{-# LANGUAGE DeriveDataTypeable #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeSynonymInstances #-}
{-# LANGUAGE FlexibleInstances #-}
module Camfort.Analysis.Annotations
(
Annotation(..)
, A
, unitAnnotation
, pRefactored
, onPrev
, buildCommentText
) where
import Data.Data
import Data.Maybe (isJust)
import qualified Language.Fortran.AST as F
import qualified Language.Fortran.Analysis as FA
import Language.Fortran.ParserMonad (FortranVersion(Fortran90))
import qualified Language.Fortran.Util.Position as FU
type A = Annotation
data Annotation =
A { Annotation -> Int
unitVar :: Int
, Annotation -> Int
number :: Int
, Annotation -> Maybe Position
refactored :: Maybe FU.Position
, Annotation -> Bool
newNode :: Bool
, Annotation -> Bool
deleteNode :: Bool
} deriving (Annotation -> Annotation -> Bool
(Annotation -> Annotation -> Bool)
-> (Annotation -> Annotation -> Bool) -> Eq Annotation
forall a. (a -> a -> Bool) -> (a -> a -> Bool) -> Eq a
/= :: Annotation -> Annotation -> Bool
$c/= :: Annotation -> Annotation -> Bool
== :: Annotation -> Annotation -> Bool
$c== :: Annotation -> Annotation -> Bool
Eq, Int -> Annotation -> ShowS
[Annotation] -> ShowS
Annotation -> String
(Int -> Annotation -> ShowS)
-> (Annotation -> String)
-> ([Annotation] -> ShowS)
-> Show Annotation
forall a.
(Int -> a -> ShowS) -> (a -> String) -> ([a] -> ShowS) -> Show a
showList :: [Annotation] -> ShowS
$cshowList :: [Annotation] -> ShowS
show :: Annotation -> String
$cshow :: Annotation -> String
showsPrec :: Int -> Annotation -> ShowS
$cshowsPrec :: Int -> Annotation -> ShowS
Show, Typeable, Typeable Annotation
DataType
Constr
Typeable Annotation
-> (forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Annotation -> c Annotation)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Annotation)
-> (Annotation -> Constr)
-> (Annotation -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Annotation))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e))
-> Maybe (c Annotation))
-> ((forall b. Data b => b -> b) -> Annotation -> Annotation)
-> (forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Annotation -> r)
-> (forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Annotation -> r)
-> (forall u. (forall d. Data d => d -> u) -> Annotation -> [u])
-> (forall u.
Int -> (forall d. Data d => d -> u) -> Annotation -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Annotation -> m Annotation)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Annotation -> m Annotation)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Annotation -> m Annotation)
-> Data Annotation
Annotation -> DataType
Annotation -> Constr
(forall b. Data b => b -> b) -> Annotation -> Annotation
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Annotation -> c Annotation
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Annotation
forall a.
Typeable a
-> (forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> a -> c a)
-> (forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c a)
-> (a -> Constr)
-> (a -> DataType)
-> (forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c a))
-> (forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c a))
-> ((forall b. Data b => b -> b) -> a -> a)
-> (forall r r'.
(r -> r' -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall r r'.
(r' -> r -> r) -> r -> (forall d. Data d => d -> r') -> a -> r)
-> (forall u. (forall d. Data d => d -> u) -> a -> [u])
-> (forall u. Int -> (forall d. Data d => d -> u) -> a -> u)
-> (forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> (forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> a -> m a)
-> Data a
forall u. Int -> (forall d. Data d => d -> u) -> Annotation -> u
forall u. (forall d. Data d => d -> u) -> Annotation -> [u]
forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Annotation -> r
forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Annotation -> r
forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Annotation -> m Annotation
forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Annotation -> m Annotation
forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Annotation
forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Annotation -> c Annotation
forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Annotation)
forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Annotation)
$cA :: Constr
$tAnnotation :: DataType
gmapMo :: (forall d. Data d => d -> m d) -> Annotation -> m Annotation
$cgmapMo :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Annotation -> m Annotation
gmapMp :: (forall d. Data d => d -> m d) -> Annotation -> m Annotation
$cgmapMp :: forall (m :: * -> *).
