-- Do not edit! Automatically generated by create-lapack-ffi.
module Numeric.BLAS.CArray.Float where

import qualified Numeric.BLAS.FFI.Float as FFI
import qualified Numeric.Netlib.CArray.Utility as Call

import Data.Array.IOCArray (IOCArray, getBounds)
import Data.Array.CArray (CArray, bounds)

import Foreign.Storable.Complex ()
import Foreign.Storable (peek)
import Foreign.C.Types (CInt)

import Control.Monad.Trans.Cont (evalContT)
import Control.Monad.IO.Class (liftIO)
import Control.Applicative (pure, (<*>), (<$>))


asum ::
   Int {- ^ n -} ->
   CArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   IO Float
asum n sx incx = do
   let sxDim0 = Call.sizes1 $ bounds sx
   Call.assert "asum: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   evalContT $ do
      nPtr <- Call.cint n
      sxPtr <- Call.array sx
      incxPtr <- Call.cint incx
      liftIO $ FFI.asum nPtr sxPtr incxPtr

axpy ::
   Int {- ^ n -} ->
   Float {- ^ sa -} ->
   CArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   IOCArray Int Float {- ^ sy -} ->
   Int {- ^ incy -} ->
   IO ()
axpy n sa sx incx sy incy = do
   let sxDim0 = Call.sizes1 $ bounds sx
   syDim0 <- Call.sizes1 <$> getBounds sy
   Call.assert "axpy: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   Call.assert "axpy: 1+(n-1)*abs(incy) == syDim0" (1+(n-1)*abs(incy) == syDim0)
   evalContT $ do
      nPtr <- Call.cint n
      saPtr <- Call.float sa
      sxPtr <- Call.array sx
      incxPtr <- Call.cint incx
      syPtr <- Call.ioarray sy
      incyPtr <- Call.cint incy
      liftIO $ FFI.axpy nPtr saPtr sxPtr incxPtr syPtr incyPtr

copy ::
   Int {- ^ n -} ->
   CArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   Int {- ^ incy -} ->
   IO (CArray Int Float)
copy n sx incx incy = do
   let sxDim0 = Call.sizes1 $ bounds sx
   Call.assert "copy: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   sy <- Call.newArray1 (1+(n-1)*abs(incy))
   evalContT $ do
      nPtr <- Call.cint n
      sxPtr <- Call.array sx
      incxPtr <- Call.cint incx
      syPtr <- Call.ioarray sy
      incyPtr <- Call.cint incy
      liftIO $ FFI.copy nPtr sxPtr incxPtr syPtr incyPtr
      liftIO $ Call.freezeArray sy

dot ::
   Int {- ^ n -} ->
   CArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   CArray Int Float {- ^ sy -} ->
   Int {- ^ incy -} ->
   IO Float
dot n sx incx sy incy = do
   let sxDim0 = Call.sizes1 $ bounds sx
   let syDim0 = Call.sizes1 $ bounds sy
   Call.assert "dot: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   Call.assert "dot: 1+(n-1)*abs(incy) == syDim0" (1+(n-1)*abs(incy) == syDim0)
   evalContT $ do
      nPtr <- Call.cint n
      sxPtr <- Call.array sx
      incxPtr <- Call.cint incx
      syPtr <- Call.array sy
      incyPtr <- Call.cint incy
      liftIO $ FFI.dot nPtr sxPtr incxPtr syPtr incyPtr

dsdot ::
   Int {- ^ n -} ->
   Float {- ^ sb -} ->
   CArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   CArray Int Float {- ^ sy -} ->
   Int {- ^ incy -} ->
   IO Float
dsdot n sb sx incx sy incy = do
   let sxDim0 = Call.sizes1 $ bounds sx
   let syDim0 = Call.sizes1 $ bounds sy
   Call.assert "dsdot: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   Call.assert "dsdot: 1+(n-1)*abs(incx) == syDim0" (1+(n-1)*abs(incx) == syDim0)
   evalContT $ do
      nPtr <- Call.cint n
      sbPtr <- Call.float sb
      sxPtr <- Call.array sx
      incxPtr <- Call.cint incx
      syPtr <- Call.array sy
      incyPtr <- Call.cint incy
      liftIO $ FFI.dsdot nPtr sbPtr sxPtr incxPtr syPtr incyPtr

