Safe Haskell | None |
---|---|
Language | Haskell2010 |
Documentation
Instances
Functor s t f => Functor (Iso s :: α -> α -> Type) (Dual t :: β -> β -> Type) (f :: α -> β) Source # | |
Functor s t f => Functor (Dual s :: α -> α -> Type) (Dual t :: β -> β -> Type) (f :: α -> β) Source # | |
(Category s, Category t, Functor s (NT (Dual t) :: (k1 -> k2) -> (k1 -> k2) -> Type) f) => Functor (s :: α -> α -> Type) (Dual (NT t :: (k1 -> k2) -> (k1 -> k2) -> Type) :: (k1 -> k2) -> (k1 -> k2) -> Type) (f :: α -> k1 -> k2) Source # | |
(Category t, Functor s (NT t :: (k1 -> k2) -> (k1 -> k2) -> Type) f) => Functor (Dual s :: α -> α -> Type) (NT (Dual t) :: (k1 -> k2) -> (k1 -> k2) -> Type) (f :: α -> k1 -> k2) Source # | |
Category s => Functor (Dual s :: k -> k -> Type) (NT ((->) :: Type -> Type -> Type) :: (k -> Type) -> (k -> Type) -> Type) (s :: k -> k -> Type) Source # | |
Category s => Functor (Dual s :: k2 -> k2 -> Type) (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (Kleisli s m :: k2 -> k1 -> Type) Source # | |
Functor s t ɯ => Functor (Dual s :: k2 -> k2 -> Type) (NT ((->) :: Type -> Type -> Type) :: (k1 -> Type) -> (k1 -> Type) -> Type) (Cokleisli t ɯ :: k2 -> k1 -> Type) Source # | |
Category k2 => Category (Dual k2 :: k1 -> k1 -> Type) Source # | |
Groupoid k2 => Groupoid (Dual k2 :: k1 -> k1 -> Type) Source # | |
Semigroup (k3 b a) => Semigroup (Dual k3 a b) Source # | |
Monoid (k3 b a) => Monoid (Dual k3 a b) Source # | |
Group (k3 b a) => Group (Dual k3 a b) Source # | |
Defined in Control.Category.Dual |