{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE CPP #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE ViewPatterns #-}
{-# LANGUAGE MagicHash #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TupleSections #-}
{-# LANGUAGE UnboxedTuples #-}
module Clash.GHC.Evaluator where
import Control.Concurrent.Supply (Supply,freshId)
import Control.Monad (ap)
import Control.Monad.Trans.Except (runExcept)
import Data.Bits
import Data.Char (chr,ord)
import qualified Data.Either as Either
import qualified Data.HashMap.Strict as HashMap
import Data.Maybe
(fromMaybe, mapMaybe)
import qualified Data.List as List
import Data.Proxy (Proxy)
import Data.Reflection (reifyNat)
import Data.Text (Text)
import GHC.Float
import GHC.Int
import GHC.Integer (decodeDoubleInteger,encodeDoubleInteger)
import GHC.Prim
import GHC.Real (Ratio (..))
import GHC.TypeLits (KnownNat)
import GHC.Word
import qualified Unbound.Generics.LocallyNameless.Name as U
import Unbound.Generics.LocallyNameless
(Fresh (..), bind, embed, rebind, runFreshM, makeName)
import BasicTypes (Boxity (..))
import Name (getSrcSpan, nameOccName, occNameString)
import PrelNames
(typeNatAddTyFamNameKey, typeNatMulTyFamNameKey, typeNatSubTyFamNameKey)
import SrcLoc (wiredInSrcSpan)
import qualified TyCon
import TysWiredIn (tupleTyCon)
import Unique (getKey)
import Clash.Class.BitPack (pack,unpack)
import Clash.Core.DataCon (DataCon (..), dataConInstArgTys)
import Clash.Core.Evaluator
(Heap (..), PrimEvaluator, Value (..), valToTerm, whnf)
import Clash.Core.Literal (Literal (..))
import Clash.Core.Name
(Name (..), NameSort (..), name2String, string2SystemName)
import Clash.Core.Term (Pat (..), Term (..))
import Clash.Core.Type
(Type (..), ConstTy (..), LitTy (..), TypeView (..), applyTy, mkFunTy, mkTyConApp,
splitFunForallTy, tyView)
import Clash.Core.TyCon
(TyCon, TyConMap, TyConName, TyConOccName, tyConDataCons)
import Clash.Core.TysPrim
import Clash.Core.Util (mkApps,mkRTree,mkVec,tyNatSize)
import Clash.Core.Var (Var (..))
import Clash.GHC.GHC2Core (modNameM)
import Clash.Rewrite.Util (mkSelectorCase)
import Clash.Util
(MonadUnique (..), clogBase, flogBase, curLoc)
import Clash.Promoted.Nat.Unsafe (unsafeSNat)
import qualified Clash.Sized.Internal.BitVector as BitVector
import qualified Clash.Sized.Internal.Signed as Signed
import qualified Clash.Sized.Internal.Unsigned as Unsigned
import Clash.Sized.Internal.BitVector(BitVector(..), Bit)
import Clash.Sized.Internal.Signed (Signed (..))
import Clash.Sized.Internal.Unsigned (Unsigned (..))
newtype PrimEvalMonad a = PEM { runPEM :: Supply -> (a,Supply) }
instance Functor PrimEvalMonad where
fmap f m = PEM (\s -> case runPEM m s of (a,s') -> (f a, s'))
instance Applicative PrimEvalMonad where
pure = return
(<*>) = ap
instance Monad PrimEvalMonad where
return a = PEM (\s -> (a,s))
m >>= k = PEM (\s -> case runPEM m s of (a,s') -> runPEM (k a) s')
instance Fresh PrimEvalMonad where
fresh (U.Fn nm _) =
PEM (\s -> case freshId s of
(!i,!s') -> let !i' = toInteger i
in (U.Fn nm i',s'))
fresh nm@(U.Bn {}) = PEM (\s -> (nm,s))
instance MonadUnique PrimEvalMonad where
getUniqueM = PEM (\s -> case freshId s of (!i,!s') -> (i,s'))
reduceConstant :: PrimEvaluator
reduceConstant isSubj gbl tcm h k nm ty tys args = case nm of
"GHC.Prim.gtChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i > j))
"GHC.Prim.geChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i >= j))
"GHC.Prim.eqChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i == j))
"GHC.Prim.neChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i /= j))
"GHC.Prim.ltChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i < j))
"GHC.Prim.leChar#" | Just (i,j) <- charLiterals args
-> reduce (boolToIntLiteral (i <= j))
"GHC.Prim.ord#" | [i] <- charLiterals' args
-> reduce (integerToIntLiteral (toInteger $ ord i))
"GHC.Prim.+#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i+j))
"GHC.Prim.-#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i-j))
"GHC.Prim.*#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i*j))
"GHC.Prim.mulIntMayOflo#" | Just (i,j) <- intLiterals args
-> let !(I# a) = fromInteger i
!(I# b) = fromInteger j
c :: Int#
c = mulIntMayOflo# a b
in reduce (integerToIntLiteral (toInteger $ I# c))
"GHC.Prim.quotInt#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i `quot` j))
"GHC.Prim.remInt#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i `rem` j))
"GHC.Prim.quotRemInt#" | Just (i,j) <- intLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
(q,r) = quotRem i j
ret = mkApps (Data tupDc) (map Right tyArgs ++
[Left (integerToIntLiteral q), Left (integerToIntLiteral r)])
in reduce ret
"GHC.Prim.andI#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i .&. j))
"GHC.Prim.orI#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i .|. j))
"GHC.Prim.xorI#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i `xor` j))
"GHC.Prim.notI#" | [i] <- intLiterals' args
-> reduce (integerToIntLiteral (complement i))
"GHC.Prim.negateInt#"
| [Lit (IntLiteral i)] <- args
-> reduce (integerToIntLiteral (negate i))
"GHC.Prim.addIntC#" | Just (i,j) <- intLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(I# a) = fromInteger i
!(I# b) = fromInteger j
!(# d, c #) = addIntC# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I# d)
, Left (Literal . IntLiteral . toInteger $ I# c)])
"GHC.Prim.subIntC#" | Just (i,j) <- intLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(I# a) = fromInteger i
!(I# b) = fromInteger j
!(# d, c #) = subIntC# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I# d)
, Left (Literal . IntLiteral . toInteger $ I# c)])
"GHC.Prim.>#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i > j))
"GHC.Prim.>=#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i >= j))
"GHC.Prim.==#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i == j))
"GHC.Prim./=#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i /= j))
"GHC.Prim.<#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i < j))
"GHC.Prim.<=#" | Just (i,j) <- intLiterals args
-> reduce (boolToIntLiteral (i <= j))
"GHC.Prim.chr#" | [i] <- intLiterals' args
-> reduce (charToCharLiteral (chr $ fromInteger i))
"GHC.Prim.int2Word#"
| [Lit (IntLiteral i)] <- args
-> reduce . Literal . WordLiteral . toInteger $ (fromInteger :: Integer -> Word) i
"GHC.Prim.int2Float#"
| [Lit (IntLiteral i)] <- args
-> reduce . Literal . FloatLiteral . toRational $ (fromInteger i :: Float)
"GHC.Prim.int2Double#"
| [Lit (IntLiteral i)] <- args
-> reduce . Literal . DoubleLiteral . toRational $ (fromInteger i :: Double)
"GHC.Prim.word2Float#"
| [Lit (WordLiteral i)] <- args
-> reduce . Literal . FloatLiteral . toRational $ (fromInteger i :: Float)
"GHC.Prim.word2Double#"
| [Lit (WordLiteral i)] <- args
-> reduce . Literal . DoubleLiteral . toRational $ (fromInteger i :: Double)
"GHC.Prim.uncheckedIShiftL#"
| [ Lit (IntLiteral i)
, Lit (IntLiteral s)
] <- args
-> reduce (integerToIntLiteral (i `shiftL` fromInteger s))
"GHC.Prim.uncheckedIShiftRA#"
| [ Lit (IntLiteral i)
, Lit (IntLiteral s)
] <- args
-> reduce (integerToIntLiteral (i `shiftR` fromInteger s))
"GHC.Prim.uncheckedIShiftRL#" | Just (i,j) <- intLiterals args
-> let !(I# a) = fromInteger i
!(I# b) = fromInteger j
c :: Int#
c = uncheckedIShiftRL# a b
in reduce (integerToIntLiteral (toInteger $ I# c))
"GHC.Prim.plusWord#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i+j))
"GHC.Prim.subWordC#" | Just (i,j) <- wordLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(W# a) = fromInteger i
!(W# b) = fromInteger j
!(# d, c #) = subWordC# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . WordLiteral . toInteger $ W# d)
, Left (Literal . IntLiteral . toInteger $ I# c)])
"GHC.Prim.plusWord2#" | Just (i,j) <- wordLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(W# a) = fromInteger i
!(W# b) = fromInteger j
!(# h', l #) = plusWord2# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . WordLiteral . toInteger $ W# h')
, Left (Literal . WordLiteral . toInteger $ W# l)])
"GHC.Prim.minusWord#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i-j))
"GHC.Prim.timesWord#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i*j))
"GHC.Prim.timesWord2#" | Just (i,j) <- wordLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(W# a) = fromInteger i
!(W# b) = fromInteger j
!(# h', l #) = timesWord2# a b
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . WordLiteral . toInteger $ W# h')
, Left (Literal . WordLiteral . toInteger $ W# l)])
"GHC.Prim.quotWord#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i `quot` j))
"GHC.Prim.remWord#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i `rem` j))
"GHC.Prim.quotRemWord#" | Just (i,j) <- wordLiterals args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
(q,r) = quotRem i j
ret = mkApps (Data tupDc) (map Right tyArgs ++
[Left (integerToWordLiteral q), Left (integerToWordLiteral r)])
in reduce ret
"GHC.Prim.quotRemWord2#" | [i,j,k'] <- wordLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(W# a) = fromInteger i
!(W# b) = fromInteger j
!(W# c) = fromInteger k'
!(# x, y #) = quotRemWord2# a b c
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . WordLiteral . toInteger $ W# x)
, Left (Literal . WordLiteral . toInteger $ W# y)])
"GHC.Prim.and#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i .&. j))
"GHC.Prim.or#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i .|. j))
"GHC.Prim.xor#" | Just (i,j) <- wordLiterals args
-> reduce (integerToWordLiteral (i `xor` j))
"GHC.Prim.not#" | [i] <- wordLiterals' args
-> reduce (integerToWordLiteral (complement i))
"GHC.Prim.uncheckedShiftL#"
| [ Lit (WordLiteral w)
, Lit (IntLiteral i)
] <- args
-> reduce (Literal (WordLiteral (w `shiftL` fromInteger i)))
"GHC.Prim.uncheckedShiftRL#"
| [ Lit (WordLiteral w)
, Lit (IntLiteral i)
] <- args
-> reduce (Literal (WordLiteral (w `shiftR` fromInteger i)))
"GHC.Prim.word2Int#"
| [Lit (WordLiteral i)] <- args
-> reduce . Literal . IntLiteral . toInteger $ (fromInteger :: Integer -> Int) i
"GHC.Prim.gtWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i > j))
"GHC.Prim.geWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i >= j))
"GHC.Prim.eqWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i == j))
"GHC.Prim.neWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i /= j))
"GHC.Prim.ltWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i < j))
"GHC.Prim.leWord#" | Just (i,j) <- wordLiterals args
-> reduce (boolToIntLiteral (i <= j))
"GHC.Prim.popCnt8#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word8) $ i
"GHC.Prim.popCnt16#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word16) $ i
"GHC.Prim.popCnt32#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word32) $ i
"GHC.Prim.popCnt64#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word64) $ i
"GHC.Prim.popCnt#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . popCount . (fromInteger :: Integer -> Word) $ i
"GHC.Prim.clz8#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word8) $ i
"GHC.Prim.clz16#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word16) $ i
"GHC.Prim.clz32#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word32) $ i
"GHC.Prim.clz64#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word64) $ i
"GHC.Prim.clz#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countLeadingZeros . (fromInteger :: Integer -> Word) $ i
"GHC.Prim.ctz8#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i .&. (bit 8 - 1)
"GHC.Prim.ctz16#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i .&. (bit 16 - 1)
"GHC.Prim.ctz32#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i .&. (bit 32 - 1)
"GHC.Prim.ctz64#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word64) $ i .&. (bit 64 - 1)
"GHC.Prim.ctz#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . countTrailingZeros . (fromInteger :: Integer -> Word) $ i
"GHC.Prim.byteSwap16#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . byteSwap16 . (fromInteger :: Integer -> Word16) $ i
"GHC.Prim.byteSwap32#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . byteSwap32 . (fromInteger :: Integer -> Word32) $ i
"GHC.Prim.byteSwap64#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . byteSwap64 . (fromInteger :: Integer -> Word64) $ i
"GHC.Prim.byteSwap#" | [i] <- wordLiterals' args