gbmv ::
   Char {- ^ trans -} ->
   Int {- ^ m -} ->
   Int {- ^ kl -} ->
   Int {- ^ ku -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   Float {- ^ beta -} ->
   IOCArray Int Float {- ^ y -} ->
   Int {- ^ incy -} ->
   IO ()
gbmv trans m kl ku alpha a x incx beta y incy = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   let xDim0 = Call.sizes1 $ bounds x
   yDim0 <- Call.sizes1 <$> getBounds y
   let n = aDim0
   let lda = aDim1
   let _xSize = xDim0
   let _ySize = yDim0
   evalContT $ do
      transPtr <- Call.char trans
      mPtr <- Call.cint m
      nPtr <- Call.cint n
      klPtr <- Call.cint kl
      kuPtr <- Call.cint ku
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      betaPtr <- Call.float beta
      yPtr <- Call.ioarray y
      incyPtr <- Call.cint incy
      liftIO $ FFI.gbmv transPtr mPtr nPtr klPtr kuPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr

gemm ::
   Char {- ^ transa -} ->
   Char {- ^ transb -} ->
   Int {- ^ m -} ->
   Int {- ^ k -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   CArray (Int,Int) Float {- ^ b -} ->
   Float {- ^ beta -} ->
   IOCArray (Int,Int) Float {- ^ c -} ->
   IO ()
gemm transa transb m k alpha a b beta c = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   let (bDim0,bDim1) = Call.sizes2 $ bounds b
   (cDim0,cDim1) <- Call.sizes2 <$> getBounds c
   let _ka = aDim0
   let lda = aDim1
   let _kb = bDim0
   let ldb = bDim1
   let n = cDim0
   let ldc = cDim1
   evalContT $ do
      transaPtr <- Call.char transa
      transbPtr <- Call.char transb
      mPtr <- Call.cint m
      nPtr <- Call.cint n
      kPtr <- Call.cint k
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      bPtr <- Call.array b
      ldbPtr <- Call.cint ldb
      betaPtr <- Call.float beta
      cPtr <- Call.ioarray c
      ldcPtr <- Call.cint ldc
      liftIO $ FFI.gemm transaPtr transbPtr mPtr nPtr kPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr

gemv ::
   Char {- ^ trans -} ->
   Int {- ^ m -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   Float {- ^ beta -} ->
   IOCArray Int Float {- ^ y -} ->
   Int {- ^ incy -} ->
   IO ()
gemv trans m alpha a x incx beta y incy = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   let xDim0 = Call.sizes1 $ bounds x
   yDim0 <- Call.sizes1 <$> getBounds y
   let n = aDim0
   let lda = aDim1
   let _xSize = xDim0
   let _ySize = yDim0
   evalContT $ do
      transPtr <- Call.char trans
      mPtr <- Call.cint m
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      betaPtr <- Call.float beta
      yPtr <- Call.ioarray y
      incyPtr <- Call.cint incy
      liftIO $ FFI.gemv transPtr mPtr nPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr

ger ::
   Int {- ^ m -} ->
   Float {- ^ alpha -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   CArray Int Float {- ^ y -} ->
   Int {- ^ incy -} ->
   IOCArray (Int,Int) Float {- ^ a -} ->
   IO ()
ger m alpha x incx y incy a = do
   let xDim0 = Call.sizes1 $ bounds x
   let yDim0 = Call.sizes1 $ bounds y
   (aDim0,aDim1) <- Call.sizes2 <$> getBounds a
   let _xSize = xDim0
   let _ySize = yDim0
   let n = aDim0
   let lda = aDim1
   evalContT $ do
      mPtr <- Call.cint m
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      yPtr <- Call.array y
      incyPtr <- Call.cint incy
      aPtr <- Call.ioarray a
      ldaPtr <- Call.cint lda
      liftIO $ FFI.ger mPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr aPtr ldaPtr

sbmv ::
   Char {- ^ uplo -} ->
   Int {- ^ k -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   Float {- ^ beta -} ->
   IOCArray Int Float {- ^ y -} ->
   Int {- ^ incy -} ->
   IO ()
sbmv uplo k alpha a x incx beta y incy = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   let xDim0 = Call.sizes1 $ bounds x
   yDim0 <- Call.sizes1 <$> getBounds y
   let n = aDim0
   let lda = aDim1
   let _xSize = xDim0
   let _ySize = yDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      nPtr <- Call.cint n
      kPtr <- Call.cint k
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      betaPtr <- Call.float beta
      yPtr <- Call.ioarray y
      incyPtr <- Call.cint incy
      liftIO $ FFI.sbmv uploPtr nPtr kPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr

symv ::
   Char {- ^ uplo -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   Float {- ^ beta -} ->
   IOCArray Int Float {- ^ y -} ->
   Int {- ^ incy -} ->
   IO ()
symv uplo alpha a x incx beta y incy = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   let xDim0 = Call.sizes1 $ bounds x
   yDim0 <- Call.sizes1 <$> getBounds y
   let n = aDim0
   let lda = aDim1
   let _xSize = xDim0
   let _ySize = yDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      betaPtr <- Call.float beta
      yPtr <- Call.ioarray y
      incyPtr <- Call.cint incy
      liftIO $ FFI.symv uploPtr nPtr alphaPtr aPtr ldaPtr xPtr incxPtr betaPtr yPtr incyPtr

syr ::
   Char {- ^ uplo -} ->
   Float {- ^ alpha -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   IOCArray (Int,Int) Float {- ^ a -} ->
   IO ()
syr uplo alpha x incx a = do
   let xDim0 = Call.sizes1 $ bounds x
   (aDim0,aDim1) <- Call.sizes2 <$> getBounds a
   let _xSize = xDim0
   let n = aDim0
   let lda = aDim1
   evalContT $ do
      uploPtr <- Call.char uplo
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      aPtr <- Call.ioarray a
      ldaPtr <- Call.cint lda
      liftIO $ FFI.syr uploPtr nPtr alphaPtr xPtr incxPtr aPtr ldaPtr

syr2 ::
   Char {- ^ uplo -} ->
   Float {- ^ alpha -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   CArray Int Float {- ^ y -} ->
   Int {- ^ incy -} ->
   IOCArray (Int,Int) Float {- ^ a -} ->
   IO ()
syr2 uplo alpha x incx y incy a = do
   let xDim0 = Call.sizes1 $ bounds x
   let yDim0 = Call.sizes1 $ bounds y
   (aDim0,aDim1) <- Call.sizes2 <$> getBounds a
   let _xSize = xDim0
   let _ySize = yDim0
   let n = aDim0
   let lda = aDim1
   evalContT $ do
      uploPtr <- Call.char uplo
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      yPtr <- Call.array y
      incyPtr <- Call.cint incy
      aPtr <- Call.ioarray a
      ldaPtr <- Call.cint lda
      liftIO $ FFI.syr2 uploPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr aPtr ldaPtr

spmv ::
   Char {- ^ uplo -} ->
   Int {- ^ n -} ->
   Float {- ^ alpha -} ->
   CArray Int Float {- ^ ap -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   Float {- ^ beta -} ->
   IOCArray Int Float {- ^ y -} ->
   Int {- ^ incy -} ->
   IO ()
spmv uplo n alpha ap x incx beta y incy = do
   let apDim0 = Call.sizes1 $ bounds ap
   let xDim0 = Call.sizes1 $ bounds x
   yDim0 <- Call.sizes1 <$> getBounds y
   let _apSize = apDim0
   let _xSize = xDim0
   let _ySize = yDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      apPtr <- Call.array ap
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      betaPtr <- Call.float beta
      yPtr <- Call.ioarray y
      incyPtr <- Call.cint incy
      liftIO $ FFI.spmv uploPtr nPtr alphaPtr apPtr xPtr incxPtr betaPtr yPtr incyPtr

spr ::
   Char {- ^ uplo -} ->
   Int {- ^ n -} ->
   Float {- ^ alpha -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   IOCArray Int Float {- ^ ap -} ->
   IO ()
spr uplo n alpha x incx ap = do
   let xDim0 = Call.sizes1 $ bounds x
   apDim0 <- Call.sizes1 <$> getBounds ap
   let _xSize = xDim0
   let _apSize = apDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      apPtr <- Call.ioarray ap
      liftIO $ FFI.spr uploPtr nPtr alphaPtr xPtr incxPtr apPtr

