,mTy]]
xNm = mkUnsafeSystemName "x" 0
bvNm = mkUnsafeSystemName "bv'" 1
xId = mkLocalId mBVTy xNm
bvId = mkLocalId n1BVTy bvNm
tupPat = DataPat tupDc [] [xId,bvId]
xAlt = (tupPat, (Var xId))
bvAlt = (tupPat, (Var bvId))
in reduce $ mkVecCons consCon (mkTyConApp bvTcNm [mTy]) n'
(Case splitCall mBVTy [xAlt])
(mkApps (Prim pInfo)
[ Right (LitTy (NumTy (n'-1)))
, Right mTy
, Left (Literal (NaturalLiteral (n'-1)))
, Left (valToTerm km)
, Left (Case splitCall n1BVTy [bvAlt])
])
_ -> Nothing
_ -> Nothing
where
ty = primType pInfo
checkNaturalRange1 nTy i f =
checkNaturalRange nTy [i]
(\[i'] -> naturalToNaturalLiteral (f i'))
checkNaturalRange2 nTy i j f =
checkNaturalRange nTy [i, j]
(\[i', j'] -> naturalToNaturalLiteral (f i' j'))
checkNaturalRange
:: Type
-> [Integer]
-> ([Natural] -> Term)
-> Term
checkNaturalRange nTy natsAsInts f =
if any (<0) natsAsInts then
undefinedTm nTy
else
f (map fromInteger natsAsInts)
reduce :: Term -> Maybe Machine
reduce e = case isX e of
Left msg -> trace (unlines ["Warning: Not evaluating constant expression:", show (primName pInfo), "Because doing so generates an XException:", msg]) Nothing
Right e' -> Just (setTerm e' mach)
reduceWHNF e =
let mach1@Machine{mStack=[]} = whnf tcm isSubj (setTerm e $ stackClear mach)
in Just $ mach1 { mStack = mStack mach }
reduceWHNF' mach1 e =
let mach2@Machine{mStack=[]} = whnf tcm isSubj (setTerm e mach1)
in Just $ mach2 { mStack = mStack mach }
makeUndefinedIf :: Exception e => (e -> Bool) -> Term -> Term
makeUndefinedIf wantToHandle tm =
case unsafeDupablePerformIO $ tryJust selectException (evaluate $ force tm) of
Right b -> b
Left e -> trace (msg e) (undefinedTm resTy)
where
resTy = getResultTy tcm ty tys
selectException e | wantToHandle e = Just e
| otherwise = Nothing
msg e = unlines ["Warning: caught exception: \"" ++ show e ++ "\" while trying to evaluate: "
, showPpr (mkApps (Prim pInfo) (map (Left . valToTerm) args))
]
catchDivByZero = makeUndefinedIf (==DivideByZero)
pairOf :: (Value -> Maybe a) -> [Value] -> Maybe (a, a)
pairOf f [x, y] = (,) <$> f x <*> f y
pairOf _ _ = Nothing
listOf :: (Value -> Maybe a) -> [Value] -> [a]
listOf = mapMaybe
wrapUnsigned :: Integer -> Integer -> Integer
wrapUnsigned n i = i `mod` sz
where
sz = 1 `shiftL` fromInteger n
wrapSigned :: Integer -> Integer -> Integer
wrapSigned n i = if mask == 0 then 0 else res
where
mask = 1 `shiftL` fromInteger (n - 1)
res = case divMod i mask of
(s,i1) | even s -> i1
| otherwise -> i1 - mask
doubleLiterals' :: [Value] -> [Rational]
doubleLiterals' = listOf doubleLiteral
doubleLiteral :: Value -> Maybe Rational
doubleLiteral v = case v of
Lit (DoubleLiteral i) -> Just i
_ -> Nothing
floatLiterals' :: [Value] -> [Rational]
floatLiterals' = listOf floatLiteral
floatLiteral :: Value -> Maybe Rational
floatLiteral v = case v of
Lit (FloatLiteral i) -> Just i
_ -> Nothing
integerLiterals :: [Value] -> Maybe (Integer, Integer)
integerLiterals = pairOf integerLiteral
integerLiteral :: Value -> Maybe Integer
integerLiteral v =
case v of
Lit (IntegerLiteral i) -> Just i
DC dc [Left (Literal (IntLiteral i))]