-> reduce . integerToWordLiteral . toInteger . byteSwap64 . (fromInteger :: Integer -> Word64) $ i
"GHC.Prim.narrow8Int#" | [i] <- intLiterals' args
-> let !(I# a) = fromInteger i
b = narrow8Int# a
in reduce . Literal . IntLiteral . toInteger $ I# b
"GHC.Prim.narrow16Int#" | [i] <- intLiterals' args
-> let !(I# a) = fromInteger i
b = narrow16Int# a
in reduce . Literal . IntLiteral . toInteger $ I# b
"GHC.Prim.narrow32Int#" | [i] <- intLiterals' args
-> let !(I# a) = fromInteger i
b = narrow32Int# a
in reduce . Literal . IntLiteral . toInteger $ I# b
"GHC.Prim.narrow8Word#" | [i] <- wordLiterals' args
-> let !(W# a) = fromInteger i
b = narrow8Word# a
in reduce . Literal . WordLiteral . toInteger $ W# b
"GHC.Prim.narrow16Word#" | [i] <- wordLiterals' args
-> let !(W# a) = fromInteger i
b = narrow16Word# a
in reduce . Literal . WordLiteral . toInteger $ W# b
"GHC.Prim.narrow32Word#" | [i] <- wordLiterals' args
-> let !(W# a) = fromInteger i
b = narrow32Word# a
in reduce . Literal . WordLiteral . toInteger $ W# b
"GHC.Prim.>##" | Just r <- liftDDI (>##) args
-> reduce r
"GHC.Prim.>=##" | Just r <- liftDDI (>=##) args
-> reduce r
"GHC.Prim.==##" | Just r <- liftDDI (==##) args
-> reduce r
"GHC.Prim./=##" | Just r <- liftDDI (/=##) args
-> reduce r
"GHC.Prim.<##" | Just r <- liftDDI (<##) args
-> reduce r
"GHC.Prim.<=##" | Just r <- liftDDI (<=##) args
-> reduce r
"GHC.Prim.+##" | Just r <- liftDDD (+##) args
-> reduce r
"GHC.Prim.-##" | Just r <- liftDDD (-##) args
-> reduce r
"GHC.Prim.*##" | Just r <- liftDDD (*##) args
-> reduce r
"GHC.Prim./##" | Just r <- liftDDD (/##) args
-> reduce r
"GHC.Prim.negateDouble#" | Just r <- liftDD negateDouble# args
-> reduce r
"GHC.Prim.fabsDouble#" | Just r <- liftDD fabsDouble# args
-> reduce r
"GHC.Prim.double2Int#" | [i] <- doubleLiterals' args
-> let !(D# a) = fromRational i
r = double2Int# a
in reduce . Literal . IntLiteral . toInteger $ I# r
"GHC.Prim.double2Float#"
| [Lit (DoubleLiteral d)] <- args
-> reduce (Literal (FloatLiteral (toRational (fromRational d :: Float))))
"GHC.Prim.expDouble#" | Just r <- liftDD expDouble# args
-> reduce r
"GHC.Prim.logDouble#" | Just r <- liftDD logDouble# args
-> reduce r
"GHC.Prim.sqrtDouble#" | Just r <- liftDD sqrtDouble# args
-> reduce r
"GHC.Prim.sinDouble#" | Just r <- liftDD sinDouble# args
-> reduce r
"GHC.Prim.cosDouble#" | Just r <- liftDD cosDouble# args
-> reduce r
"GHC.Prim.tanDouble#" | Just r <- liftDD tanDouble# args
-> reduce r
"GHC.Prim.asinDouble#" | Just r <- liftDD asinDouble# args
-> reduce r
"GHC.Prim.acosDouble#" | Just r <- liftDD acosDouble# args
-> reduce r
"GHC.Prim.atanDouble#" | Just r <- liftDD atanDouble# args
-> reduce r
"GHC.Prim.sinhDouble#" | Just r <- liftDD sinhDouble# args
-> reduce r
"GHC.Prim.coshDouble#" | Just r <- liftDD coshDouble# args
-> reduce r
"GHC.Prim.tanhDouble#" | Just r <- liftDD tanhDouble# args
-> reduce r
"GHC.Prim.**##" | Just r <- liftDDD (**##) args
-> reduce r
"GHC.Prim.decodeDouble_2Int#" | [i] <- doubleLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(D# a) = fromRational i
!(# p, q, r, s #) = decodeDouble_2Int# a
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I# p)
, Left (Literal . WordLiteral . toInteger $ W# q)
, Left (Literal . WordLiteral . toInteger $ W# r)
, Left (Literal . IntLiteral . toInteger $ I# s)])
"GHC.Prim.decodeDouble_Int64#" | [i] <- doubleLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(D# a) = fromRational i
!(# p, q #) = decodeDouble_Int64# a
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I# p)
, Left (Literal . IntLiteral . toInteger $ I# q)])
"GHC.Prim.gtFloat#" | Just r <- liftFFI gtFloat# args
-> reduce r
"GHC.Prim.geFloat#" | Just r <- liftFFI geFloat# args
-> reduce r
"GHC.Prim.eqFloat#" | Just r <- liftFFI eqFloat# args
-> reduce r
"GHC.Prim.neFloat#" | Just r <- liftFFI neFloat# args
-> reduce r
"GHC.Prim.ltFloat#" | Just r <- liftFFI ltFloat# args
-> reduce r
"GHC.Prim.leFloat#" | Just r <- liftFFI leFloat# args
-> reduce r
"GHC.Prim.plusFloat#" | Just r <- liftFFF plusFloat# args
-> reduce r
"GHC.Prim.minusFloat#" | Just r <- liftFFF minusFloat# args
-> reduce r
"GHC.Prim.timesFloat#" | Just r <- liftFFF timesFloat# args
-> reduce r
"GHC.Prim.divideFloat#" | Just r <- liftFFF divideFloat# args
-> reduce r
"GHC.Prim.negateFloat#" | Just r <- liftFF negateFloat# args
-> reduce r
"GHC.Prim.fabsFloat#" | Just r <- liftFF fabsFloat# args
-> reduce r
"GHC.Prim.float2Int#" | [i] <- floatLiterals' args
-> let !(F# a) = fromRational i
r = float2Int# a
in reduce . Literal . IntLiteral . toInteger $ I# r
"GHC.Prim.expFloat#" | Just r <- liftFF expFloat# args
-> reduce r
"GHC.Prim.logFloat#" | Just r <- liftFF logFloat# args
-> reduce r
"GHC.Prim.sqrtFloat#" | Just r <- liftFF sqrtFloat# args
-> reduce r
"GHC.Prim.sinFloat#" | Just r <- liftFF sinFloat# args
-> reduce r
"GHC.Prim.cosFloat#" | Just r <- liftFF cosFloat# args
-> reduce r
"GHC.Prim.tanFloat#" | Just r <- liftFF tanFloat# args
-> reduce r
"GHC.Prim.asinFloat#" | Just r <- liftFF asinFloat# args
-> reduce r
"GHC.Prim.acosFloat#" | Just r <- liftFF acosFloat# args
-> reduce r
"GHC.Prim.atanFloat#" | Just r <- liftFF atanFloat# args
-> reduce r
"GHC.Prim.sinhFloat#" | Just r <- liftFF sinhFloat# args
-> reduce r
"GHC.Prim.coshFloat#" | Just r <- liftFF coshFloat# args
-> reduce r
"GHC.Prim.tanhFloat#" | Just r <- liftFF tanhFloat# args
-> reduce r
"GHC.Prim.powerFloat#" | Just r <- liftFFF powerFloat# args
-> reduce r
"GHC.Prim.float2Double#" | [i] <- floatLiterals' args
-> let !(F# a) = fromRational i
r = float2Double# a
in reduce . Literal . DoubleLiteral . toRational $ D# r
"GHC.Prim.decodeFloat_Int#" | [i] <- floatLiterals' args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(F# a) = fromRational i
!(# p, q #) = decodeFloat_Int# a
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (Literal . IntLiteral . toInteger $ I# p)
, Left (Literal . IntLiteral . toInteger $ I# q)])
"GHC.Prim.tagToEnum#"
| [ConstTy (TyCon tcN)] <- tys
, [Lit (IntLiteral i)] <- args
-> let dc = do { tc <- HashMap.lookup (nameOcc tcN) tcm
; let dcs = tyConDataCons tc
; List.find ((== (i+1)) . toInteger . dcTag) dcs
}
in ((h,k,) . Data) <$> dc
"GHC.Classes.geInt" | Just (i,j) <- intCLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"GHC.Classes.&&"
| [DC lCon _
,DC rCon _] <- args
-> reduce $ boolToBoolLiteral tcm ty
((name2String (dcName lCon) == "GHC.Types.True") &&
(name2String (dcName rCon) == "GHC.Types.True"))
"GHC.Classes.||"
| [DC lCon _
,DC rCon _] <- args
-> reduce $ boolToBoolLiteral tcm ty
((name2String (dcName lCon) == "GHC.Types.True") ||
(name2String (dcName rCon) == "GHC.Types.True"))
"GHC.Classes.divInt#" | Just (i,j) <- intLiterals args
-> reduce (integerToIntLiteral (i `div` j))
"GHC.Classes.not"
| [DC bCon _] <- args
-> reduce (boolToBoolLiteral tcm ty (name2String (dcName bCon) == "GHC.Types.False"))
"GHC.Integer.Logarithms.integerLogBase#"
| Just (a,b) <- integerLiterals args
, Just c <- flogBase a b
-> (reduce . Literal . IntLiteral . toInteger) c
"GHC.Integer.Type.smallInteger"
| [Lit (IntLiteral i)] <- args
-> reduce (Literal (IntegerLiteral i))
"GHC.Integer.Type.integerToInt"
| [Lit (IntegerLiteral i)] <- args
-> reduce (integerToIntLiteral i)
"GHC.Integer.Type.decodeDoubleInteger"
| [Lit (DoubleLiteral i)] <- args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
!(D# a) = fromRational i
!(# b, c #) = decodeDoubleInteger a
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (integerToIntegerLiteral b)
, Left (integerToIntLiteral . toInteger $ I# c)])
"GHC.Integer.Type.encodeDoubleInteger"
| [Lit (IntegerLiteral i), Lit (IntLiteral j)] <- args
-> let !(I# k') = fromInteger j
r = encodeDoubleInteger i k'
in reduce . Literal . DoubleLiteral . toRational $ D# r
"GHC.Integer.Type.quotRemInteger"
| [Lit (IntegerLiteral i), Lit (IntegerLiteral j)] <- args
-> let (_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
(q,r) = quotRem i j
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (integerToIntegerLiteral q)
, Left (integerToIntegerLiteral r)])
"GHC.Integer.Type.plusInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i+j))
"GHC.Integer.Type.minusInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i-j))
"GHC.Integer.Type.timesInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i*j))
"GHC.Integer.Type.negateInteger"
| [Lit (IntegerLiteral i)] <- args
-> reduce (integerToIntegerLiteral (negate i))
"GHC.Integer.Type.divInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i `div` j))
"GHC.Integer.Type.modInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i `mod` j))
"GHC.Integer.Type.quotInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i `quot` j))
"GHC.Integer.Type.remInteger" | Just (i,j) <- integerLiterals args
-> reduce (integerToIntegerLiteral (i `rem` j))
"GHC.Integer.Type.divModInteger" | Just (i,j) <- integerLiterals args
-> let (_,tyView -> TyConApp ubTupTcNm [liftedKi,_,intTy,_]) = splitFunForallTy ty
(Just ubTupTc) = HashMap.lookup (nameOcc ubTupTcNm) tcm
[ubTupDc] = tyConDataCons ubTupTc
(d,m) = divMod i j
in reduce $
mkApps (Data ubTupDc) [ Right liftedKi, Right liftedKi
, Right intTy, Right intTy
, Left (Literal (IntegerLiteral d))
, Left (Literal (IntegerLiteral m))
]
"GHC.Integer.Type.gtInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"GHC.Integer.Type.geInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"GHC.Integer.Type.eqInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"GHC.Integer.Type.neqInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"GHC.Integer.Type.ltInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"GHC.Integer.Type.leInteger" | Just (i,j) <- integerLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"GHC.Integer.Type.gtInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i > j))
"GHC.Integer.Type.geInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i >= j))
"GHC.Integer.Type.eqInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i == j))
"GHC.Integer.Type.neqInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i /= j))
"GHC.Integer.Type.ltInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i < j))
"GHC.Integer.Type.leInteger#" | Just (i,j) <- integerLiterals args
-> reduce (boolToIntLiteral (i <= j))
"GHC.Integer.Type.shiftRInteger"
| [Lit (IntegerLiteral i), Lit (IntLiteral j)] <- args
-> reduce (integerToIntegerLiteral (i `shiftR` fromInteger j))
"GHC.Integer.Type.shiftLInteger"
| [Lit (IntegerLiteral i), Lit (IntLiteral j)] <- args
-> reduce (integerToIntegerLiteral (i `shiftL` fromInteger j))
"GHC.Integer.Type.wordToInteger"
| [Lit (WordLiteral w)] <- args
-> reduce (Literal (IntegerLiteral w))
"GHC.Natural.NatS#"
| [Lit (WordLiteral w)] <- args
-> reduce (Literal (NaturalLiteral w))
"GHC.Real.^_f"
| [Lit (IntegerLiteral i), Lit (IntegerLiteral j)] <- args
-> reduce (integerToIntegerLiteral $ i ^ j)
"GHC.Real.$wf"
| [Lit (IntegerLiteral i), Lit (IntLiteral j)] <- args
-> reduce (integerToIntegerLiteral $ i ^ j)
"GHC.Real.$wf1"
| [Lit (IntLiteral i), Lit (IntLiteral j)] <- args
-> reduce (integerToIntLiteral $ i ^ j)
"GHC.TypeLits.natVal"
| [Lit (NaturalLiteral n), _] <- args
-> reduce (integerToIntegerLiteral n)
"GHC.TypeNats.natVal"
| [Lit (NaturalLiteral n), _] <- args
-> reduce (Literal (NaturalLiteral n))
"GHC.Types.C#"
| isSubj
, [Lit (CharLiteral c)] <- args
-> let (_,tyView -> TyConApp charTcNm []) = splitFunForallTy ty
(Just charTc) = HashMap.lookup (nameOcc charTcNm) tcm
[charDc] = tyConDataCons charTc
in reduce (mkApps (Data charDc) [Left (Literal (CharLiteral c))])
"GHC.Types.I#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Int.I8#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Int.I16#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Int.I32#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Int.I64#"
| isSubj
, [Lit (IntLiteral i)] <- args
-> let (_,tyView -> TyConApp intTcNm []) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intDc] = tyConDataCons intTc
in reduce (mkApps (Data intDc) [Left (Literal (IntLiteral i))])
"GHC.Types.W#"
| isSubj
, [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = HashMap.lookup (nameOcc wordTcNm) tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Word.W8#"
| isSubj
, [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = HashMap.lookup (nameOcc wordTcNm) tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Word.W16#"
