-- |
-- License: GPL-3.0-or-later
-- Copyright: Oleg Grenrus
--
-- Fat-prelude.
module CabalFmt.Prelude (
    -- * Control.Arrow
    (&&&),
    -- * Control.Monad
    when, unless, void,
    -- * Data.Bifunctor
    bimap,
    -- * Data.Char
    toLower,
    -- * Data.Either
    partitionEithers,
    -- * Data.Foldable
    toList, traverse_, asum,
    -- * Data.Function
    on, (&),
    -- * Data.List
    intercalate, sortOn, sortBy, nub,
    -- * Data.Maybe
    catMaybes,
    fromMaybe,
    isJust,
    isNothing,
    -- * Packages
    -- ** bytestring
    ByteString,
    -- ** Cabal
    C.fromUTF8BS, C.toUTF8BS,
    pack', unpack',
    -- ** containers
    Set,
    -- ** directory
    dropExtension, splitDirectories,
    -- ** exceptions
    catchError, throwError,
    -- * Extras
    -- ** Lens
    traverseOf,
    over, view,
    _1,
    ) where

import Control.Arrow               ((&&&))
import Control.Monad               (unless, void, when)
import Control.Monad.Except        (catchError, throwError)
import Data.Bifunctor              (bimap)
import Data.ByteString             (ByteString)
import Data.Char                   (toLower)
import Data.Either                 (partitionEithers)
import Data.Foldable               (asum, toList, traverse_)
import Data.Function               (on, (&))
import Data.List                   (intercalate, nub, sortBy, sortOn)
import Data.Maybe                  (catMaybes, fromMaybe, isJust, isNothing)
import Data.Set                    (Set)
import Distribution.Compat.Lens    (over, view)
import Distribution.Compat.Newtype (pack', unpack')
import System.FilePath             (dropExtension, splitDirectories)

import qualified Distribution.Simple.Utils as C

traverseOf
    :: Applicative f
    => ((a -> f b) -> s ->  f t)
    -> (a -> f b) -> s ->  f t
traverseOf :: ((a -> f b) -> s -> f t) -> (a -> f b) -> s -> f t
traverseOf = ((a -> f b) -> s -> f t) -> (a -> f b) -> s -> f t
forall a. a -> a
id

_1 :: Functor f => (a -> f b) -> (a, c) -> f (b, c)
_1 :: (a -> f b) -> (a, c) -> f (b, c)
_1 a -> f b
f (a
a, c
c) = (\b
b -> (b
b, c
c)) (b -> (b, c)) -> f b -> f (b, c)
forall (f :: * -> *) a b. Functor f => (a -> b) -> f a -> f b
<$> a -> f b
f a
a