| dcTag dc == 1
-> Just i
DC dc [Left (Literal (ByteArrayLiteral (Vector.Vector _ _ (ByteArray.ByteArray ba))))]
| dcTag dc == 2
-> Just (Jp# (BN# ba))
| dcTag dc == 3
-> Just (Jn# (BN# ba))
_ -> Nothing
naturalLiterals :: [Value] -> Maybe (Integer, Integer)
naturalLiterals = pairOf naturalLiteral
naturalLiteral :: Value -> Maybe Integer
naturalLiteral v =
case v of
Lit (NaturalLiteral i) -> Just i
DC dc [Left (Literal (WordLiteral i))]
| dcTag dc == 1
-> Just i
DC dc [Left (Literal (ByteArrayLiteral (Vector.Vector _ _ (ByteArray.ByteArray ba))))]
| dcTag dc == 2
-> Just (Jp# (BN# ba))
_ -> Nothing
integerLiterals' :: [Value] -> [Integer]
integerLiterals' = listOf integerLiteral
naturalLiterals' :: [Value] -> [Integer]
naturalLiterals' = listOf naturalLiteral
intLiterals :: [Value] -> Maybe (Integer,Integer)
intLiterals = pairOf intLiteral
intLiterals' :: [Value] -> [Integer]
intLiterals' = listOf intLiteral
intLiteral :: Value -> Maybe Integer
intLiteral x = case x of
Lit (IntLiteral i) -> Just i
_ -> Nothing
intCLiteral :: Value -> Maybe Integer
intCLiteral v = case v of
(DC _ [Left (Literal (IntLiteral i))]) -> Just i
_ -> Nothing
intCLiterals :: [Value] -> Maybe (Integer, Integer)
intCLiterals = pairOf intCLiteral
wordLiterals :: [Value] -> Maybe (Integer,Integer)
wordLiterals = pairOf wordLiteral
wordLiterals' :: [Value] -> [Integer]
wordLiterals' = listOf wordLiteral
wordLiteral :: Value -> Maybe Integer
wordLiteral x = case x of
Lit (WordLiteral i) -> Just i
_ -> Nothing
charLiterals :: [Value] -> Maybe (Char,Char)
charLiterals = pairOf charLiteral
charLiterals' :: [Value] -> [Char]
charLiterals' = listOf charLiteral
charLiteral :: Value -> Maybe Char
charLiteral x = case x of
Lit (CharLiteral c) -> Just c
_ -> Nothing
sizedLiterals :: Text -> [Value] -> Maybe (Integer,Integer)
sizedLiterals szCon = pairOf (sizedLiteral szCon)
sizedLiterals' :: Text -> [Value] -> [Integer]
sizedLiterals' szCon = listOf (sizedLiteral szCon)
sizedLiteral :: Text -> Value -> Maybe Integer
sizedLiteral szCon val = case val of
PrimVal p _ [_, Lit (IntegerLiteral i)]
| primName p == szCon -> Just i
_ -> Nothing
bitLiterals
:: [Value]
-> [(Integer,Integer)]
bitLiterals = map normalizeBit . mapMaybe go
where
normalizeBit (msk,v) = (msk .&. 1, v .&. 1)
go val = case val of
PrimVal p _ [Lit (WordLiteral m), Lit (IntegerLiteral i)]
| primName p == "Clash.Sized.Internal.BitVector.fromInteger##"
-> Just (m,i)
_ -> Nothing
indexLiterals, signedLiterals, unsignedLiterals
:: [Value] -> Maybe (Integer,Integer)
indexLiterals = sizedLiterals "Clash.Sized.Internal.Index.fromInteger#"
signedLiterals = sizedLiterals "Clash.Sized.Internal.Signed.fromInteger#"
unsignedLiterals = sizedLiterals "Clash.Sized.Internal.Unsigned.fromInteger#"
indexLiterals', signedLiterals', unsignedLiterals'
:: [Value] -> [Integer]
indexLiterals' = sizedLiterals' "Clash.Sized.Internal.Index.fromInteger#"
signedLiterals' = sizedLiterals' "Clash.Sized.Internal.Signed.fromInteger#"
unsignedLiterals' = sizedLiterals' "Clash.Sized.Internal.Unsigned.fromInteger#"
bitVectorLiterals'
:: [Value] -> [(Integer,Integer)]