| isSubj
, [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = HashMap.lookup (nameOcc wordTcNm) tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Word.W32#"
| isSubj
, [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = HashMap.lookup (nameOcc wordTcNm) tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Word.W64#"
| [Lit (WordLiteral c)] <- args
-> let (_,tyView -> TyConApp wordTcNm []) = splitFunForallTy ty
(Just wordTc) = HashMap.lookup (nameOcc wordTcNm) tcm
[wordDc] = tyConDataCons wordTc
in reduce (mkApps (Data wordDc) [Left (Literal (WordLiteral c))])
"GHC.Float.$w$sfromRat''"
| [Lit (IntLiteral _minEx)
,Lit (IntLiteral matDigs)
,Lit (IntegerLiteral n)
,Lit (IntegerLiteral d)] <- args
-> case fromInteger matDigs of
matDigs'
| matDigs' == floatDigits (undefined :: Float)
-> reduce (Literal (FloatLiteral (toRational (fromRational (n :% d) :: Float))))
| matDigs' == floatDigits (undefined :: Double)
-> reduce (Literal (DoubleLiteral (toRational (fromRational (n :% d) :: Double))))
_ -> error $ $(curLoc) ++ "GHC.Float.$w$sfromRat'': Not a Float or Double"
"GHC.Float.$w$sfromRat''1"
| [Lit (IntLiteral _minEx)
,Lit (IntLiteral matDigs)
,Lit (IntegerLiteral n)
,Lit (IntegerLiteral d)] <- args
-> case fromInteger matDigs of
matDigs'
| matDigs' == floatDigits (undefined :: Float)
-> reduce (Literal (FloatLiteral (toRational (fromRational (n :% d) :: Float))))
| matDigs' == floatDigits (undefined :: Double)
-> reduce (Literal (DoubleLiteral (toRational (fromRational (n :% d) :: Double))))
_ -> error $ $(curLoc) ++ "GHC.Float.$w$sfromRat'': Not a Float or Double"
"GHC.Integer.Type.doubleFromInteger"
| [Lit (IntegerLiteral i)] <- args
-> reduce (Literal (DoubleLiteral (toRational (fromInteger i :: Double))))
"GHC.Base.eqString"
| [PrimVal _ _ _ [Lit (StringLiteral s1)]
,PrimVal _ _ _ [Lit (StringLiteral s2)]
] <- args
-> reduce (boolToBoolLiteral tcm ty (s1 == s2))
| otherwise -> error (show args)
"Clash.Class.BitPack.packDouble#"
| [DC _ [Left arg]] <- args
, (h2,[],Literal (DoubleLiteral i)) <- whnf reduceConstant gbl tcm True (h,[],arg)
-> let resTyInfo = extractTySizeInfo tcm ty tys
in Just (h2,k,mkBitVectorLit' resTyInfo (BitVector.unsafeToInteger $ (pack :: Double -> BitVector 64) $ fromRational i))
"Clash.Class.BitPack.packFloat#"
| [DC _ [Left arg]] <- args
, (h2,[],Literal (FloatLiteral i)) <- whnf reduceConstant gbl tcm True (h,[],arg)
-> let resTyInfo = extractTySizeInfo tcm ty tys
in Just (h2,k,mkBitVectorLit' resTyInfo (BitVector.unsafeToInteger $ (pack :: Float -> BitVector 32) $ fromRational i))
"Clash.Class.BitPack.unpackFloat#"
| [i] <- bitVectorLiterals' args
-> reduce (Literal (FloatLiteral (toRational $ (unpack :: BitVector 32 -> Float) (fromInteger i))))
"Clash.Class.BitPack.unpackDouble#"
| [i] <- bitVectorLiterals' args
-> reduce (Literal (DoubleLiteral (toRational $ (unpack :: BitVector 64 -> Double) (fromInteger i))))
"Clash.Promoted.Nat.powSNat"
| [Right a, Right b] <- map (runExcept . tyNatSize tcm) tys
-> let c = case a of
2 -> 1 `shiftL` (fromInteger b)
_ -> a ^ b
(_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty
(Just snatTc) = HashMap.lookup (nameOcc snatTcNm) tcm
[snatDc] = tyConDataCons snatTc
in reduce $
mkApps (Data snatDc) [ Right (LitTy (NumTy c))
, Left (Literal (NaturalLiteral c))]
"Clash.Promoted.Nat.flogBaseSNat"
| [_,_,Right a, Right b] <- map (runExcept . tyNatSize tcm) tys
, Just c <- flogBase a b
, let c' = toInteger c
-> let (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty
(Just snatTc) = HashMap.lookup (nameOcc snatTcNm) tcm
[snatDc] = tyConDataCons snatTc
in reduce $
mkApps (Data snatDc) [ Right (LitTy (NumTy c'))
, Left (Literal (NaturalLiteral c'))]
"Clash.Promoted.Nat.clogBaseSNat"
| [_,_,Right a, Right b] <- map (runExcept . tyNatSize tcm) tys
, Just c <- clogBase a b
, let c' = toInteger c
-> let (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty
(Just snatTc) = HashMap.lookup (nameOcc snatTcNm) tcm
[snatDc] = tyConDataCons snatTc
in reduce $
mkApps (Data snatDc) [ Right (LitTy (NumTy c'))
, Left (Literal (NaturalLiteral c'))]
"Clash.Promoted.Nat.logBaseSNat"
| [_,Right a, Right b] <- map (runExcept . tyNatSize tcm) tys
, Just c <- flogBase a b
, let c' = toInteger c
-> let (_,tyView -> TyConApp snatTcNm _) = splitFunForallTy ty
(Just snatTc) = HashMap.lookup (nameOcc snatTcNm) tcm
[snatDc] = tyConDataCons snatTc
in reduce $
mkApps (Data snatDc) [ Right (LitTy (NumTy c'))
, Left (Literal (NaturalLiteral c'))]
"Clash.Sized.Internal.BitVector.size#"
| Just (_, kn) <- extractKnownNat tcm tys
-> let (_,tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral kn))])
"Clash.Sized.Internal.BitVector.maxIndex#"
| Just (_, kn) <- extractKnownNat tcm tys
-> let (_,tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral (kn-1)))])
"Clash.Sized.Internal.BitVector.high"
-> reduce (mkBitLit ty 1)
"Clash.Sized.Internal.BitVector.low"
-> reduce (mkBitLit ty 0)
"Clash.Sized.Internal.BitVector.eq##" | [i,j] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Internal.BitVector.neq##" | [i,j] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"Clash.Sized.Internal.BitVector.lt##" | [i,j] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"Clash.Sized.Internal.BitVector.ge##" | [i,j] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"Clash.Sized.Internal.BitVector.gt##" | [i,j] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"Clash.Sized.Internal.BitVector.le##" | [i,j] <- bitLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"Clash.Sized.Internal.BitVector.and##"
| [i,j] <- bitLiterals args
-> reduce (mkBitLit ty (i .&. j))
"Clash.Sized.Internal.BitVector.or##"
| [i,j] <- bitLiterals args
-> reduce (mkBitLit ty (i .|. j))
"Clash.Sized.Internal.BitVector.xor##"
| [i,j] <- bitLiterals args
-> reduce (mkBitLit ty (i `xor` j))
"Clash.Sized.Internal.BitVector.complement##"
| [i] <- bitLiterals args
-> reduce (mkBitLit ty (complement i))
"Clash.Sized.Internal.BitVector.pack#"
| [i] <- bitLiterals args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo i)
"Clash.Sized.Internal.BitVector.unpack#"
| [i] <- bitVectorLiterals' args
-> reduce (mkBitLit ty i)
"Clash.Sized.Internal.BitVector.++#"
| Just (_,m) <- extractKnownNat tcm tys
, [i,j] <- bitVectorLiterals' args
-> let val = i `shiftL` fromInteger m .|. j
resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo val)
"Clash.Sized.Internal.BitVector.reduceAnd#"
| [i] <- bitVectorLiterals' args
, Just (_, kn) <- extractKnownNat tcm tys
-> let resTy = getResultTy tcm ty tys
val = reifyNat kn (op (fromInteger i))
in reduce (mkBitLit resTy val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.reduceAnd# u)
"Clash.Sized.Internal.BitVector.reduceOr#"
| [i] <- bitVectorLiterals' args
, Just (_, kn) <- extractKnownNat tcm tys
-> let resTy = getResultTy tcm ty tys
val = reifyNat kn (op (fromInteger i))
in reduce (mkBitLit resTy val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.reduceOr# u)
"Clash.Sized.Internal.BitVector.reduceXor#"
| [i] <- bitVectorLiterals' args
, Just (_, kn) <- extractKnownNat tcm tys
-> let resTy = getResultTy tcm ty tys
val = reifyNat kn (op (fromInteger i))
in reduce (mkBitLit resTy val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.reduceXor# u)
"Clash.Sized.Internal.BitVector.index#"
| Just (_,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let resTy = getResultTy tcm ty tys
val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkBitLit resTy val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> Integer
op u i _ = toInteger (BitVector.index# u i)
"Clash.Sized.Internal.BitVector.replaceBit#"
| Just (_, n) <- extractKnownNat tcm tys
, [ _
, PrimVal bvNm _ _ [_, Lit (IntegerLiteral bv)]
, valArgs -> Just [Literal (IntLiteral i)]
, PrimVal bNm _ _ [Lit (IntegerLiteral b)]
] <- args
, bvNm == "Clash.Sized.Internal.BitVector.fromInteger#"
, bNm == "Clash.Sized.Internal.BitVector.fromInteger##"
-> let resTyInfo = extractTySizeInfo tcm ty tys
val = reifyNat n (op (fromInteger bv) (fromInteger i) (fromInteger b))
in reduce (mkBitVectorLit' resTyInfo val)
where
op :: KnownNat n => BitVector n -> Int -> Bit -> Proxy n -> Integer
op bv i b _ = toInteger (BitVector.replaceBit# bv i b)
"Clash.Sized.Internal.BitVector.setSlice#"
| mTy : _ : nTy : _ <- tys
, Right m <- runExcept (tyNatSize tcm mTy)
, Right n <- runExcept (tyNatSize tcm nTy)
, [i,j] <- bitVectorLiterals' args
-> let val = BitVector.unsafeToInteger
$ BitVector.setSlice# (BV i) (unsafeSNat m) (unsafeSNat n) (BV j)
resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo val)
"Clash.Sized.Internal.BitVector.slice#"
| mTy : _ : nTy : _ <- tys
, Right m <- runExcept (tyNatSize tcm mTy)
, Right n <- runExcept (tyNatSize tcm nTy)
, [i] <- bitVectorLiterals' args
-> let val = BitVector.unsafeToInteger
$ BitVector.slice# (BV i) (unsafeSNat m) (unsafeSNat n)
resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo val)
"Clash.Sized.Internal.BitVector.split#"
| nTy : mTy : _ <- tys
, Right n <- runExcept (tyNatSize tcm nTy)
, Right m <- runExcept (tyNatSize tcm mTy)
, [i] <- bitVectorLiterals' args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty'
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
bvTy : _ = tyArgs
valM = i `shiftR` fromInteger n
valN = i .&. mask
mask = bit (fromInteger n) - 1
in reduce $
mkApps (Data tupDc) (map Right tyArgs ++
[ Left (mkBitVectorLit bvTy mTy m valM)
, Left (mkBitVectorLit bvTy nTy n valN)])
"Clash.Sized.Internal.BitVector.msb#"
| [i] <- bitVectorLiterals' args
, Just (_, kn) <- extractKnownNat tcm tys
-> let resTy = getResultTy tcm ty tys
val = reifyNat kn (op (fromInteger i))
in reduce (mkBitLit resTy val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.msb# u)
"Clash.Sized.Internal.BitVector.lsb#"
| [i] <- bitVectorLiterals' args
, Just (_, kn) <- extractKnownNat tcm tys
-> let resTy = getResultTy tcm ty tys
val = reifyNat kn (op (fromInteger i))
in reduce (mkBitLit resTy val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.lsb# u)
"Clash.Sized.Internal.BitVector.eq#" | Just (i,j) <- bitVectorLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Internal.BitVector.neq#" | Just (i,j) <- bitVectorLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"Clash.Sized.Internal.BitVector.lt#" | Just (i,j) <- bitVectorLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"Clash.Sized.Internal.BitVector.ge#" | Just (i,j) <- bitVectorLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"Clash.Sized.Internal.BitVector.gt#" | Just (i,j) <- bitVectorLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"Clash.Sized.Internal.BitVector.le#" | Just (i,j) <- bitVectorLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"Clash.Sized.Internal.BitVector.minBound#"
| Just (nTy,len) <- extractKnownNat tcm tys
-> reduce (mkBitVectorLit ty nTy len 0)
"Clash.Sized.Internal.BitVector.maxBound#"
| Just (litTy,mb) <- extractKnownNat tcm tys
-> let maxB = (2 ^ mb) - 1
in reduce (mkBitVectorLit ty litTy mb maxB)
"Clash.Sized.Internal.BitVector.+#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.+#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.-#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.-#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.*#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.*#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.negate#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- bitVectorLiterals' args
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkBitVectorLit ty nTy kn val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.negate# u)
"Clash.Sized.Internal.BitVector.plus#"
| Just (i,j) <- bitVectorLiterals args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkBitVectorLit resTy resSizeTy resSizeInt (i+j))
"Clash.Sized.Internal.BitVector.minus#"
| [i,j] <- bitVectorLiterals' args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
val = reifyNat resSizeInt (runSizedF (BitVector.-#) i j)
in reduce (mkBitVectorLit resTy resSizeTy resSizeInt val)
"Clash.Sized.Internal.BitVector.times#"
| Just (i,j) <- bitVectorLiterals args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkBitVectorLit resTy resSizeTy resSizeInt (i*j))