spr2 ::
   Char {- ^ uplo -} ->
   Int {- ^ n -} ->
   Float {- ^ alpha -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   CArray Int Float {- ^ y -} ->
   Int {- ^ incy -} ->
   IOCArray Int Float {- ^ ap -} ->
   IO ()
spr2 uplo n alpha x incx y incy ap = do
   let xDim0 = Call.sizes1 $ bounds x
   let yDim0 = Call.sizes1 $ bounds y
   apDim0 <- Call.sizes1 <$> getBounds ap
   let _xSize = xDim0
   let _ySize = yDim0
   let _apSize = apDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      yPtr <- Call.array y
      incyPtr <- Call.cint incy
      apPtr <- Call.ioarray ap
      liftIO $ FFI.spr2 uploPtr nPtr alphaPtr xPtr incxPtr yPtr incyPtr apPtr

iamax ::
   Int {- ^ n -} ->
   CArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   IO CInt
iamax n sx incx = do
   let sxDim0 = Call.sizes1 $ bounds sx
   Call.assert "iamax: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   evalContT $ do
      nPtr <- Call.cint n
      sxPtr <- Call.array sx
      incxPtr <- Call.cint incx
      liftIO $ FFI.iamax nPtr sxPtr incxPtr

nrm2 ::
   Int {- ^ n -} ->
   CArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   IO Float
nrm2 n x incx = do
   let xDim0 = Call.sizes1 $ bounds x
   Call.assert "nrm2: 1+(n-1)*abs(incx) == xDim0" (1+(n-1)*abs(incx) == xDim0)
   evalContT $ do
      nPtr <- Call.cint n
      xPtr <- Call.array x
      incxPtr <- Call.cint incx
      liftIO $ FFI.nrm2 nPtr xPtr incxPtr

rot ::
   Int {- ^ n -} ->
   IOCArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   IOCArray Int Float {- ^ sy -} ->
   Int {- ^ incy -} ->
   Float {- ^ c -} ->
   Float {- ^ s -} ->
   IO ()
rot n sx incx sy incy c s = do
   sxDim0 <- Call.sizes1 <$> getBounds sx
   syDim0 <- Call.sizes1 <$> getBounds sy
   Call.assert "rot: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   Call.assert "rot: 1+(n-1)*abs(incy) == syDim0" (1+(n-1)*abs(incy) == syDim0)
   evalContT $ do
      nPtr <- Call.cint n
      sxPtr <- Call.ioarray sx
      incxPtr <- Call.cint incx
      syPtr <- Call.ioarray sy
      incyPtr <- Call.cint incy
      cPtr <- Call.float c
      sPtr <- Call.float s
      liftIO $ FFI.rot nPtr sxPtr incxPtr syPtr incyPtr cPtr sPtr

rotg ::
   Float {- ^ sa -} ->
   Float {- ^ sb -} ->
   IO (Float, Float)
rotg sa sb = do
   evalContT $ do
      saPtr <- Call.float sa
      sbPtr <- Call.float sb
      cPtr <- Call.alloca
      sPtr <- Call.alloca
      liftIO $ FFI.rotg saPtr sbPtr cPtr sPtr
      liftIO $ pure (,)
         <*> peek cPtr
         <*> peek sPtr

rotm ::
   Int {- ^ n -} ->
   IOCArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   IOCArray Int Float {- ^ sy -} ->
   Int {- ^ incy -} ->
   CArray Int Float {- ^ sparam -} ->
   IO ()
rotm n sx incx sy incy sparam = do
   sxDim0 <- Call.sizes1 <$> getBounds sx
   syDim0 <- Call.sizes1 <$> getBounds sy
   let sparamDim0 = Call.sizes1 $ bounds sparam
   Call.assert "rotm: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   Call.assert "rotm: 1+(n-1)*abs(incy) == syDim0" (1+(n-1)*abs(incy) == syDim0)
   Call.assert "rotm: 5 == sparamDim0" (5 == sparamDim0)
   evalContT $ do
      nPtr <- Call.cint n
      sxPtr <- Call.ioarray sx
      incxPtr <- Call.cint incx
      syPtr <- Call.ioarray sy
      incyPtr <- Call.cint incy
      sparamPtr <- Call.array sparam
      liftIO $ FFI.rotm nPtr sxPtr incxPtr syPtr incyPtr sparamPtr

