Copyright | (c) Alex Washburn 2018 |
---|---|
License | BSD-style |
Maintainer | github@recursion.ninja |
Stability | provisional |
Portability | portable |
Safe Haskell | Trustworthy |
Language | Haskell2010 |
A bit vector similar to Data.BitVector
from the
bv, however the endianness is
reversed. This module defines little-endian pseudo–size-polymorphic
bit vectors.
Little-endian bit vectors are isomorphic to a [Bool]
with the least
significant bit at the head of the list and the most significant bit at the
end of the list. Consequently, the endianness of a bit vector affects the semantics of the
following typeclasses:
For an implementation of bit vectors which are isomorphic to a [Bool]
with the most
significant bit at the head of the list and the least significant bit at the
end of the list, use the
bv package.
This module does not define numeric instances for BitVector
. This is
intentional! To interact with a bit vector as an Integral
value,
convert the BitVector
using either toSignedNumber
or toUnsignedNumber
.
- data BitVector
- fromBits :: Foldable f => f Bool -> BitVector
- toBits :: BitVector -> [Bool]
- fromNumber :: Integral v => Word -> v -> BitVector
- toSignedNumber :: Num a => BitVector -> a
- toUnsignedNumber :: Num a => BitVector -> a
- dimension :: BitVector -> Word
- isZeroVector :: BitVector -> Bool
- subRange :: (Word, Word) -> BitVector -> BitVector
Documentation
A little-endian bit vector of non-negative dimension.
Eq BitVector Source # | Since: 0.1.0.0 |
Data BitVector Source # | |
Ord BitVector Source # | Since: 0.1.0.0 |
Show BitVector Source # | Since: 0.1.0.0 |
Generic BitVector Source # | |
Semigroup BitVector Source # | Since: 0.1.0.0 |
Monoid BitVector Source # | Since: 0.1.0.0 |
Arbitrary BitVector Source # | Since: 0.1.0.0 |
CoArbitrary BitVector Source # | Since: 0.1.0.0 |
Bits BitVector Source # | Since: 0.1.0.0 |
FiniteBits BitVector Source # | Since: 0.1.0.0 |
NFData BitVector Source # | Since: 0.1.0.0 |
Hashable BitVector Source # | Since: 0.1.0.0 |
MonoFunctor BitVector Source # | Since: 0.1.0.0 |
MonoFoldable BitVector Source # | Since: 0.1.0.0 |
MonoTraversable BitVector Source # | Since: 0.1.0.0 |
type Rep BitVector Source # | |
type Element BitVector Source # | |
Bit-stream conversion
fromBits :: Foldable f => f Bool -> BitVector Source #
Create a bit vector from a little-endian list of bits.
The following will hold:
length . takeWhile not === countLeadingZeros . fromBits length . takeWhile not . reverse === countTrailingZeros . fromBits
Time: \(\, \mathcal{O} \left( n \right) \)
Since: 0.1.0.0
Examples
>>>
fromBits [True, False, False]
[3]1
toBits :: BitVector -> [Bool] Source #
Create a little-endian list of bits from a bit vector.
The following will hold:
length . takeWhile not . toBits === countLeadingZeros length . takeWhile not . reverse . toBits === countTrailingZeros
Time: \(\, \mathcal{O} \left( n \right) \)
Since: 0.1.0.0
Examples
>>>
toBits [4]11
[True, True, False, True]
Numeric conversion
Create a bit vector of non-negative dimension from an integral value.
The integral value will be treated as an signed number and the resulting bit vector will contain the two's complement bit representation of the number.
The integral value will be interpreted as little-endian so that the least
significant bit of the integral value will be the value of the 0th index of
the resulting bit vector and the most significant bit of the integral value
will be at index dimension − 1
.
Note that if the bit representation of the integral value exceeds the supplied dimension, then the most significant bits will be truncated in the resulting bit vector.
Time: \(\, \mathcal{O} \left( 1 \right) \)
Since: 0.1.0.0
Examples
>>>
fromNumber 8 96
[8]96
>>>
fromNumber 8 -96
[8]160
>>>
fromNumber 6 96
[6]32
toSignedNumber :: Num a => BitVector -> a Source #
Two's complement value of a bit vector.
Time: \(\, \mathcal{O} \left( 1 \right) \)
Since: 0.1.0.0
Examples
>>>
toSignedNumber [4]0
0
>>>
toSignedNumber [4]3
3
>>>
toSignedNumber [4]7
7
>>>
toSignedNumber [4]8
-8
>>>
toSignedNumber [4]12
-4
>>>
toSignedNumber [4]15
-1
toUnsignedNumber :: Num a => BitVector -> a Source #
Unsigned value of a bit vector.
Time: \(\, \mathcal{O} \left( 1 \right) \)
Since: 0.1.0.0
Examples
>>>
toSignedNumber [4]0
0
>>>
toSignedNumber [4]3
3
>>>
toSignedNumber [4]7
7
>>>
toSignedNumber [4]8
8
>>>
toSignedNumber [4]12
12
>>>
toSignedNumber [4]15
15
Queries
dimension :: BitVector -> Word Source #
Get the dimension of a BitVector
. Preferable to finiteBitSize
as it
returns a type which cannot represent a non-negative value and a BitVector
must have a non-negative dimension.
Time: \(\, \mathcal{O} \left( 1 \right) \)
Since: 0.1.0.0
Examples
>>>
dimension [2]3
2
>>>
dimension [4]12
4
isZeroVector :: BitVector -> Bool Source #
Determine if any bits are set in the BitVector
.
Faster than (0 ==) . popCount
.
Time: \(\, \mathcal{O} \left( 1 \right) \)
Since: 0.1.0.0
Examples
>>>
isZeroVector [2]3
False
>>>
isZeroVector [4]0
True
subRange :: (Word, Word) -> BitVector -> BitVector Source #
Get the inclusive range of bits in BitVector
as a new BitVector
.
If either of the bounds of the subrange exceed the bit vector's dimension, the resulting subrange will append an infinite number of zeroes to the end of the bit vector in order to satisfy the subrange request.
Time: \(\, \mathcal{O} \left( 1 \right) \)
Since: 0.1.0.0
Examples
>>>
subRange (0,2) [4]7
[3]7
>>>
subRange (1, 3) [4]7
[3]3
>>>
subRange (2, 4) [4]7
[3]1
>>>
subRange (3, 5) [4]7
[3]0
>>>
subRange (10, 20) [4]7
[10]0