"Clash.Sized.Internal.BitVector.quot#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.quot#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.rem#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftBitVector2 (BitVector.rem#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.BitVector.toInteger#"
| [PrimVal nm' _ _ [_, Lit (IntegerLiteral i)]] <- args
, nm' == "Clash.Sized.Internal.BitVector.fromInteger#"
-> reduce (integerToIntegerLiteral i)
"Clash.Sized.Internal.BitVector.and#"
| Just (i,j) <- bitVectorLiterals args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkBitVectorLit ty nTy kn (i .&. j))
"Clash.Sized.Internal.BitVector.or#"
| Just (i,j) <- bitVectorLiterals args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkBitVectorLit ty nTy kn (i .|. j))
"Clash.Sized.Internal.BitVector.xor#"
| Just (i,j) <- bitVectorLiterals args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkBitVectorLit ty nTy kn (i `xor` j))
"Clash.Sized.Internal.BitVector.complement#"
| [i] <- bitVectorLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkBitVectorLit ty nTy kn val)
where
op :: KnownNat n => BitVector n -> Proxy n -> Integer
op u _ = toInteger (BitVector.complement# u)
"Clash.Sized.Internal.BitVector.shiftL#"
| Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkBitVectorLit ty nTy kn val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> Integer
op u i _ = toInteger (BitVector.shiftL# u i)
"Clash.Sized.Internal.BitVector.shiftR#"
| Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkBitVectorLit ty nTy kn val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> Integer
op u i _ = toInteger (BitVector.shiftR# u i)
"Clash.Sized.Internal.BitVector.rotateL#"
| Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkBitVectorLit ty nTy kn val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> Integer
op u i _ = toInteger (BitVector.rotateL# u i)
"Clash.Sized.Internal.BitVector.rotateR#"
| Just (nTy,kn,i,j) <- bitVectorLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkBitVectorLit ty nTy kn val)
where
op :: KnownNat n => BitVector n -> Int -> Proxy n -> Integer
op u i _ = toInteger (BitVector.rotateR# u i)
"Clash.Sized.Internal.BitVector.resize#"
| _ : mTy : _ <- tys
, Right km <- runExcept (tyNatSize tcm mTy)
, [i] <- bitVectorLiterals' args
-> let bitsKeep = (bit (fromInteger km)) - 1
val = i .&. bitsKeep
in reduce (mkBitVectorLit ty mTy km val)
"Clash.Sized.Internal.Index.pack#"
| nTy : _ <- tys
, Right _ <- runExcept (tyNatSize tcm nTy)
, [i] <- indexLiterals' args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo i)
"Clash.Sized.Internal.Index.unpack#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, [i] <- bitVectorLiterals' args
-> (h,k,) <$> mkIndexLit ty nTy kn i
"Clash.Sized.Internal.Index.eq#" | Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Internal.Index.neq#" | Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"Clash.Sized.Internal.Index.lt#"
| Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"Clash.Sized.Internal.Index.ge#"
| Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"Clash.Sized.Internal.Index.gt#"
| Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"Clash.Sized.Internal.Index.le#"
| Just (i,j) <- indexLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"Clash.Sized.Internal.Index.maxBound#"
| Just (nTy,mb) <- extractKnownNat tcm tys
-> (h,k,) <$> mkIndexLit ty nTy mb (mb - 1)
"Clash.Sized.Internal.Index.+#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, [i,j] <- indexLiterals' args
-> (h,k,) <$> mkIndexLit ty nTy kn (i + j)
"Clash.Sized.Internal.Index.-#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, [i,j] <- indexLiterals' args
-> (h,k,) <$> mkIndexLit ty nTy kn (i - j)
"Clash.Sized.Internal.Index.*#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, [i,j] <- indexLiterals' args
-> (h,k,) <$> mkIndexLit ty nTy kn (i * j)
"Clash.Sized.Internal.Index.plus#"
| mTy : nTy : _ <- tys
, Right _ <- runExcept (tyNatSize tcm mTy)
, Right _ <- runExcept (tyNatSize tcm nTy)
, Just (i,j) <- indexLiterals args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in (h,k,) <$> mkIndexLit' resTyInfo (i + j)
"Clash.Sized.Internal.Index.minus#"
| mTy : nTy : _ <- tys
, Right _ <- runExcept (tyNatSize tcm mTy)
, Right _ <- runExcept (tyNatSize tcm nTy)
, Just (i,j) <- indexLiterals args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in (h,k,) <$> mkIndexLit' resTyInfo (i - j)
"Clash.Sized.Internal.Index.times#"
| mTy : nTy : _ <- tys
, Right _ <- runExcept (tyNatSize tcm mTy)
, Right _ <- runExcept (tyNatSize tcm nTy)
, Just (i,j) <- indexLiterals args
-> let resTyInfo = extractTySizeInfo tcm ty tys
in (h,k,) <$> mkIndexLit' resTyInfo (i * j)
"Clash.Sized.Internal.Index.quot#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, Just (i,j) <- indexLiterals args
-> (h,k,) <$> mkIndexLit ty nTy kn (i `quot` j)
"Clash.Sized.Internal.Index.rem#"
| Just (nTy,kn) <- extractKnownNat tcm tys
, Just (i,j) <- indexLiterals args
-> (h,k,) <$> mkIndexLit ty nTy kn (i `rem` j)
"Clash.Sized.Internal.Index.toInteger#"
| [PrimVal nm' _ _ [_, Lit (IntegerLiteral i)]] <- args
, nm' == "Clash.Sized.Internal.Index.fromInteger#"
-> reduce (integerToIntegerLiteral i)
"Clash.Sized.Internal.Index.resize#"
| Just (mTy,m) <- extractKnownNat tcm tys
, [i] <- indexLiterals' args
-> (h,k,) <$> mkIndexLit ty mTy m i
"Clash.Sized.Internal.Signed.size#"
| Just (_, kn) <- extractKnownNat tcm tys
-> let (_,tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral kn))])
"Clash.Sized.Internal.Signed.pack#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- signedLiterals' args
-> reduce (mkBitVectorLit ty nTy kn i)
"Clash.Sized.Internal.Signed.unpack#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- bitVectorLiterals' args
-> reduce (mkSignedLit ty nTy kn i)
"Clash.Sized.Internal.Signed.eq#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Internal.Signed.neq#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"Clash.Sized.Internal.Signed.lt#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"Clash.Sized.Internal.Signed.ge#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"Clash.Sized.Internal.Signed.gt#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"Clash.Sized.Internal.Signed.le#" | Just (i,j) <- signedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"Clash.Sized.Internal.Signed.minBound#"
| Just (litTy,mb) <- extractKnownNat tcm tys
-> let minB = negate (2 ^ (mb - 1))
in reduce (mkSignedLit ty litTy mb minB)
"Clash.Sized.Internal.Signed.maxBound#"
| Just (litTy,mb) <- extractKnownNat tcm tys
-> let maxB = (2 ^ (mb - 1)) - 1
in reduce (mkSignedLit ty litTy mb maxB)
"Clash.Sized.Internal.Signed.+#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.+#) ty tcm tys args)
-> reduce (val)
"Clash.Sized.Internal.Signed.-#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.-#) ty tcm tys args)
-> reduce (val)
"Clash.Sized.Internal.Signed.*#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.*#) ty tcm tys args)
-> reduce (val)
"Clash.Sized.Internal.Signed.negate#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- signedLiterals' args
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op s _ = toInteger (Signed.negate# s)
"Clash.Sized.Internal.Signed.abs#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- signedLiterals' args
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op s _ = toInteger (Signed.abs# s)
"Clash.Sized.Internal.Signed.plus#"
| Just (i,j) <- signedLiterals args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkSignedLit resTy resSizeTy resSizeInt (i+j))
"Clash.Sized.Internal.Signed.minus#"
| Just (i,j) <- signedLiterals args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkSignedLit resTy resSizeTy resSizeInt (i-j))
"Clash.Sized.Internal.Signed.times#"
| Just (i,j) <- signedLiterals args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkSignedLit resTy resSizeTy resSizeInt (i*j))
"Clash.Sized.Internal.Signed.quot#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.quot#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Signed.rem#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.rem#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Signed.div#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.div#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Signed.mod#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftSigned2 (Signed.mod#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Signed.toInteger#"
| [PrimVal nm' _ _ [_, Lit (IntegerLiteral i)]] <- args
, nm' == "Clash.Sized.Internal.Signed.fromInteger#"
-> reduce (integerToIntegerLiteral i)
"Clash.Sized.Internal.Signed.and#"
| [i,j] <- signedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkSignedLit ty nTy kn (i .&. j))
"Clash.Sized.Internal.Signed.or#"
| [i,j] <- signedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkSignedLit ty nTy kn (i .|. j))
"Clash.Sized.Internal.Signed.xor#"
| [i,j] <- signedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkSignedLit ty nTy kn (i `xor` j))
"Clash.Sized.Internal.Signed.complement#"
| [i] <- signedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Proxy n -> Integer
op u _ = toInteger (Signed.complement# u)
"Clash.Sized.Internal.Signed.shiftL#"
| Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Signed.shiftL# u i)
"Clash.Sized.Internal.Signed.shiftR#"
| Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Signed.shiftR# u i)
"Clash.Sized.Internal.Signed.rotateL#"
| Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Signed.rotateL# u i)
"Clash.Sized.Internal.Signed.rotateR#"
| Just (nTy,kn,i,j) <- signedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkSignedLit ty nTy kn val)
where
op :: KnownNat n => Signed n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Signed.rotateR# u i)
"Clash.Sized.Internal.Signed.resize#"
| mTy : nTy : _ <- tys
, Right mInt <- runExcept (tyNatSize tcm mTy)
, Right nInt <- runExcept (tyNatSize tcm nTy)
, [i] <- signedLiterals' args
-> let val | nInt <= mInt = extended
| otherwise = truncated
extended = i
mask = 1 `shiftL` fromInteger (mInt - 1)
i' = i `mod` mask
truncated = if testBit i (fromInteger nInt - 1)
then (i' - mask)
else i'
in reduce (mkSignedLit ty mTy mInt val)
"Clash.Sized.Internal.Signed.truncateB#"
| Just (mTy, km) <- extractKnownNat tcm tys
, [i] <- signedLiterals' args
-> let bitsKeep = (bit (fromInteger km)) - 1
val = i .&. bitsKeep
in reduce (mkSignedLit ty mTy km val)
"Clash.Sized.Internal.Unsigned.size#"
| Just (_, kn) <- extractKnownNat tcm tys
-> let (_,ty') = splitFunForallTy ty
(TyConApp intTcNm _) = tyView ty'
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral kn))])
"Clash.Sized.Internal.Unsigned.pack#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- unsignedLiterals' args
-> reduce (mkBitVectorLit ty nTy kn i)
"Clash.Sized.Internal.Unsigned.unpack#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- bitVectorLiterals' args
-> reduce (mkUnsignedLit ty nTy kn i)
"Clash.Sized.Internal.Unsigned.eq#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i == j))
"Clash.Sized.Internal.Unsigned.neq#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i /= j))
"Clash.Sized.Internal.Unsigned.lt#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i < j))
"Clash.Sized.Internal.Unsigned.ge#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i >= j))
"Clash.Sized.Internal.Unsigned.gt#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i > j))
"Clash.Sized.Internal.Unsigned.le#" | Just (i,j) <- unsignedLiterals args
-> reduce (boolToBoolLiteral tcm ty (i <= j))
"Clash.Sized.Internal.Unsigned.minBound#"
| Just (nTy,len) <- extractKnownNat tcm tys
-> reduce (mkUnsignedLit ty nTy len 0)
"Clash.Sized.Internal.Unsigned.maxBound#"
| Just (litTy,mb) <- extractKnownNat tcm tys
-> let maxB = (2 ^ mb) - 1
in reduce (mkUnsignedLit ty litTy mb maxB)
"Clash.Sized.Internal.Unsigned.+#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.+#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Unsigned.-#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.-#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Unsigned.*#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.*#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Unsigned.negate#"
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i] <- unsignedLiterals' args
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Proxy n -> Integer
op u _ = toInteger (Unsigned.negate# u)
"Clash.Sized.Internal.Unsigned.plus#"