bitVectorLiterals' = listOf bitVectorLiteral
bitVectorLiteral :: Value -> Maybe (Integer, Integer)
bitVectorLiteral val = case val of
(PrimVal p _ [_, Lit (NaturalLiteral m), Lit (IntegerLiteral i)])
| primName p == "Clash.Sized.Internal.BitVector.fromInteger#" -> Just (m, i)
_ -> Nothing
toBV :: (Integer,Integer) -> BitVector n
toBV (mask,val) = BV (fromInteger mask) (fromInteger val)
splitBV :: BitVector n -> (Integer,Integer)
splitBV (BV msk val) = (toInteger msk, toInteger val)
toBit :: (Integer,Integer) -> Bit
toBit (mask,val) = Bit (fromInteger mask) (fromInteger val)
valArgs
:: Value
-> Maybe [Term]
valArgs v =
case v of
PrimVal _ _ vs -> Just (fmap valToTerm vs)
DC _ args -> Just (Either.lefts args)
_ -> Nothing
sizedLitIntLit
:: Text -> TyConMap -> [Type] -> [Value]
-> Maybe (Type,Integer,Integer,Integer)
sizedLitIntLit szCon tcm tys args
| Just (nTy,kn) <- extractKnownNat tcm tys
, [_
,PrimVal p _ [_,Lit (IntegerLiteral i)]
,valArgs -> Just [Literal (IntLiteral j)]
] <- args
, primName p == szCon
= Just (nTy,kn,i,j)
| otherwise
= Nothing
signedLitIntLit, unsignedLitIntLit
:: TyConMap -> [Type] -> [Value]
-> Maybe (Type,Integer,Integer,Integer)
signedLitIntLit = sizedLitIntLit "Clash.Sized.Internal.Signed.fromInteger#"
unsignedLitIntLit = sizedLitIntLit "Clash.Sized.Internal.Unsigned.fromInteger#"
bitVectorLitIntLit
:: TyConMap -> [Type] -> [Value]
-> Maybe (Type,Integer,(Integer,Integer),Integer)
bitVectorLitIntLit tcm tys args
| Just (nTy,kn) <- extractKnownNat tcm tys
, [_
,PrimVal p _ [_,Lit (NaturalLiteral m),Lit (IntegerLiteral i)]
,valArgs -> Just [Literal (IntLiteral j)]
] <- args
, primName p == "Clash.Sized.Internal.BitVector.fromInteger#"
= Just (nTy,kn,(m,i),j)
| otherwise
= Nothing
extractKnownNat :: TyConMap -> [Type] -> Maybe (Type, Integer)
extractKnownNat tcm tys = case tys of
nTy : _ | Right nInt <- runExcept (tyNatSize tcm nTy)
-> Just (nTy, nInt)
_ -> Nothing
extractKnownNats :: TyConMap -> [Type] -> [(Type, Integer)]
extractKnownNats tcm =
mapMaybe (extractKnownNat tcm . pure)
mkSizedLit
:: (Type -> Term)
-> Type
-> Type
-> Integer
-> Integer
-> Term
mkSizedLit conPrim ty nTy kn val =
mkApps
(conPrim sTy)
[ Right nTy
, Left (Literal (NaturalLiteral kn))
, Left (Literal (IntegerLiteral val)) ]
where
(_,sTy) = splitFunForallTy ty
mkBitLit
:: Type
-> Integer
-> Integer
-> Term
mkBitLit ty msk val =
mkApps (bConPrim sTy) [ Left (Literal (WordLiteral (msk .&. 1)))
, Left (Literal (IntegerLiteral (val .&. 1)))]
where
(_,sTy) = splitFunForallTy ty
mkSignedLit, mkUnsignedLit
:: Type
-> Type
-> Integer
-> Integer
-> Term
mkSignedLit = mkSizedLit signedConPrim
mkUnsignedLit = mkSizedLit unsignedConPrim
mkBitVectorLit
:: Type
-> Type
-> Integer
-> Integer
-> Integer
-> Term
mkBitVectorLit ty nTy kn mask val
= mkApps (bvConPrim sTy)
[Right nTy
,Left (Literal (NaturalLiteral kn))
,Left (Literal (NaturalLiteral mask))
,Left (Literal (IntegerLiteral val))]
where
(_,sTy) = splitFunForallTy ty
mkIndexLitE
:: Type
-> Type
-> Integer
-> Integer
-> Either Term Term
mkIndexLitE rTy nTy kn val
| val >= 0
, val < kn
= Right (mkSizedLit indexConPrim rTy nTy kn val)