MonadPlus m =>
(forall d. Data d => d -> m d) -> Annotation -> m Annotation
gmapM :: (forall d. Data d => d -> m d) -> Annotation -> m Annotation
$cgmapM :: forall (m :: * -> *).
Monad m =>
(forall d. Data d => d -> m d) -> Annotation -> m Annotation
gmapQi :: Int -> (forall d. Data d => d -> u) -> Annotation -> u
$cgmapQi :: forall u. Int -> (forall d. Data d => d -> u) -> Annotation -> u
gmapQ :: (forall d. Data d => d -> u) -> Annotation -> [u]
$cgmapQ :: forall u. (forall d. Data d => d -> u) -> Annotation -> [u]
gmapQr :: (r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Annotation -> r
$cgmapQr :: forall r r'.
(r' -> r -> r)
-> r -> (forall d. Data d => d -> r') -> Annotation -> r
gmapQl :: (r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Annotation -> r
$cgmapQl :: forall r r'.
(r -> r' -> r)
-> r -> (forall d. Data d => d -> r') -> Annotation -> r
gmapT :: (forall b. Data b => b -> b) -> Annotation -> Annotation
$cgmapT :: (forall b. Data b => b -> b) -> Annotation -> Annotation
dataCast2 :: (forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Annotation)
$cdataCast2 :: forall (t :: * -> * -> *) (c :: * -> *).
Typeable t =>
(forall d e. (Data d, Data e) => c (t d e)) -> Maybe (c Annotation)
dataCast1 :: (forall d. Data d => c (t d)) -> Maybe (c Annotation)
$cdataCast1 :: forall (t :: * -> *) (c :: * -> *).
Typeable t =>
(forall d. Data d => c (t d)) -> Maybe (c Annotation)
dataTypeOf :: Annotation -> DataType
$cdataTypeOf :: Annotation -> DataType
toConstr :: Annotation -> Constr
$ctoConstr :: Annotation -> Constr
gunfold :: (forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Annotation
$cgunfold :: forall (c :: * -> *).
(forall b r. Data b => c (b -> r) -> c r)
-> (forall r. r -> c r) -> Constr -> c Annotation
gfoldl :: (forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Annotation -> c Annotation
$cgfoldl :: forall (c :: * -> *).
(forall d b. Data d => c (d -> b) -> d -> c b)
-> (forall g. g -> c g) -> Annotation -> c Annotation
$cp1Data :: Typeable Annotation
Data)
pRefactored :: Annotation -> Bool
pRefactored :: Annotation -> Bool
pRefactored = Maybe Position -> Bool
forall a. Maybe a -> Bool
isJust (Maybe Position -> Bool)
-> (Annotation -> Maybe Position) -> Annotation -> Bool
forall b c a. (b -> c) -> (a -> b) -> a -> c
. Annotation -> Maybe Position
refactored
unitAnnotation :: Annotation
unitAnnotation :: Annotation
unitAnnotation = A :: Int -> Int -> Maybe Position -> Bool -> Bool -> Annotation
A
{ unitVar :: Int
unitVar = Int
0
, number :: Int
number = Int
0
, refactored :: Maybe Position
refactored = Maybe Position
forall a. Maybe a
Nothing
, newNode :: Bool
newNode = Bool
False
, deleteNode :: Bool
deleteNode = Bool
False
}
onPrev :: (a -> a) -> FA.Analysis a -> FA.Analysis a
onPrev :: (a -> a) -> Analysis a -> Analysis a
onPrev a -> a
f Analysis a
ann = Analysis a
ann { prevAnnotation :: a
FA.prevAnnotation = a -> a
f (Analysis a -> a
forall a. Analysis a -> a
FA.prevAnnotation Analysis a
ann) }
buildCommentText :: F.MetaInfo -> Int -> String -> String
MetaInfo
mi Int
col String
text | Bool
isModernFortran = Int -> Char -> String
forall a. Int -> a -> [a]
replicate Int
col Char
' ' String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
"!" String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
text
| Bool
otherwise = String
"c" String -> ShowS
forall a. [a] -> [a] -> [a]
++ String
text
where isModernFortran :: Bool
isModernFortran = MetaInfo -> FortranVersion
F.miVersion MetaInfo
mi FortranVersion -> FortranVersion -> Bool
forall a. Ord a => a -> a -> Bool
>= FortranVersion
Fortran90