| Just (i,j) <- unsignedLiterals args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkUnsignedLit resTy resSizeTy resSizeInt (i+j))
"Clash.Sized.Internal.Unsigned.minus#"
| [i,j] <- unsignedLiterals' args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
val = reifyNat resSizeInt (runSizedF (Unsigned.-#) i j)
in reduce (mkUnsignedLit resTy resSizeTy resSizeInt val)
"Clash.Sized.Internal.Unsigned.times#"
| Just (i,j) <- unsignedLiterals args
-> let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
(TyConApp _ [resSizeTy]) = tyView resTy
Right resSizeInt = runExcept (tyNatSize tcm resSizeTy)
in reduce (mkUnsignedLit resTy resSizeTy resSizeInt (i*j))
"Clash.Sized.Internal.Unsigned.quot#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.quot#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Unsigned.rem#"
| Just (_, kn) <- extractKnownNat tcm tys
, Just val <- reifyNat kn (liftUnsigned2 (Unsigned.rem#) ty tcm tys args)
-> reduce val
"Clash.Sized.Internal.Unsigned.toInteger#"
| [PrimVal nm' _ _ [_, Lit (IntegerLiteral i)]] <- args
, nm' == "Clash.Sized.Internal.Unsigned.fromInteger#"
-> reduce (integerToIntegerLiteral i)
"Clash.Sized.Internal.Unsigned.and#"
| Just (i,j) <- unsignedLiterals args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkUnsignedLit ty nTy kn (i .&. j))
"Clash.Sized.Internal.Unsigned.or#"
| Just (i,j) <- unsignedLiterals args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkUnsignedLit ty nTy kn (i .|. j))
"Clash.Sized.Internal.Unsigned.xor#"
| Just (i,j) <- unsignedLiterals args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> reduce (mkUnsignedLit ty nTy kn (i `xor` j))
"Clash.Sized.Internal.Unsigned.complement#"
| [i] <- unsignedLiterals' args
, Just (nTy, kn) <- extractKnownNat tcm tys
-> let val = reifyNat kn (op (fromInteger i))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Proxy n -> Integer
op u _ = toInteger (Unsigned.complement# u)
"Clash.Sized.Internal.Unsigned.shiftL#"
| Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Unsigned.shiftL# u i)
"Clash.Sized.Internal.Unsigned.shiftR#"
| Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Unsigned.shiftR# u i)
"Clash.Sized.Internal.Unsigned.rotateL#"
| Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Unsigned.rotateL# u i)
"Clash.Sized.Internal.Unsigned.rotateR#"
| Just (nTy,kn,i,j) <- unsignedLitIntLit tcm tys args
-> let val = reifyNat kn (op (fromInteger i) (fromInteger j))
in reduce (mkUnsignedLit ty nTy kn val)
where
op :: KnownNat n => Unsigned n -> Int -> Proxy n -> Integer
op u i _ = toInteger (Unsigned.rotateR# u i)
"Clash.Sized.Internal.Unsigned.resize#"
| _ : mTy : _ <- tys
, Right km <- runExcept (tyNatSize tcm mTy)
, [i] <- unsignedLiterals' args
-> let bitsKeep = (bit (fromInteger km)) - 1
val = i .&. bitsKeep
in reduce (mkUnsignedLit ty mTy km val)
"Clash.Sized.RTree.textract"
| isSubj
, [DC _ tArgs] <- args
-> reduceWHNF (Either.lefts tArgs !! 1)
"Clash.Sized.RTree.tsplit"
| isSubj
, dTy : aTy : _ <- tys
, [DC _ tArgs] <- args
, (tyArgs,tyView -> TyConApp tupTcNm _) <- splitFunForallTy ty
, TyConApp treeTcNm _ <- tyView (Either.rights tyArgs !! 0)
-> let (Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
in reduce $
mkApps (Data tupDc)
[Right (mkTyConApp treeTcNm [dTy,aTy])
,Right (mkTyConApp treeTcNm [dTy,aTy])
,Left (Either.lefts tArgs !! 1)
,Left (Either.lefts tArgs !! 2)
]
"Clash.Sized.RTree.tdfold"
| isSubj
, pTy : kTy : aTy : _ <- tys
, _ : p : f : g : ts : _ <- args
, DC _ tArgs <- ts
, Right k' <- runExcept (tyNatSize tcm kTy)
-> case k' of
0 -> reduceWHNF (mkApps (valToTerm f) [Left (Either.lefts tArgs !! 1)])
_ -> let k'ty = LitTy (NumTy (k'-1))
(tyArgs,_) = splitFunForallTy ty
(tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 3)
TyConApp snatTcNm _ = tyView (Either.rights tyArgs' !! 0)
Just snatTc = HashMap.lookup (nameOcc snatTcNm) tcm
[snatDc] = tyConDataCons snatTc
in reduceWHNF $
mkApps (valToTerm g)
[Right k'ty
,Left (mkApps (Data snatDc)
[Right k'ty
,Left (Literal (NaturalLiteral (k'-1)))])
,Left (mkApps (Prim nm ty)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm g)
,Left (Either.lefts tArgs !! 1)
])
,Left (mkApps (Prim nm ty)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm g)
,Left (Either.lefts tArgs !! 2)
])
]
"Clash.Sized.RTree.treplicate"
| isSubj
, let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
, (_,tyView -> TyConApp treeTcNm [lenTy,argTy]) <- splitFunForallTy ty'
, Right len <- runExcept (tyNatSize tcm lenTy)
-> let (Just treeTc) = HashMap.lookup (nameOcc treeTcNm) tcm
[lrCon,brCon] = tyConDataCons treeTc
in reduce (mkRTree lrCon brCon argTy len (replicate (2^len) (valToTerm (last args))))
"Clash.Sized.Vector.length"
| isSubj
, [nTy, _] <- tys
, Right n <-runExcept (tyNatSize tcm nTy)
-> let (_, tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral (toInteger n)))])
"Clash.Sized.Vector.maxIndex"
| isSubj
, [nTy, _] <- tys
, Right n <- runExcept (tyNatSize tcm nTy)
-> let (_, tyView -> TyConApp intTcNm _) = splitFunForallTy ty
(Just intTc) = HashMap.lookup (nameOcc intTcNm) tcm
[intCon] = tyConDataCons intTc
in reduce (mkApps (Data intCon) [Left (Literal (IntLiteral (toInteger (n - 1))))])
"Clash.Sized.Vector.index_int"
| isSubj
, nTy : aTy : _ <- tys
, _ : xs : i : _ <- args
, DC intDc [Left (Literal (IntLiteral i'))] <- i
-> if i' < 0
then Nothing
else case xs of
DC _ vArgs -> case runExcept (tyNatSize tcm nTy) of
Right 0 -> Nothing
Right n' ->
if i' == 0
then reduceWHNF (Either.lefts vArgs !! 1)
else reduceWHNF $
mkApps (Prim nm ty)
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Left (Literal (NaturalLiteral (n'-1)))
,Left (Either.lefts vArgs !! 2)
,Left (mkApps (Data intDc)
[Left (Literal (IntLiteral (i'-1)))])
]
_ -> Nothing
_ -> Nothing
"Clash.Sized.Vector.head"
| isSubj
, [DC _ vArgs] <- args
-> reduceWHNF (Either.lefts vArgs !! 1)
"Clash.Sized.Vector.last"
| isSubj
, [DC _ vArgs] <- args
, (Right _ : Right aTy : Right nTy : _) <- vArgs
, Right n <- runExcept (tyNatSize tcm nTy)
-> if n == 0
then reduceWHNF (Either.lefts vArgs !! 1)
else reduceWHNF
(mkApps (Prim nm ty) [Right (LitTy (NumTy (n-1)))
,Right aTy
,Left (Either.lefts vArgs !! 2)
])
"Clash.Sized.Vector.tail"
| isSubj
, [DC _ vArgs] <- args
-> reduceWHNF (Either.lefts vArgs !! 2)
"Clash.Sized.Vector.init"
| isSubj
, [DC consCon vArgs] <- args
, (Right _ : Right aTy : Right nTy : _) <- vArgs
, Right n <- runExcept (tyNatSize tcm nTy)
-> if n == 0
then reduceWHNF (Either.lefts vArgs !! 2)
else reduce $
mkVecCons consCon aTy n
(Either.lefts vArgs !! 1)
(mkApps (Prim nm ty) [Right (LitTy (NumTy (n-1)))
,Right aTy
,Left (Either.lefts vArgs !! 2)])
"Clash.Sized.Vector.select"
| isSubj
, iTy : sTy : nTy : fTy : aTy : _ <- tys
, eq : f : s : n : xs : _ <- args
, Right n' <- runExcept (tyNatSize tcm nTy)
, Right f' <- runExcept (tyNatSize tcm fTy)
, Right i' <- runExcept (tyNatSize tcm iTy)
, Right s' <- runExcept (tyNatSize tcm sTy)
, DC _ vArgs <- xs
-> case n' of
0 -> reduce (mkVecNil nilCon aTy)
_ -> case f' of
0 -> let splitAtCall =
mkApps (Prim "Clash.Sized.Vector.splitAt" (splitAtTy snatTcNm vecTcNm))
[Right sTy
,Right (LitTy (NumTy (i'-s')))
,Right aTy
,Left (valToTerm s)
,Left (valToTerm xs)
]
fVecTy = mkTyConApp vecTcNm [sTy,aTy]
iVecTy = mkTyConApp vecTcNm [LitTy (NumTy (i'-s')),aTy]
fNm = string2SystemName "fxs"
iNm = string2SystemName "ixs"
fId = Id fNm (embed fVecTy)
iId = Id iNm (embed iVecTy)
tupPat = (DataPat (embed tupDc) (rebind [] [fId,iId]))
iAlt = bind tupPat (Var iVecTy iNm)
in reduce $
mkVecCons consCon aTy n' (Either.lefts vArgs !! 1) $
mkApps (Prim nm ty)
[Right (LitTy (NumTy (i'-s')))
,Right sTy
,Right (LitTy (NumTy (n'-1)))
,Right (LitTy (NumTy 0))
,Right aTy
,Left (valToTerm eq)
,Left (Literal (NaturalLiteral 0))
,Left (valToTerm s)
,Left (Literal (NaturalLiteral (n'-1)))
,Left (Case splitAtCall iVecTy [iAlt])
]
_ -> let splitAtCall =
mkApps (Prim "Clash.Sized.Vector.splitAt" (splitAtTy snatTcNm vecTcNm))
[Right fTy
,Right iTy
,Right aTy
,Left (valToTerm f)
,Left (valToTerm xs)
]
fVecTy = mkTyConApp vecTcNm [fTy,aTy]
iVecTy = mkTyConApp vecTcNm [iTy,aTy]
fNm = string2SystemName "fxs"
iNm = string2SystemName "ixs"
fId = Id fNm (embed fVecTy)
iId = Id iNm (embed iVecTy)
tupPat = (DataPat (embed tupDc) (rebind [] [fId,iId]))
iAlt = bind tupPat (Var iVecTy iNm)
in reduceWHNF $
mkApps (Prim nm ty)
[Right iTy
,Right sTy
,Right nTy
,Right (LitTy (NumTy 0))
,Right aTy
,Left (valToTerm eq)
,Left (Literal (NaturalLiteral 0))
,Left (valToTerm s)
,Left (valToTerm n)
,Left (Case splitAtCall iVecTy [iAlt])
]
where
(tyArgs,tyView -> TyConApp vecTcNm _) = splitFunForallTy ty
Just vecTc = HashMap.lookup (nameOcc vecTcNm) tcm
[nilCon,consCon] = tyConDataCons vecTc
TyConApp snatTcNm _ = tyView (Either.rights tyArgs !! 1)
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
"Clash.Sized.Vector.splitAt"
| isSubj
, DC snatDc (Right mTy:_) <- head args
, Right m <- runExcept (tyNatSize tcm mTy)
-> let _:nTy:aTy:_ = tys
(_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
TyConApp vecTcNm _ = tyView (head tyArgs)
Just vecTc = HashMap.lookup (nameOcc vecTcNm) tcm
[nilCon,consCon] = tyConDataCons vecTc
splitAtRec v =
mkApps (Prim nm ty)
[Right (LitTy (NumTy (m-1)))
,Right nTy
,Right aTy
,Left (mkApps (Data snatDc)
[ Right (LitTy (NumTy (m-1)))
, Left (Literal (NaturalLiteral (m-1)))])
,Left v
]
splitAtSelR v = Case (splitAtRec v) (last tyArgs)
m1VecTy = mkTyConApp vecTcNm [LitTy (NumTy (m-1)),aTy]
nVecTy = mkTyConApp vecTcNm [nTy,aTy]
lNm = string2SystemName "l"
rNm = string2SystemName "r"
lId = Id lNm (embed m1VecTy)
rId = Id rNm (embed nVecTy)
tupPat = (DataPat (embed tupDc) (rebind [] [lId,rId]))
lAlt = bind tupPat (Var m1VecTy lNm)
rAlt = bind tupPat (Var nVecTy rNm)
in case m of
0 -> reduce $
mkApps (Data tupDc) $ (map Right tyArgs) ++
[ Left (mkVecNil nilCon aTy)
, Left (valToTerm (last args))
]
m' | DC _ vArgs <- last args
-> reduce $
mkApps (Data tupDc) $ (map Right tyArgs) ++
[ Left (mkVecCons consCon aTy m' (Either.lefts vArgs !! 1)
(splitAtSelR (Either.lefts vArgs !! 2) [lAlt]))
, Left (splitAtSelR (Either.lefts vArgs !! 2) [rAlt])
]
_ -> Nothing
"Clash.Sized.Vector.unconcat"
| isSubj
, kn : snat : v : _ <- args
, nTy : mTy : aTy :_ <- tys
, Lit (NaturalLiteral n) <- kn
-> let ( Either.rights -> argTys, tyView -> TyConApp vecTcNm _) =
splitFunForallTy ty
Just vecTc = HashMap.lookup (nameOcc vecTcNm) tcm
[nilCon,consCon] = tyConDataCons vecTc
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
TyConApp snatTcNm _ = tyView (argTys !! 1)
n1mTy = mkTyConApp typeNatMul
[mkTyConApp typeNatSub [nTy,LitTy (NumTy 1)]
,mTy]
splitAtCall =
mkApps (Prim "Clash.Sized.Vector.splitAt" (splitAtTy snatTcNm vecTcNm))
[Right mTy
,Right n1mTy
,Right aTy
,Left (valToTerm snat)
,Left (valToTerm v)
]
mVecTy = mkTyConApp vecTcNm [mTy,aTy]
n1mVecTy = mkTyConApp vecTcNm [n1mTy,aTy]
asNm = string2SystemName "as"
bsNm = string2SystemName "bs"
asId = Id asNm (embed mVecTy)
bsId = Id bsNm (embed n1mVecTy)
tupPat = (DataPat (embed tupDc) (rebind [] [asId,bsId]))
asAlt = bind tupPat (Var mVecTy asNm)
bsAlt = bind tupPat (Var n1mVecTy bsNm)
in case n of
0 -> reduce (mkVecNil nilCon mVecTy)
_ -> reduce $
mkVecCons consCon mVecTy n
(Case splitAtCall mVecTy [asAlt])
(mkApps (Prim nm ty)
[Right (LitTy (NumTy (n-1)))
,Right mTy
,Right aTy
,Left (Literal (NaturalLiteral (n-1)))
,Left (valToTerm snat)
,Left (Case splitAtCall n1mVecTy [bsAlt])])
"Clash.Sized.Vector.replicate"
| isSubj
, let ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
, let (_,resTy) = splitFunForallTy ty'
, (TyConApp vecTcNm [lenTy,argTy]) <- tyView resTy
, Right len <- runExcept (tyNatSize tcm lenTy)
-> let (Just vecTc) = HashMap.lookup (nameOcc vecTcNm) tcm
[nilCon,consCon] = tyConDataCons vecTc
in reduce $
mkVec nilCon consCon argTy len
(replicate (fromInteger len) (valToTerm (last args)))
"Clash.Sized.Vector.++"
| isSubj
, DC dc vArgs <- head args
, Right nTy : Right aTy : _ <- vArgs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (valToTerm (last args))
n' | (_ : _ : mTy : _) <- tys
, Right m <- runExcept (tyNatSize tcm mTy)
->
reduce $
mkVecCons dc aTy (n' + m) (Either.lefts vArgs !! 1)
(mkApps (Prim nm ty) [Right (LitTy (NumTy (n'-1)))
,Right aTy
,Right mTy
,Left (Either.lefts vArgs !! 2)
,Left (valToTerm (last args))
])
_ -> Nothing
"Clash.Sized.Vector.concat"
| isSubj