| otherwise
= Left (undefinedTm (mkTyConApp indexTcNm [nTy]))
where
TyConApp indexTcNm _ = tyView (snd (splitFunForallTy rTy))
mkIndexLit
:: Type
-> Type
-> Integer
-> Integer
-> Term
mkIndexLit rTy nTy kn val =
either id id (mkIndexLitE rTy nTy kn val)
mkBitVectorLit'
:: (Type, Type, Integer)
-> Integer
-> Integer
-> Term
mkBitVectorLit' (ty,nTy,kn) = mkBitVectorLit ty nTy kn
mkIndexLit'
:: (Type, Type, Integer)
-> Integer
-> Term
mkIndexLit' (rTy,nTy,kn) = mkIndexLit rTy nTy kn
boolToIntLiteral :: Bool -> Term
boolToIntLiteral b = if b then Literal (IntLiteral 1) else Literal (IntLiteral 0)
boolToBoolLiteral :: TyConMap -> Type -> Bool -> Term
boolToBoolLiteral tcm ty b =
let (_,tyView -> TyConApp boolTcNm []) = splitFunForallTy ty
(Just boolTc) = lookupUniqMap boolTcNm tcm
[falseDc,trueDc] = tyConDataCons boolTc
retDc = if b then trueDc else falseDc
in Data retDc
charToCharLiteral :: Char -> Term
charToCharLiteral = Literal . CharLiteral
integerToIntLiteral :: Integer -> Term
integerToIntLiteral = Literal . IntLiteral . toInteger . (fromInteger :: Integer -> Int)
integerToWordLiteral :: Integer -> Term
integerToWordLiteral = Literal . WordLiteral . toInteger . (fromInteger :: Integer -> Word)
integerToIntegerLiteral :: Integer -> Term
integerToIntegerLiteral = Literal . IntegerLiteral
naturalToNaturalLiteral :: Natural -> Term
naturalToNaturalLiteral = Literal . NaturalLiteral . toInteger
bConPrim :: Type -> Term
bConPrim (tyView -> TyConApp bTcNm _)
= Prim (PrimInfo "Clash.Sized.Internal.BitVector.fromInteger##" funTy WorkNever)
where
funTy = foldr1 mkFunTy [wordPrimTy,integerPrimTy,mkTyConApp bTcNm []]
bConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
bvConPrim :: Type -> Term
bvConPrim (tyView -> TyConApp bvTcNm _)
= Prim (PrimInfo "Clash.Sized.Internal.BitVector.fromInteger#" (ForAllTy nTV funTy) WorkNever)
where
funTy = foldr1 mkFunTy [naturalPrimTy,naturalPrimTy,integerPrimTy,mkTyConApp bvTcNm [nVar]]
nName = mkUnsafeSystemName "n" 0
nVar = VarTy nTV
nTV = mkTyVar typeNatKind nName
bvConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
indexConPrim :: Type -> Term
indexConPrim (tyView -> TyConApp indexTcNm _)
= Prim (PrimInfo "Clash.Sized.Internal.Index.fromInteger#" (ForAllTy nTV funTy) WorkNever)
where
funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp indexTcNm [nVar]]
nName = mkUnsafeSystemName "n" 0
nVar = VarTy nTV
nTV = mkTyVar typeNatKind nName
indexConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
signedConPrim :: Type -> Term
signedConPrim (tyView -> TyConApp signedTcNm _)
= Prim (PrimInfo "Clash.Sized.Internal.Signed.fromInteger#" (ForAllTy nTV funTy) WorkNever)
where
funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp signedTcNm [nVar]]
nName = mkUnsafeSystemName "n" 0
nVar = VarTy nTV
nTV = mkTyVar typeNatKind nName
signedConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
unsignedConPrim :: Type -> Term
unsignedConPrim (tyView -> TyConApp unsignedTcNm _)
= Prim (PrimInfo "Clash.Sized.Internal.Unsigned.fromInteger#" (ForAllTy nTV funTy) WorkNever)
where
funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp unsignedTcNm [nVar]]
nName = mkUnsafeSystemName "n" 0
nVar = VarTy nTV
nTV = mkTyVar typeNatKind nName
unsignedConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
liftUnsigned2 :: KnownNat n
=> (Unsigned n -> Unsigned n -> Unsigned n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftUnsigned2 = liftSized2 unsignedLiterals' mkUnsignedLit
liftSigned2 :: KnownNat n
=> (Signed n -> Signed n -> Signed n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftSigned2 = liftSized2 signedLiterals' mkSignedLit
liftBitVector2 :: KnownNat n
=> (BitVector n -> BitVector n -> BitVector n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftBitVector2 f ty tcm tys args _p
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i,j] <- bitVectorLiterals' args
= let BV mask val = f (toBV i) (toBV j)
in Just $ mkBitVectorLit ty nTy kn (toInteger mask) (toInteger val)
| otherwise = Nothing
liftBitVector2Bool :: KnownNat n
=> (BitVector n -> BitVector n -> Bool)
-> Type
-> TyConMap
-> [Value]
-> (Proxy n -> Maybe Term)
liftBitVector2Bool f ty tcm args _p
| [i,j] <- bitVectorLiterals' args
= let val = f (toBV i) (toBV j)
in Just $ boolToBoolLiteral tcm ty val
| otherwise = Nothing
liftSized2 :: (KnownNat n, Integral (sized n))
=> ([Value] -> [Integer])
-> (Type -> Type -> Integer -> Integer -> Term)
-> (sized n -> sized n -> sized n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftSized2 extractLitArgs mkLit f ty tcm tys args p
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i,j] <- extractLitArgs args
= let val = runSizedF f i j p
in Just $ mkLit ty nTy kn val
| otherwise = Nothing
runSizedF
:: (KnownNat n, Integral (sized n))
=> (sized n -> sized n -> sized n)
-> Integer
-> Integer
-> (Proxy n -> Integer)
runSizedF f i j _ = toInteger $ f (fromInteger i) (fromInteger j)
extractTySizeInfo :: TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo tcm ty tys = (resTy,resSizeTy,resSize)
where
ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
TyConApp _ [resSizeTy] = tyView resTy
Right resSize = runExcept (tyNatSize tcm resSizeTy)
getResultTy
:: TyConMap
-> Type
-> [Type]
-> Type
getResultTy tcm ty tys = resTy
where
ty' = piResultTys tcm ty tys
(_,resTy) = splitFunForallTy ty'
liftDDI :: (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI f args = case doubleLiterals' args of
[i,j] -> Just $ runDDI f i j
_ -> Nothing
liftDDD :: (Double# -> Double# -> Double#) -> [Value] -> Maybe Term
liftDDD f args = case doubleLiterals' args of
[i,j] -> Just $ runDDD f i j
_ -> Nothing
liftDD :: (Double# -> Double#) -> [Value] -> Maybe Term
liftDD f args = case doubleLiterals' args of
[i] -> Just $ runDD f i
_ -> Nothing
runDDI :: (Double# -> Double# -> Int#) -> Rational -> Rational -> Term
runDDI f i j
= let !(D# a) = fromRational i
!(D# b) = fromRational j
r = f a b
in Literal . IntLiteral . toInteger $ I# r
runDDD :: (Double# -> Double# -> Double#) -> Rational -> Rational -> Term
runDDD f i j
= let !(D# a) = fromRational i
!(D# b) = fromRational j
r = f a b
in Literal . DoubleLiteral . toRational $ D# r