, (nTy : mTy : aTy : _) <- tys
, (xs : _) <- args
, DC dc vArgs <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc aTy)
_ | _ : h' : t : _ <- Either.lefts vArgs
, (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
-> reduceWHNF $
mkApps (Prim "Clash.Sized.Vector.++" (vecAppendTy vecTcNm))
[Right mTy
,Right aTy
,Right $ mkTyConApp typeNatMul
[mkTyConApp typeNatSub [nTy,LitTy (NumTy 1)], mTy]
,Left h'
,Left $ mkApps (Prim nm ty)
[ Right (LitTy (NumTy (n-1)))
, Right mTy
, Right aTy
, Left t
]
]
_ -> Nothing
"Clash.Sized.Vector.replace_int"
| isSubj
, nTy : aTy : _ <- tys
, _ : xs : i : a : _ <- args
, DC intDc [Left (Literal (IntLiteral i'))] <- i
-> if i' < 0
then Nothing
else case xs of
DC vecTcNm vArgs -> case runExcept (tyNatSize tcm nTy) of
Right 0 -> Nothing
Right n' ->
if i' == 0
then reduce (mkVecCons vecTcNm aTy n' (valToTerm a) (Either.lefts vArgs !! 2))
else reduce $
mkVecCons vecTcNm aTy n' (Either.lefts vArgs !! 1)
(mkApps (Prim nm ty)
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Left (Literal (NaturalLiteral (n'-1)))
,Left (Either.lefts vArgs !! 2)
,Left (mkApps (Data intDc)
[Left (Literal (IntLiteral (i'-1)))])
,Left (valToTerm a)
])
_ -> Nothing
_ -> Nothing
"Clash.Sized.Vector.reverse"
| isSubj
, nTy : aTy : _ <- tys
, [DC vecDc vArgs] <- args
-> case runExcept (tyNatSize tcm nTy) of
Right 0 -> reduce (mkVecNil vecDc aTy)
Right n
| (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, let (Just vecTc) = HashMap.lookup (nameOcc vecTcNm) tcm
, let [nilCon,consCon] = tyConDataCons vecTc
-> reduceWHNF $
mkApps (Prim "Clash.Sized.Vector.++" (vecAppendTy vecTcNm))
[Right (LitTy (NumTy (n-1)))
,Right aTy
,Right (LitTy (NumTy 1))
,Left (mkApps (Prim nm ty)
[Right (LitTy (NumTy (n-1)))
,Right aTy
,Left (Either.lefts vArgs !! 2)
])
,Left (mkVec nilCon consCon aTy 1 [Either.lefts vArgs !! 1])
]
_ -> Nothing
"Clash.Sized.Vector.transpose"
| isSubj
, nTy : mTy : aTy : _ <- tys
, kn : xss : _ <- args
, (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, DC _ vArgs <- xss
, Right n <- runExcept (tyNatSize tcm nTy)
, Right m <- runExcept (tyNatSize tcm mTy)
-> case m of
0 -> let (Just vecTc) = HashMap.lookup (nameOcc vecTcNm) tcm
[nilCon,consCon] = tyConDataCons vecTc
in reduce $
mkVec nilCon consCon (mkTyConApp vecTcNm [mTy,aTy]) n
(replicate (fromInteger n) (mkVec nilCon consCon aTy 0 []))
m' -> let (Just vecTc) = HashMap.lookup (nameOcc vecTcNm) tcm
[_,consCon] = tyConDataCons vecTc
Just (consCoTy : _) = dataConInstArgTys consCon
[mTy,aTy,LitTy (NumTy (m'-1))]
in reduceWHNF $
mkApps (Prim "Clash.Sized.Vector.zipWith" (vecZipWithTy vecTcNm))
[ Right aTy
, Right (mkTyConApp vecTcNm [LitTy (NumTy (m'-1)),aTy])
, Right (mkTyConApp vecTcNm [mTy,aTy])
, Right nTy
, Left (mkApps (Data consCon)
[Right mTy
,Right aTy
,Right (LitTy (NumTy (m'-1)))
,Left (Prim "_CO_" consCoTy)
])
, Left (Either.lefts vArgs !! 1)
, Left (mkApps (Prim nm ty)
[ Right nTy
, Right (LitTy (NumTy (m'-1)))
, Right aTy
, Left (valToTerm kn)
, Left (Either.lefts vArgs !! 2)
])
]
"Clash.Sized.Vector.rotateLeftS"
| isSubj
, nTy : aTy : _ : _ <- tys
, kn : xs : d : _ <- args
, DC dc vArgs <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc aTy)
n' | DC snatDc [_,Left d'] <- d
, (h2,[],Literal (NaturalLiteral d2)) <- whnf reduceConstant gbl tcm isSubj (h,[],d')
-> case (d2 `mod` n) of
0 -> reduce (valToTerm xs)
d3 -> let (_,tyView -> TyConApp vecTcNm _) = splitFunForallTy ty
(Just vecTc) = HashMap.lookup (nameOcc vecTcNm) tcm
[nilCon,consCon] = tyConDataCons vecTc
in reduceWHNF' h2 $
mkApps (Prim nm ty)
[Right nTy
,Right aTy
,Right (LitTy (NumTy (d3-1)))
,Left (valToTerm kn)
,Left (mkApps (Prim "Clash.Sized.Vector.++" (vecAppendTy vecTcNm))
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Right (LitTy (NumTy 1))
,Left (Either.lefts vArgs !! 2)
,Left (mkVec nilCon consCon aTy 1 [Either.lefts vArgs !! 1])])
,Left (mkApps (Data snatDc)
[Right (LitTy (NumTy (d3-1)))
,Left (Literal (NaturalLiteral (d3-1)))])
]
_ -> Nothing
"Clash.Sized.Vector.rotateRightS"
| isSubj
, nTy : aTy : _ : _ <- tys
, kn : xs : d : _ <- args
, DC dc _ <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc aTy)
n' | DC snatDc [_,Left d'] <- d
, (h2,[],Literal (NaturalLiteral d2)) <- whnf reduceConstant gbl tcm isSubj (h,[],d')
-> case (d2 `mod` n) of
0 -> reduce (valToTerm xs)
d3 -> let (_,tyView -> TyConApp vecTcNm _) = splitFunForallTy ty
in reduceWHNF' h2 $
mkApps (Prim nm ty)
[Right nTy
,Right aTy
,Right (LitTy (NumTy (d3-1)))
,Left (valToTerm kn)
,Left (mkVecCons dc aTy n
(mkApps (Prim "Clash.Sized.Vector.last" (vecHeadTy vecTcNm))
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Left (valToTerm xs)])
(mkApps (Prim "Clash.Sized.Vector.init" (vecTailTy vecTcNm))
[Right (LitTy (NumTy (n'-1)))
,Right aTy
,Left (valToTerm xs)]))
,Left (mkApps (Data snatDc)
[Right (LitTy (NumTy (d3-1)))
,Left (Literal (NaturalLiteral (d3-1)))])
]
_ -> Nothing
"Clash.Sized.Vector.map"
| isSubj
, DC dc vArgs <- args !! 1
, aTy : bTy : nTy : _ <- tys
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc bTy)
n' -> reduce $
mkVecCons dc bTy n'
(mkApps (valToTerm (args !! 0)) [Left (Either.lefts vArgs !! 1)])
(mkApps (Prim nm ty) [Right aTy
,Right bTy
,Right (LitTy (NumTy (n' - 1)))
,Left (valToTerm (args !! 0))
,Left (Either.lefts vArgs !! 2)])
"Clash.Sized.Vector.imap"
| isSubj
, nTy : aTy : bTy : _ <- tys
, (tyArgs,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, let (tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 1)
, TyConApp indexTcNm _ <- tyView (Either.rights tyArgs' !! 0)
, Right n <- runExcept (tyNatSize tcm nTy)
, Just iLit <- mkIndexLit (Either.rights tyArgs' !! 0) nTy n 0
-> reduceWHNF $
mkApps (Prim "Clash.Sized.Vector.imap_go" (vecImapGoTy vecTcNm indexTcNm))
[Right nTy
,Right nTy
,Right aTy
,Right bTy
,Left iLit
,Left (valToTerm (args !! 1))
,Left (valToTerm (args !! 2))
]
"Clash.Sized.Vector.imap_go"
| isSubj
, nTy : mTy : aTy : bTy : _ <- tys
, n : f : xs : _ <- args
, DC dc vArgs <- xs
, Right n' <- runExcept (tyNatSize tcm nTy)
, Right m <- runExcept (tyNatSize tcm mTy)
-> case m of
0 -> reduce (mkVecNil dc bTy)
m' -> let (tyArgs,_) = splitFunForallTy ty
TyConApp indexTcNm _ = tyView (Either.rights tyArgs !! 0)
Just iLit = mkIndexLit (Either.rights tyArgs !! 0) nTy n' 1
in reduce $ mkVecCons dc bTy m'
(mkApps (valToTerm f) [Left (valToTerm n),Left (Either.lefts vArgs !! 1)])
(mkApps (Prim nm ty)
[Right nTy
,Right (LitTy (NumTy (m'-1)))
,Right aTy
,Right bTy
,Left (mkApps (Prim "Clash.Sized.Internal.Index.+#" (indexAddTy indexTcNm))
[Right nTy
,Left (Literal (NaturalLiteral n'))
,Left (valToTerm n)
,Left iLit
])
,Left (valToTerm f)
,Left (Either.lefts vArgs !! 2)
])
"Clash.Sized.Vector.zipWith"
| isSubj
, aTy : bTy : cTy : nTy : _ <- tys
, f : xs : ys : _ <- args
, DC dc vArgs <- xs
, (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (mkVecNil dc cTy)
n' -> reduce $ mkVecCons dc cTy n'
(mkApps (valToTerm f)
[Left (Either.lefts vArgs !! 1)
,Left (mkApps (Prim "Clash.Sized.Vector.head" (vecHeadTy vecTcNm))
[Right (LitTy (NumTy (n'-1)))
,Right bTy
,Left (valToTerm ys)
])
])
(mkApps (Prim nm ty) [Right aTy
,Right bTy
,Right cTy
,Right (LitTy (NumTy (n' - 1)))
,Left (valToTerm f)
,Left (Either.lefts vArgs !! 2)
,Left (mkApps (Prim "Clash.Sized.Vector.tail" (vecTailTy vecTcNm))
[Right (LitTy (NumTy (n'-1)))
,Right bTy
,Left (valToTerm ys)
])])
"Clash.Sized.Vector.foldr"
| isSubj
, aTy : bTy : nTy : _ <- tys
, f : z : xs : _ <- args
, DC _ vArgs <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduce (valToTerm z)
_ -> reduceWHNF $
mkApps (valToTerm f)
[Left (Either.lefts vArgs !! 1)
,Left (mkApps (Prim nm ty)
[Right aTy
,Right bTy
,Right (LitTy (NumTy (n-1)))
,Left (valToTerm f)
,Left (valToTerm z)
,Left (Either.lefts vArgs !! 2)
])
]
"Clash.Sized.Vector.fold"
| isSubj
, aTy : nTy : _ <- tys
, f : vs : _ <- args
, DC _ vArgs <- vs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> reduceWHNF (Either.lefts vArgs !! 1)
_ -> let (tyArgs,_) = splitFunForallTy ty
TyConApp vecTcNm _ = tyView (Either.rights tyArgs !! 1)
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
n' = n+1
m = n' `div` 2
n1 = n' - m
mTy = LitTy (NumTy m)
m'ty = LitTy (NumTy (m-1))
n1mTy = LitTy (NumTy n1)
n1m'ty = LitTy (NumTy (n1-1))
splitAtCall =
mkApps (Prim "Clash.Sized.Vector.fold_split" (foldSplitAtTy vecTcNm))
[Right mTy
,Right n1mTy
,Right aTy
,Left (Literal (NaturalLiteral m))
,Left (valToTerm vs)
]
mVecTy = mkTyConApp vecTcNm [mTy,aTy]
n1mVecTy = mkTyConApp vecTcNm [n1mTy,aTy]
asNm = string2SystemName "as"
bsNm = string2SystemName "bs"
asId = Id asNm (embed mVecTy)
bsId = Id bsNm (embed n1mVecTy)
tupPat = (DataPat (embed tupDc) (rebind [] [asId,bsId]))
asAlt = bind tupPat (Var mVecTy asNm)
bsAlt = bind tupPat (Var n1mVecTy bsNm)
in reduceWHNF $
mkApps (valToTerm f)
[Left (mkApps (Prim nm ty)
[Right aTy
,Right m'ty
,Left (valToTerm f)
,Left (Case splitAtCall mVecTy [asAlt])
])
,Left (mkApps (Prim nm ty)
[Right aTy
,Right n1m'ty
,Left (valToTerm f)
,Left (Case splitAtCall n1mVecTy [bsAlt])
])
]
"Clash.Sized.Vector.fold_split"
| isSubj
, mTy : nTy : aTy : _ <- tys
, Right m <- runExcept (tyNatSize tcm mTy)
-> let
(_,tyView -> TyConApp tupTcNm tyArgs) = splitFunForallTy ty
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
TyConApp vecTcNm _ = tyView (head tyArgs)
Just vecTc = HashMap.lookup (nameOcc vecTcNm) tcm
[nilCon,consCon] = tyConDataCons vecTc
splitAtRec v =
mkApps (Prim nm ty)
[Right (LitTy (NumTy (m-1)))
,Right nTy
,Right aTy
,Left (Literal (NaturalLiteral (m-1)))
,Left v
]
splitAtSelR v = Case (splitAtRec v) (last tyArgs)
m1VecTy = mkTyConApp vecTcNm [LitTy (NumTy (m-1)),aTy]
nVecTy = mkTyConApp vecTcNm [nTy,aTy]
lNm = string2SystemName "l"
rNm = string2SystemName "r"
lId = Id lNm (embed m1VecTy)
rId = Id rNm (embed nVecTy)
tupPat = (DataPat (embed tupDc) (rebind [] [lId,rId]))
lAlt = bind tupPat (Var m1VecTy lNm)
rAlt = bind tupPat (Var nVecTy rNm)
in case m of
0 -> reduce $
mkApps (Data tupDc) $ (map Right tyArgs) ++
[ Left (mkVecNil nilCon aTy)
, Left (valToTerm (last args))
]
m' | DC _ vArgs <- last args
-> reduce $
mkApps (Data tupDc) $ (map Right tyArgs) ++
[ Left (mkVecCons consCon aTy m' (Either.lefts vArgs !! 1)
(splitAtSelR (Either.lefts vArgs !! 2) [lAlt]))
, Left (splitAtSelR (Either.lefts vArgs !! 2) [rAlt])
]
_ -> Nothing
"Clash.Sized.Vector.dfold"
| isSubj
, pTy : kTy : aTy : _ <- tys
, _ : p : f : z : xs : _ <- args
, DC _ vArgs <- xs
, Right k' <- runExcept (tyNatSize tcm kTy)
-> case k' of
0 -> reduce (valToTerm z)
_ -> let (tyArgs,_) = splitFunForallTy ty
(tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 2)
TyConApp snatTcNm _ = tyView (Either.rights tyArgs' !! 0)
Just snatTc = HashMap.lookup (nameOcc snatTcNm) tcm
[snatDc] = tyConDataCons snatTc
k'ty = LitTy (NumTy (k'-1))
in reduceWHNF $
mkApps (valToTerm f)
[Right k'ty
,Left (mkApps (Data snatDc)
[Right k'ty
,Left (Literal (NaturalLiteral (k'-1)))])
,Left (Either.lefts vArgs !! 1)
,Left (mkApps (Prim nm ty)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm z)
,Left (Either.lefts vArgs !! 2)
])
]
"Clash.Sized.Vector.dtfold"
| isSubj
, pTy : kTy : aTy : _ <- tys
, _ : p : f : g : xs : _ <- args
, DC _ vArgs <- xs
, Right k' <- runExcept (tyNatSize tcm kTy)
-> case k' of
0 -> reduceWHNF (mkApps (valToTerm f) [Left (Either.lefts vArgs !! 1)])
_ -> let (tyArgs,_) = splitFunForallTy ty
TyConApp vecTcNm _ = tyView (Either.rights tyArgs !! 4)
(tyArgs',_) = splitFunForallTy (Either.rights tyArgs !! 3)
TyConApp snatTcNm _ = tyView (Either.rights tyArgs' !! 0)
Just snatTc = HashMap.lookup (nameOcc snatTcNm) tcm
[snatDc] = tyConDataCons snatTc
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
(Just tupTc) = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
k'ty = LitTy (NumTy (k'-1))
k2ty = LitTy (NumTy (2^(k'-1)))
splitAtCall =
mkApps (Prim "Clash.Sized.Vector.splitAt" (splitAtTy snatTcNm vecTcNm))
[Right k2ty
,Right k2ty
,Right aTy
,Left (mkApps (Data snatDc)
[Right k2ty
,Left (Literal (NaturalLiteral (2^(k'-1))))])
,Left (valToTerm xs)
]
xsSVecTy = mkTyConApp vecTcNm [k2ty,aTy]
xsLNm = string2SystemName "xsL"
xsRNm = string2SystemName "xsR"
xsLId = Id xsLNm (embed k2ty)
xsRId = Id xsRNm (embed k2ty)
tupPat = (DataPat (embed tupDc) (rebind [] [xsLId,xsRId]))
asAlt = bind tupPat (Var k2ty xsLNm)
bsAlt = bind tupPat (Var k2ty xsRNm)
in reduceWHNF $
mkApps (valToTerm g)
[Right k'ty
,Left (mkApps (Data snatDc)
[Right k'ty
,Left (Literal (NaturalLiteral (k'-1)))])
,Left (mkApps (Prim nm ty)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm g)
,Left (Case splitAtCall xsSVecTy [asAlt])])
,Left (mkApps (Prim nm ty)
[Right pTy
,Right k'ty
,Right aTy
,Left (Literal (NaturalLiteral (k'-1)))
,Left (valToTerm p)
,Left (valToTerm f)
,Left (valToTerm g)
,Left (Case splitAtCall xsSVecTy [bsAlt])])
]
"Clash.Sized.Vector.lazyV"
| isSubj
, nTy : aTy : _ <- tys
, _ : xs : _ <- args
, (_,tyView -> TyConApp vecTcNm _) <- splitFunForallTy ty
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> let (Just vecTc) = HashMap.lookup (nameOcc vecTcNm) tcm
[nilCon,_] = tyConDataCons vecTc
in reduce (mkVecNil nilCon aTy)
n' -> let (Just vecTc) = HashMap.lookup (nameOcc vecTcNm) tcm
[_,consCon] = tyConDataCons vecTc
in reduce $ mkVecCons consCon aTy n'
(mkApps (Prim "Clash.Sized.Vector.head" (vecHeadTy vecTcNm))
[ Right (LitTy (NumTy (n' - 1)))
, Right aTy
, Left (valToTerm xs)
])
(mkApps (Prim nm ty)
[ Right (LitTy (NumTy (n' - 1)))
, Right aTy
, Left (Literal (NaturalLiteral (n'-1)))
, Left (mkApps (Prim "Clash.Sized.Vector.tail" (vecTailTy vecTcNm))
[ Right (LitTy (NumTy (n'-1)))
, Right aTy
, Left (valToTerm xs)
])
])
"Clash.Sized.Vector.traverse#"
| isSubj
, aTy : fTy : bTy : nTy : _ <- tys
, apDict : f : xs : _ <- args
, DC dc vArgs <- xs
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> let (pureF,ids') = runPEM (mkSelectorCase $(curLoc) tcm (valToTerm apDict) 1 1) ids
in reduceWHNF' (Heap h' ids') $
mkApps pureF
[Right (mkTyConApp (vecTcNm) [nTy,bTy])
,Left (mkVecNil dc bTy)]
_ -> let ((fmapF,apF),ids') = flip runPEM ids $ do
fDict <- mkSelectorCase $(curLoc) tcm (valToTerm apDict) 1 0
fmapF' <- mkSelectorCase $(curLoc) tcm fDict 1 0
apF' <- mkSelectorCase $(curLoc) tcm (valToTerm apDict) 1 2
return (fmapF',apF')
n'ty = LitTy (NumTy (n-1))
Just (consCoTy : _) = dataConInstArgTys dc [nTy,bTy,n'ty]
in reduceWHNF' (Heap h' ids') $
mkApps apF
[Right (mkTyConApp vecTcNm [n'ty,bTy])
,Right (mkTyConApp vecTcNm [nTy,bTy])
,Left (mkApps fmapF
[Right bTy
,Right (mkFunTy (mkTyConApp vecTcNm [n'ty,bTy])
(mkTyConApp vecTcNm [nTy,bTy]))
,Left (mkApps (Data dc)
[Right nTy
,Right bTy
,Right n'ty
,Left (Prim "_CO_" consCoTy)])
,Left (mkApps (valToTerm f)
[Left (Either.lefts vArgs !! 1)])
])
,Left (mkApps (Prim nm ty)
[Right aTy
,Right fTy
,Right bTy
,Right n'ty
,Left (valToTerm apDict)
,Left (valToTerm f)
,Left (Either.lefts vArgs !! 2)
])
]
where
(tyArgs,_) = splitFunForallTy ty
TyConApp vecTcNm _ = tyView (Either.rights tyArgs !! 2)
Heap h' ids = h
"Clash.Sized.Vector.concatBitVector#"
| isSubj
, nTy : mTy : _ <- tys
, _ : km : v : _ <- args
, DC _ vArgs <- v
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 -> let resTyInfo = extractTySizeInfo tcm ty tys
in reduce (mkBitVectorLit' resTyInfo 0)
n' | Right m <- runExcept (tyNatSize tcm mTy)
, (_,tyView -> TyConApp bvTcNm _) <- splitFunForallTy ty
-> reduceWHNF $
mkApps (Prim "Clash.Sized.Internal.BitVector.++#" (bvAppendTy bvTcNm))
[ Right (mkTyConApp typeNatMul [LitTy (NumTy (n'-1)),mTy])
, Right mTy
, Left (Literal (NaturalLiteral ((n'-1)*m)))
, Left (Either.lefts vArgs !! 1)
, Left (mkApps (Prim nm ty)
[ Right (LitTy (NumTy (n'-1)))
, Right mTy
, Left (Literal (NaturalLiteral (n'-1)))
, Left (valToTerm km)
, Left (Either.lefts vArgs !! 2)
])
]
_ -> Nothing
"Clash.Sized.Vector.unconcatBitVector#"
| isSubj
, nTy : mTy : _ <- tys
, _ : km : bv : _ <- args
, (_,tyView -> TyConApp vecTcNm [_,bvMTy]) <- splitFunForallTy ty
, TyConApp bvTcNm _ <- tyView bvMTy
, Right n <- runExcept (tyNatSize tcm nTy)
-> case n of
0 ->
let (Just vecTc) = HashMap.lookup (nameOcc vecTcNm) tcm
[nilCon,_] = tyConDataCons vecTc
in reduce (mkVecNil nilCon (mkTyConApp bvTcNm [mTy]))
n' | Right m <- runExcept (tyNatSize tcm mTy) ->
let Just vecTc = HashMap.lookup (nameOcc vecTcNm) tcm
[_,consCon] = tyConDataCons vecTc
tupTcNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
Just tupTc = HashMap.lookup (nameOcc tupTcNm) tcm
[tupDc] = tyConDataCons tupTc
splitCall =
mkApps (Prim "Clash.Sized.Internal.BitVector.split#"
(bvSplitTy bvTcNm))
[ Right (mkTyConApp typeNatMul [LitTy (NumTy (n'-1)),mTy])
, Right mTy
, Left (Literal (NaturalLiteral ((n'-1)*m)))
, Left (valToTerm bv)
]
mBVTy = mkTyConApp bvTcNm [mTy]
n1BVTy = mkTyConApp bvTcNm
[mkTyConApp typeNatMul
[LitTy (NumTy (n'-1))
,mTy]]
xNm = string2SystemName "x"
bvNm = string2SystemName "bv'"
xId = Id xNm (embed mBVTy)
bvId = Id bvNm (embed n1BVTy)
tupPat = DataPat (embed tupDc) (rebind [] [xId,bvId])
xAlt = bind tupPat (Var mBVTy xNm)
bvAlt = bind tupPat (Var n1BVTy bvNm)
in reduce $ mkVecCons consCon (mkTyConApp bvTcNm [mTy]) n'
(Case splitCall mBVTy [xAlt])
(mkApps (Prim nm ty)
[ Right (LitTy (NumTy (n'-1)))
, Right mTy
, Left (Literal (NaturalLiteral (n'-1)))
, Left (valToTerm km)
, Left (Case splitCall n1BVTy [bvAlt])
])
_ -> Nothing
_ -> Nothing
where
reduce = Just . (h,k,)
reduceWHNF e = let (h2,[],e') = whnf reduceConstant gbl tcm isSubj (h,[],e)
in Just (h2,k,e')
reduceWHNF' h' e = let (h2,[],e') = whnf reduceConstant gbl tcm isSubj (h',[],e)
in Just (h2,k,e')
typedLiterals' :: (Value -> Maybe a) -> [Value] -> [a]
typedLiterals' typedLiteral = mapMaybe typedLiteral
doubleLiterals' :: [Value] -> [Rational]
doubleLiterals' = typedLiterals' doubleLiteral
where
doubleLiteral x = case x of
Lit (DoubleLiteral i) -> Just i
_ -> Nothing
floatLiterals' :: [Value] -> [Rational]
floatLiterals' = typedLiterals' floatLiteral
where
floatLiteral x = case x of
Lit (FloatLiteral i) -> Just i
_ -> Nothing
integerLiterals :: [Value] -> Maybe (Integer,Integer)
integerLiterals args = case args of
[Lit (IntegerLiteral i), Lit (IntegerLiteral j)] -> Just (i,j)
_ -> Nothing
intLiterals :: [Value] -> Maybe (Integer,Integer)
intLiterals args = case args of
[Lit (IntLiteral i), Lit (IntLiteral j)] -> Just (i,j)
_ -> Nothing
intLiterals' :: [Value] -> [Integer]
intLiterals' = typedLiterals' intLiteral
where
intLiteral x = case x of
Lit (IntLiteral i) -> Just i
_ -> Nothing
intCLiterals :: [Value] -> Maybe (Integer,Integer)
intCLiterals args = case args of
([DC _ [Left (Literal (IntLiteral i))]
,DC _ [Left (Literal (IntLiteral j))]])
-> Just (i,j)
_ -> Nothing
wordLiterals :: [Value] -> Maybe (Integer,Integer)
wordLiterals args = case args of
[Lit (WordLiteral i), Lit (WordLiteral j)] -> Just (i,j)
_ -> Nothing
wordLiterals' :: [Value] -> [Integer]
wordLiterals' = typedLiterals' wordLiteral
where
wordLiteral x = case x of
Lit (WordLiteral i) -> Just i
_ -> Nothing
charLiterals :: [Value] -> Maybe (Char,Char)
charLiterals args = case args of
[Lit (CharLiteral i), Lit (CharLiteral j)] -> Just (i,j)
_ -> Nothing
charLiterals' :: [Value] -> [Char]
charLiterals' = typedLiterals' charLiteral
where
charLiteral x = case x of
Lit (CharLiteral c) -> Just c
_ -> Nothing
sizedLiterals :: Text -> [Value] -> Maybe (Integer,Integer)
sizedLiterals szCon args
= case args of
([ PrimVal nm _ _ [_, Lit (IntegerLiteral i)]
, PrimVal nm' _ _ [_, Lit (IntegerLiteral j)]])
| nm == szCon
, nm' == szCon -> Just (i,j)
_ -> Nothing
sizedLiterals' :: Text -> [Value] -> [Integer]
sizedLiterals' szCon = typedLiterals' (sizedLiteral szCon)
sizedLiteral :: Text -> Value -> Maybe Integer
sizedLiteral szCon val = case val of
PrimVal nm _ _ [_, Lit (IntegerLiteral i)] | nm == szCon -> Just i
_ -> Nothing
bitLiterals
:: [Value]
-> [Integer]
bitLiterals = typedLiterals' go
where
go val = case val of
PrimVal nm _ _ [_, Lit (IntegerLiteral i)]
| nm == "Clash.Sized.Internal.BitVector.fromInteger##"
-> Just i
_ -> Nothing
bitVectorLiterals, indexLiterals, signedLiterals, unsignedLiterals
:: [Value] -> Maybe (Integer,Integer)
bitVectorLiterals = sizedLiterals "Clash.Sized.Internal.BitVector.fromInteger#"
indexLiterals = sizedLiterals "Clash.Sized.Internal.Index.fromInteger#"
signedLiterals = sizedLiterals "Clash.Sized.Internal.Signed.fromInteger#"
unsignedLiterals = sizedLiterals "Clash.Sized.Internal.Unsigned.fromInteger#"
bitVectorLiterals', indexLiterals', signedLiterals', unsignedLiterals'
:: [Value] -> [Integer]
bitVectorLiterals' = sizedLiterals' "Clash.Sized.Internal.BitVector.fromInteger#"
indexLiterals' = sizedLiterals' "Clash.Sized.Internal.Index.fromInteger#"
signedLiterals' = sizedLiterals' "Clash.Sized.Internal.Signed.fromInteger#"
unsignedLiterals' = sizedLiterals' "Clash.Sized.Internal.Unsigned.fromInteger#"
valArgs
:: Value
-> Maybe [Term]
valArgs (PrimVal _ _ _ vs) = Just (map valToTerm vs)
valArgs (DC _ args) = Just (Either.lefts args)
valArgs _ = Nothing
sizedLitIntLit
:: Text -> TyConMap -> [Type] -> [Value]
-> Maybe (Type,Integer,Integer,Integer)
sizedLitIntLit szCon tcm tys args
| Just (nTy,kn) <- extractKnownNat tcm tys
, [_
,PrimVal nm _ _ [_,Lit (IntegerLiteral i)]
,valArgs -> Just [Literal (IntLiteral j)]
] <- args
, nm == szCon
= Just (nTy,kn,i,j)
| otherwise
= Nothing
bitVectorLitIntLit, signedLitIntLit, unsignedLitIntLit
:: TyConMap -> [Type] -> [Value]
-> Maybe (Type,Integer,Integer,Integer)
bitVectorLitIntLit = sizedLitIntLit "Clash.Sized.Internal.BitVector.fromInteger#"
signedLitIntLit = sizedLitIntLit "Clash.Sized.Internal.Signed.fromInteger#"
unsignedLitIntLit = sizedLitIntLit "Clash.Sized.Internal.Unsigned.fromInteger#"
extractKnownNat :: HashMap.HashMap TyConOccName TyCon -> [Type] -> Maybe (Type, Integer)
extractKnownNat tcm tys = case tys of
nTy : _ | Right nInt <- runExcept (tyNatSize tcm nTy)
-> Just (nTy, nInt)
_ -> Nothing
mkSizedLit
:: (Type -> Term)
-> Type
-> Type
-> Integer
-> Integer
-> Term
mkSizedLit conPrim ty nTy kn val
= mkApps (conPrim sTy) [Right nTy,Left (Literal (NaturalLiteral kn)),Left (Literal (IntegerLiteral ( val)))]
where
(_,sTy) = splitFunForallTy ty
mkBitLit
:: Type
-> Integer
-> Term
mkBitLit ty val =
mkApps (bConPrim sTy) [Left (Literal (IntegerLiteral val))]
where
(_,sTy) = splitFunForallTy ty
mkBitVectorLit, mkSignedLit, mkUnsignedLit
:: Type
-> Type
-> Integer
-> Integer
-> Term
mkBitVectorLit = mkSizedLit bvConPrim
mkSignedLit = mkSizedLit signedConPrim
mkUnsignedLit = mkSizedLit unsignedConPrim
mkIndexLit
:: Type
-> Type
-> Integer
-> Integer
-> Maybe Term
mkIndexLit rTy nTy kn val
| val >= 0
, val < kn
= Just (mkSizedLit indexConPrim rTy nTy kn val)
| otherwise
= Nothing
mkSizedLit'
:: (Type -> Term)
-> (Type
,Type
,Integer)
-> Integer
-> Term
mkSizedLit' conPrim (ty,nTy,kn) val
= mkApps (conPrim sTy) [Right nTy,Left (Literal (NaturalLiteral kn)),Left (Literal (IntegerLiteral ( val)))]
where
(_,sTy) = splitFunForallTy ty
mkBitVectorLit', mkSignedLit', mkUnsignedLit'
:: (Type
,Type
,Integer)
-> Integer
-> Term
mkBitVectorLit' = mkSizedLit' bvConPrim
mkSignedLit' = mkSizedLit' signedConPrim
mkUnsignedLit' = mkSizedLit' unsignedConPrim
mkIndexLit'
:: (Type
,Type
,Integer)
-> Integer
-> Maybe Term
mkIndexLit' res@(_,_,kn) val
| val >= 0
, val < kn
= Just (mkSizedLit' indexConPrim res val)
| otherwise
= Nothing
mkVecCons
:: DataCon
-> Type
-> Integer
-> Term
-> Term
-> Term
mkVecCons consCon resTy n h t =
mkApps (Data consCon) [Right (LitTy (NumTy n))
,Right resTy
,Right (LitTy (NumTy (n-1)))
,Left (Prim "_CO_" consCoTy)
,Left h
,Left t]
where
args = dataConInstArgTys consCon [LitTy (NumTy n),resTy,LitTy (NumTy (n-1))]
Just (consCoTy : _) = args
mkVecNil
:: DataCon
-> Type
-> Term
mkVecNil nilCon resTy =
mkApps (Data nilCon) [Right (LitTy (NumTy 0))
,Right resTy
,Left (Prim "_CO_" nilCoTy)
]
where
args = dataConInstArgTys nilCon [LitTy (NumTy 0),resTy]
Just (nilCoTy : _ ) = args
boolToIntLiteral :: Bool -> Term
boolToIntLiteral b = if b then Literal (IntLiteral 1) else Literal (IntLiteral 0)
boolToBoolLiteral :: HashMap.HashMap TyConOccName TyCon -> Type -> Bool -> Term
boolToBoolLiteral tcm ty b =
let (_,tyView -> TyConApp boolTcNm []) = splitFunForallTy ty
(Just boolTc) = HashMap.lookup (nameOcc boolTcNm) tcm
[falseDc,trueDc] = tyConDataCons boolTc
retDc = if b then trueDc else falseDc
in Data retDc
charToCharLiteral :: Char -> Term
charToCharLiteral = Literal . CharLiteral
integerToIntLiteral :: Integer -> Term
integerToIntLiteral = Literal . IntLiteral . toInteger . (fromInteger :: Integer -> Int)
integerToWordLiteral :: Integer -> Term
integerToWordLiteral = Literal . WordLiteral . toInteger . (fromInteger :: Integer -> Word)
integerToIntegerLiteral :: Integer -> Term