runDD :: (Double# -> Double#) -> Rational -> Term
runDD f i
= let !(D# a) = fromRational i
r = f a
in Literal . DoubleLiteral . toRational $ D# r
liftFFI :: (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI f args = case floatLiterals' args of
[i,j] -> Just $ runFFI f i j
_ -> Nothing
liftFFF :: (Float# -> Float# -> Float#) -> [Value] -> Maybe Term
liftFFF f args = case floatLiterals' args of
[i,j] -> Just $ runFFF f i j
_ -> Nothing
liftFF :: (Float# -> Float#) -> [Value] -> Maybe Term
liftFF f args = case floatLiterals' args of
[i] -> Just $ runFF f i
_ -> Nothing
runFFI :: (Float# -> Float# -> Int#) -> Rational -> Rational -> Term
runFFI f i j
= let !(F# a) = fromRational i
!(F# b) = fromRational j
r = f a b
in Literal . IntLiteral . toInteger $ I# r
runFFF :: (Float# -> Float# -> Float#) -> Rational -> Rational -> Term
runFFF f i j
= let !(F# a) = fromRational i
!(F# b) = fromRational j
r = f a b
in Literal . FloatLiteral . toRational $ F# r
runFF :: (Float# -> Float#) -> Rational -> Term
runFF f i
= let !(F# a) = fromRational i
r = f a
in Literal . FloatLiteral . toRational $ F# r
splitAtPrim
:: TyConName
-> TyConName
-> Term
splitAtPrim snatTcNm vecTcNm =
Prim (PrimInfo "Clash.Sized.Vector.splitAt" (splitAtTy snatTcNm vecTcNm) WorkNever)
splitAtTy
:: TyConName
-> TyConName
-> Type
splitAtTy snatNm vecNm =
ForAllTy mTV (
ForAllTy nTV (
ForAllTy aTV (
mkFunTy
(mkTyConApp snatNm [VarTy mTV])
(mkFunTy
(mkTyConApp vecNm
[mkTyConApp typeNatAdd
[VarTy mTV
,VarTy nTV]
,VarTy aTV])
(mkTyConApp tupNm
[mkTyConApp vecNm
[VarTy mTV
,VarTy aTV]
,mkTyConApp vecNm
[VarTy nTV
,VarTy aTV]])))))
where
mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 0)
nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 1)
aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 2)
tupNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
foldSplitAtTy
:: TyConName
-> Type
foldSplitAtTy vecNm =
ForAllTy mTV (
ForAllTy nTV (
ForAllTy aTV (
mkFunTy
naturalPrimTy
(mkFunTy
(mkTyConApp vecNm
[mkTyConApp typeNatAdd
[VarTy mTV
,VarTy nTV]
,VarTy aTV])
(mkTyConApp tupNm
[mkTyConApp vecNm
[VarTy mTV
,VarTy aTV]
,mkTyConApp vecNm
[VarTy nTV
,VarTy aTV]])))))
where
mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 0)
nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 1)
aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 2)
tupNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
vecAppendPrim
:: TyConName
-> Term
vecAppendPrim vecNm =
Prim (PrimInfo "Clash.Sized.Vector.++" (vecAppendTy vecNm) WorkNever)
vecAppendTy
:: TyConName
-> Type
vecAppendTy vecNm =
ForAllTy nTV (
ForAllTy aTV (
ForAllTy mTV (
mkFunTy
(mkTyConApp vecNm [VarTy nTV
,VarTy aTV
])
(mkFunTy
(mkTyConApp vecNm [VarTy mTV
,VarTy aTV
])
(mkTyConApp vecNm [mkTyConApp typeNatAdd
[VarTy nTV
,VarTy mTV]
,VarTy aTV
])))))
where
nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 0)
aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 1)
mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 2)
vecZipWithPrim
:: TyConName
-> Term
vecZipWithPrim vecNm =
Prim (PrimInfo "Clash.Sized.Vector.zipWith" (vecZipWithTy vecNm) WorkNever)
vecZipWithTy
:: TyConName
-> Type
vecZipWithTy vecNm =
ForAllTy aTV (
ForAllTy bTV (
ForAllTy cTV (
ForAllTy nTV (
mkFunTy
(mkFunTy aTy (mkFunTy bTy cTy))
(mkFunTy
(mkTyConApp vecNm [nTy,aTy])
(mkFunTy
(mkTyConApp vecNm [nTy,bTy])
(mkTyConApp vecNm [nTy,cTy])))))))
where
aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 0)
bTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "b" 1)
cTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "c" 2)
nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 3)
aTy = VarTy aTV
bTy = VarTy bTV
cTy = VarTy cTV
nTy = VarTy nTV
vecImapGoTy
:: TyConName
-> TyConName
-> Type
vecImapGoTy vecTcNm indexTcNm =
ForAllTy nTV (
ForAllTy mTV (
ForAllTy aTV (
ForAllTy bTV (
mkFunTy indexTy
(mkFunTy fTy
(mkFunTy vecATy vecBTy))))))
where
nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 0)
mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 1)
aTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "a" 2)
bTV = mkTyVar liftedTypeKind (mkUnsafeSystemName "b" 3)
indexTy = mkTyConApp indexTcNm [nTy]
nTy = VarTy nTV
mTy = VarTy mTV
fTy = mkFunTy indexTy (mkFunTy aTy bTy)
aTy = VarTy aTV
bTy = VarTy bTV
vecATy = mkTyConApp vecTcNm [mTy,aTy]
vecBTy = mkTyConApp vecTcNm [mTy,bTy]
indexAddTy
:: TyConName
-> Type
indexAddTy indexTcNm =
ForAllTy nTV (
mkFunTy naturalPrimTy (mkFunTy indexTy (mkFunTy indexTy indexTy)))
where
nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 0)
indexTy = mkTyConApp indexTcNm [VarTy nTV]
bvAppendPrim
:: TyConName
-> Term
bvAppendPrim bvTcNm =
Prim (PrimInfo "Clash.Sized.Internal.BitVector.++#" (bvAppendTy bvTcNm) WorkNever)
bvAppendTy
:: TyConName
-> Type
bvAppendTy bvNm =
ForAllTy mTV (
ForAllTy nTV (
mkFunTy naturalPrimTy (mkFunTy
(mkTyConApp bvNm [VarTy nTV])
(mkFunTy
(mkTyConApp bvNm [VarTy mTV])
(mkTyConApp bvNm [mkTyConApp typeNatAdd
[VarTy nTV
,VarTy mTV]])))))
where
mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 0)
nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 1)
bvSplitPrim
:: TyConName
-> Term
bvSplitPrim bvTcNm =
Prim (PrimInfo "Clash.Sized.Internal.BitVector.split#" (bvSplitTy bvTcNm) WorkNever)
bvSplitTy
:: TyConName
-> Type
bvSplitTy bvNm =
ForAllTy nTV (
ForAllTy mTV (
mkFunTy naturalPrimTy (mkFunTy
(mkTyConApp bvNm [mkTyConApp typeNatAdd
[VarTy mTV
,VarTy nTV]])
(mkTyConApp tupNm [mkTyConApp bvNm [VarTy mTV]
,mkTyConApp bvNm [VarTy nTV]]))))
where
nTV = mkTyVar typeNatKind (mkUnsafeSystemName "n" 0)
mTV = mkTyVar typeNatKind (mkUnsafeSystemName "m" 1)
tupNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
ghcTyconToTyConName
:: TyCon.TyCon
-> TyConName
ghcTyconToTyConName tc =
Name User n' (getKey (TyCon.tyConUnique tc)) (getSrcSpan n)
where
n' = fromMaybe "_INTERNAL_" (modNameM n) `Text.append`
('.' `Text.cons` Text.pack occName)
occName = occNameString $ nameOccName n
n = TyCon.tyConName tc
svoid :: (State# RealWorld -> State# RealWorld) -> IO ()
svoid m0 = IO (\s -> case m0 s of s' -> (# s', () #))
isTrueDC,isFalseDC :: DataCon -> Bool
isTrueDC dc = dcUniq dc == getKey trueDataConKey
isFalseDC dc = dcUniq dc == getKey falseDataConKey