integerToIntegerLiteral = Literal . IntegerLiteral
bConPrim :: Type -> Term
bConPrim (tyView -> TyConApp bTcNm _)
= Prim "Clash.Sized.Internal.BitVector.fromInteger##" funTy
where
funTy = foldr1 mkFunTy [integerPrimTy,mkTyConApp bTcNm []]
bConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
bvConPrim :: Type -> Term
bvConPrim (tyView -> TyConApp bvTcNm _)
= Prim "Clash.Sized.Internal.BitVector.fromInteger#" (ForAllTy (bind nTV funTy))
where
funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp bvTcNm [nVar]]
nName = string2SystemName "n"
nVar = VarTy typeNatKind nName
nTV = TyVar nName (embed typeNatKind)
bvConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
indexConPrim :: Type -> Term
indexConPrim (tyView -> TyConApp indexTcNm _)
= Prim "Clash.Sized.Internal.Index.fromInteger#" (ForAllTy (bind nTV funTy))
where
funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp indexTcNm [nVar]]
nName = string2SystemName "n"
nVar = VarTy typeNatKind nName
nTV = TyVar nName (embed typeNatKind)
indexConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
signedConPrim :: Type -> Term
signedConPrim (tyView -> TyConApp signedTcNm _)
= Prim "Clash.Sized.Internal.Signed.fromInteger#" (ForAllTy (bind nTV funTy))
where
funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp signedTcNm [nVar]]
nName = string2SystemName "n"
nVar = VarTy typeNatKind nName
nTV = TyVar nName (embed typeNatKind)
signedConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
unsignedConPrim :: Type -> Term
unsignedConPrim (tyView -> TyConApp unsignedTcNm _)
= Prim "Clash.Sized.Internal.Unsigned.fromInteger#" (ForAllTy (bind nTV funTy))
where
funTy = foldr1 mkFunTy [naturalPrimTy,integerPrimTy,mkTyConApp unsignedTcNm [nVar]]
nName = string2SystemName "n"
nVar = VarTy typeNatKind nName
nTV = TyVar nName (embed typeNatKind)
unsignedConPrim _ = error $ $(curLoc) ++ "called with incorrect type"
liftUnsigned2 :: KnownNat n
=> (Unsigned n -> Unsigned n -> Unsigned n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftUnsigned2 = liftSized2 unsignedLiterals' mkUnsignedLit
liftSigned2 :: KnownNat n
=> (Signed n -> Signed n -> Signed n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftSigned2 = liftSized2 signedLiterals' mkSignedLit
liftBitVector2 :: KnownNat n
=> (BitVector n -> BitVector n -> BitVector n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftBitVector2 = liftSized2 bitVectorLiterals' mkBitVectorLit
liftSized2 :: (KnownNat n, Integral (sized n))
=> ([Value] -> [Integer])
-> (Type -> Type -> Integer -> Integer -> Term)
-> (sized n -> sized n -> sized n)
-> Type
-> TyConMap
-> [Type]
-> [Value]
-> (Proxy n -> Maybe Term)
liftSized2 extractLitArgs mkLit f ty tcm tys args p
| Just (nTy, kn) <- extractKnownNat tcm tys
, [i,j] <- extractLitArgs args
= let val = runSizedF f i j p
in Just $ mkLit ty nTy kn val
| otherwise = Nothing
runSizedF
:: (KnownNat n, Integral (sized n))
=> (sized n -> sized n -> sized n)
-> Integer
-> Integer
-> (Proxy n -> Integer)
runSizedF f i j _ = toInteger $ f (fromInteger i) (fromInteger j)
extractTySizeInfo :: TyConMap -> Type -> [Type] -> (Type, Type, Integer)
extractTySizeInfo tcm ty tys = (resTy,resSizeTy,resSize)
where
ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
TyConApp _ [resSizeTy] = tyView resTy
Right resSize = runExcept (tyNatSize tcm resSizeTy)
getResultTy
:: TyConMap
-> Type
-> [Type]
-> Type
getResultTy tcm ty tys = resTy
where
ty' = List.foldl' ((runFreshM .) . applyTy tcm) ty tys
(_,resTy) = splitFunForallTy ty'
liftDDI :: (Double# -> Double# -> Int#) -> [Value] -> Maybe Term
liftDDI f args = case doubleLiterals' args of
[i,j] -> Just $ runDDI f i j
_ -> Nothing
liftDDD :: (Double# -> Double# -> Double#) -> [Value] -> Maybe Term
liftDDD f args = case doubleLiterals' args of
[i,j] -> Just $ runDDD f i j
_ -> Nothing
liftDD :: (Double# -> Double#) -> [Value] -> Maybe Term
liftDD f args = case doubleLiterals' args of
[i] -> Just $ runDD f i
_ -> Nothing
runDDI :: (Double# -> Double# -> Int#) -> Rational -> Rational -> Term
runDDI f i j
= let !(D# a) = fromRational i
!(D# b) = fromRational j
r = f a b
in Literal . IntLiteral . toInteger $ I# r
runDDD :: (Double# -> Double# -> Double#) -> Rational -> Rational -> Term
runDDD f i j
= let !(D# a) = fromRational i
!(D# b) = fromRational j
r = f a b
in Literal . DoubleLiteral . toRational $ D# r
runDD :: (Double# -> Double#) -> Rational -> Term
runDD f i
= let !(D# a) = fromRational i
r = f a
in Literal . DoubleLiteral . toRational $ D# r
liftFFI :: (Float# -> Float# -> Int#) -> [Value] -> Maybe Term
liftFFI f args = case floatLiterals' args of
[i,j] -> Just $ runFFI f i j
_ -> Nothing
liftFFF :: (Float# -> Float# -> Float#) -> [Value] -> Maybe Term
liftFFF f args = case floatLiterals' args of
[i,j] -> Just $ runFFF f i j
_ -> Nothing
liftFF :: (Float# -> Float#) -> [Value] -> Maybe Term
liftFF f args = case floatLiterals' args of
[i] -> Just $ runFF f i
_ -> Nothing
runFFI :: (Float# -> Float# -> Int#) -> Rational -> Rational -> Term
runFFI f i j
= let !(F# a) = fromRational i
!(F# b) = fromRational j
r = f a b
in Literal . IntLiteral . toInteger $ I# r
runFFF :: (Float# -> Float# -> Float#) -> Rational -> Rational -> Term
runFFF f i j
= let !(F# a) = fromRational i
!(F# b) = fromRational j
r = f a b
in Literal . FloatLiteral . toRational $ F# r
runFF :: (Float# -> Float#) -> Rational -> Term
runFF f i
= let !(F# a) = fromRational i
r = f a
in Literal . FloatLiteral . toRational $ F# r
vecHeadTy
:: TyConName
-> Type
vecHeadTy vecNm =
ForAllTy (bind nTV (
ForAllTy (bind aTV (
mkFunTy
(mkTyConApp vecNm [mkTyConApp typeNatAdd
[VarTy typeNatKind (string2SystemName "n")
,LitTy (NumTy 1)]
,VarTy liftedTypeKind (string2SystemName "a")
])
(VarTy liftedTypeKind (string2SystemName "a"))))))
where
aTV = TyVar (string2SystemName "a") (embed liftedTypeKind)
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
vecTailTy
:: TyConName
-> Type
vecTailTy vecNm =
ForAllTy (bind nTV (
ForAllTy (bind aTV (
mkFunTy
(mkTyConApp vecNm [mkTyConApp typeNatAdd
[VarTy typeNatKind (string2SystemName "n")
,LitTy (NumTy 1)]
,VarTy liftedTypeKind (string2SystemName "a")
])
(mkTyConApp vecNm [VarTy typeNatKind (string2SystemName "n")
,VarTy liftedTypeKind (string2SystemName "a")
])))))
where
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
aTV = TyVar (string2SystemName "a") (embed liftedTypeKind)
splitAtTy
:: TyConName
-> TyConName
-> Type
splitAtTy snatNm vecNm =
ForAllTy (bind mTV (
ForAllTy (bind nTV (
ForAllTy (bind aTV (
mkFunTy
(mkTyConApp snatNm [VarTy typeNatKind (string2SystemName "m")])
(mkFunTy
(mkTyConApp vecNm
[mkTyConApp typeNatAdd
[VarTy typeNatKind (string2SystemName "m")
,VarTy typeNatKind (string2SystemName "n")]
,VarTy liftedTypeKind (string2SystemName "a")])
(mkTyConApp tupNm
[mkTyConApp vecNm
[VarTy typeNatKind (string2SystemName "m")
,VarTy liftedTypeKind (string2SystemName "a")]
,mkTyConApp vecNm
[VarTy typeNatKind (string2SystemName "n")
,VarTy liftedTypeKind (string2SystemName "a")]]))))))))
where
mTV = TyVar (string2SystemName "m") (embed typeNatKind)
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
aTV = TyVar (string2SystemName "a") (embed liftedTypeKind)
tupNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
foldSplitAtTy
:: TyConName
-> Type
foldSplitAtTy vecNm =
ForAllTy (bind mTV (
ForAllTy (bind nTV (
ForAllTy (bind aTV (
mkFunTy
naturalPrimTy
(mkFunTy
(mkTyConApp vecNm
[mkTyConApp typeNatAdd
[VarTy typeNatKind (string2SystemName "m")
,VarTy typeNatKind (string2SystemName "n")]
,VarTy liftedTypeKind (string2SystemName "a")])
(mkTyConApp tupNm
[mkTyConApp vecNm
[VarTy typeNatKind (string2SystemName "m")
,VarTy liftedTypeKind (string2SystemName "a")]
,mkTyConApp vecNm
[VarTy typeNatKind (string2SystemName "n")
,VarTy liftedTypeKind (string2SystemName "a")]]))))))))
where
mTV = TyVar (string2SystemName "m") (embed typeNatKind)
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
aTV = TyVar (string2SystemName "a") (embed liftedTypeKind)
tupNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
vecAppendTy
:: TyConName
-> Type
vecAppendTy vecNm =
ForAllTy (bind nTV (
ForAllTy (bind aTV (
ForAllTy (bind mTV (
mkFunTy
(mkTyConApp vecNm [VarTy typeNatKind (string2SystemName "n")
,VarTy liftedTypeKind (string2SystemName "a")
])
(mkFunTy
(mkTyConApp vecNm [VarTy typeNatKind (string2SystemName "m")
,VarTy liftedTypeKind (string2SystemName "a")
])
(mkTyConApp vecNm [mkTyConApp typeNatAdd
[VarTy typeNatKind (string2SystemName "n")
,VarTy typeNatKind (string2SystemName "m")]
,VarTy liftedTypeKind (string2SystemName "a")
]))))))))
where
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
aTV = TyVar (string2SystemName "a") (embed liftedTypeKind)
mTV = TyVar (string2SystemName "m") (embed typeNatKind)
vecZipWithTy
:: TyConName
-> Type
vecZipWithTy vecNm =
ForAllTy (bind aTV (
ForAllTy (bind bTV (
ForAllTy (bind cTV (
ForAllTy (bind nTV (
mkFunTy
(mkFunTy aTy (mkFunTy bTy cTy))
(mkFunTy
(mkTyConApp vecNm [nTy,aTy])
(mkFunTy
(mkTyConApp vecNm [nTy,bTy])
(mkTyConApp vecNm [nTy,cTy])))))))))))
where
aTV = TyVar (string2SystemName "a") (embed liftedTypeKind)
bTV = TyVar (string2SystemName "b") (embed liftedTypeKind)
cTV = TyVar (string2SystemName "c") (embed liftedTypeKind)
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
aTy = VarTy liftedTypeKind (string2SystemName "a")
bTy = VarTy liftedTypeKind (string2SystemName "b")
cTy = VarTy liftedTypeKind (string2SystemName "c")
nTy = VarTy typeNatKind (string2SystemName "n")
vecImapGoTy
:: TyConName
-> TyConName
-> Type
vecImapGoTy vecTcNm indexTcNm =
ForAllTy (bind nTV (
ForAllTy (bind mTV (
ForAllTy (bind aTV (
ForAllTy (bind bTV (
mkFunTy indexTy
(mkFunTy fTy
(mkFunTy vecATy vecBTy))))))))))
where
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
mTV = TyVar (string2SystemName "m") (embed typeNatKind)
aTV = TyVar (string2SystemName "a") (embed liftedTypeKind)
bTV = TyVar (string2SystemName "b") (embed liftedTypeKind)
indexTy = mkTyConApp indexTcNm [nTy]
nTy = VarTy typeNatKind (string2SystemName "n")
mTy = VarTy typeNatKind (string2SystemName "m")
fTy = mkFunTy indexTy (mkFunTy aTy bTy)
aTy = VarTy liftedTypeKind (string2SystemName "a")
bTy = VarTy liftedTypeKind (string2SystemName "b")
vecATy = mkTyConApp vecTcNm [mTy,aTy]
vecBTy = mkTyConApp vecTcNm [mTy,bTy]
indexAddTy
:: TyConName
-> Type
indexAddTy indexTcNm =
ForAllTy (bind nTV (
mkFunTy naturalPrimTy (mkFunTy indexTy (mkFunTy indexTy indexTy))))
where
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
indexTy = mkTyConApp indexTcNm [VarTy typeNatKind (string2SystemName "n")]
bvAppendTy
:: TyConName
-> Type
bvAppendTy bvNm =
ForAllTy (bind mTV (
ForAllTy (bind nTV (
mkFunTy naturalPrimTy (mkFunTy
(mkTyConApp bvNm [VarTy typeNatKind (string2SystemName "n")])
(mkFunTy
(mkTyConApp bvNm [VarTy typeNatKind (string2SystemName "m")])
(mkTyConApp bvNm [mkTyConApp typeNatAdd
[VarTy typeNatKind (string2SystemName "n")
,VarTy typeNatKind (string2SystemName "m")]])))))))
where
mTV = TyVar (string2SystemName "m") (embed typeNatKind)
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
bvSplitTy
:: TyConName
-> Type
bvSplitTy bvNm =
ForAllTy (bind nTV (
ForAllTy (bind mTV (
mkFunTy naturalPrimTy (mkFunTy
(mkTyConApp bvNm [mkTyConApp typeNatAdd
[VarTy typeNatKind (string2SystemName "m")
,VarTy typeNatKind (string2SystemName "n")]])
(mkTyConApp tupNm [mkTyConApp bvNm [VarTy typeNatKind (string2SystemName "m")]
,mkTyConApp bvNm [VarTy typeNatKind (string2SystemName "n")]]))))))
where
nTV = TyVar (string2SystemName "n") (embed typeNatKind)
mTV = TyVar (string2SystemName "m") (embed typeNatKind)
tupNm = ghcTyconToTyConName (tupleTyCon Boxed 2)
typeNatAdd :: TyConName
typeNatAdd = Name User
(makeName "GHC.TypeNats.+"
(toInteger (getKey typeNatAddTyFamNameKey)))
wiredInSrcSpan
typeNatMul :: TyConName
typeNatMul = Name User
(makeName "GHC.TypeNats.*"
(toInteger (getKey typeNatMulTyFamNameKey)))
wiredInSrcSpan
typeNatSub :: TyConName
typeNatSub = Name User
(makeName "GHC.TypeNats.-"
(toInteger (getKey typeNatSubTyFamNameKey)))
wiredInSrcSpan
ghcTyconToTyConName
:: TyCon.TyCon
-> TyConName
ghcTyconToTyConName tc =
Name User
(makeName n' (toInteger (getKey (TyCon.tyConUnique tc))))
(getSrcSpan n)
where
n' = fromMaybe "_INTERNAL_" (modNameM n) ++ ('.':occName)
occName = occNameString $ nameOccName n
n = TyCon.tyConName tc