rotmg ::
   Float {- ^ sd1 -} ->
   Float {- ^ sd2 -} ->
   Float {- ^ sx1 -} ->
   Float {- ^ sy1 -} ->
   IO (Float, Float, Float, CArray Int Float)
rotmg sd1 sd2 sx1 sy1 = do
   sparam <- Call.newArray1 5
   evalContT $ do
      sd1Ptr <- Call.float sd1
      sd2Ptr <- Call.float sd2
      sx1Ptr <- Call.float sx1
      sy1Ptr <- Call.float sy1
      sparamPtr <- Call.ioarray sparam
      liftIO $ FFI.rotmg sd1Ptr sd2Ptr sx1Ptr sy1Ptr sparamPtr
      liftIO $ pure (,,,)
         <*> peek sd1Ptr
         <*> peek sd2Ptr
         <*> peek sx1Ptr
         <*> Call.freezeArray sparam

scal ::
   Int {- ^ n -} ->
   Float {- ^ sa -} ->
   IOCArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   IO ()
scal n sa sx incx = do
   sxDim0 <- Call.sizes1 <$> getBounds sx
   Call.assert "scal: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   evalContT $ do
      nPtr <- Call.cint n
      saPtr <- Call.float sa
      sxPtr <- Call.ioarray sx
      incxPtr <- Call.cint incx
      liftIO $ FFI.scal nPtr saPtr sxPtr incxPtr

swap ::
   Int {- ^ n -} ->
   IOCArray Int Float {- ^ sx -} ->
   Int {- ^ incx -} ->
   IOCArray Int Float {- ^ sy -} ->
   Int {- ^ incy -} ->
   IO ()
swap n sx incx sy incy = do
   sxDim0 <- Call.sizes1 <$> getBounds sx
   syDim0 <- Call.sizes1 <$> getBounds sy
   Call.assert "swap: 1+(n-1)*abs(incx) == sxDim0" (1+(n-1)*abs(incx) == sxDim0)
   Call.assert "swap: 1+(n-1)*abs(incy) == syDim0" (1+(n-1)*abs(incy) == syDim0)
   evalContT $ do
      nPtr <- Call.cint n
      sxPtr <- Call.ioarray sx
      incxPtr <- Call.cint incx
      syPtr <- Call.ioarray sy
      incyPtr <- Call.cint incy
      liftIO $ FFI.swap nPtr sxPtr incxPtr syPtr incyPtr

symm ::
   Char {- ^ side -} ->
   Char {- ^ uplo -} ->
   Int {- ^ m -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   CArray (Int,Int) Float {- ^ b -} ->
   Float {- ^ beta -} ->
   IOCArray (Int,Int) Float {- ^ c -} ->
   IO ()
symm side uplo m alpha a b beta c = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   let (bDim0,bDim1) = Call.sizes2 $ bounds b
   (cDim0,cDim1) <- Call.sizes2 <$> getBounds c
   let _ka = aDim0
   let lda = aDim1
   let n = bDim0
   let ldb = bDim1
   let ldc = cDim1
   Call.assert "symm: n == cDim0" (n == cDim0)
   evalContT $ do
      sidePtr <- Call.char side
      uploPtr <- Call.char uplo
      mPtr <- Call.cint m
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      bPtr <- Call.array b
      ldbPtr <- Call.cint ldb
      betaPtr <- Call.float beta
      cPtr <- Call.ioarray c
      ldcPtr <- Call.cint ldc
      liftIO $ FFI.symm sidePtr uploPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr

syr2k ::
   Char {- ^ uplo -} ->
   Char {- ^ trans -} ->
   Int {- ^ k -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   CArray (Int,Int) Float {- ^ b -} ->
   Float {- ^ beta -} ->
   IOCArray (Int,Int) Float {- ^ c -} ->
   IO ()
syr2k uplo trans k alpha a b beta c = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   let (bDim0,bDim1) = Call.sizes2 $ bounds b
   (cDim0,cDim1) <- Call.sizes2 <$> getBounds c
   let _ka = aDim0
   let lda = aDim1
   let _kb = bDim0
   let ldb = bDim1
   let n = cDim0
   let ldc = cDim1
   evalContT $ do
      uploPtr <- Call.char uplo
      transPtr <- Call.char trans
      nPtr <- Call.cint n
      kPtr <- Call.cint k
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      bPtr <- Call.array b
      ldbPtr <- Call.cint ldb
      betaPtr <- Call.float beta
      cPtr <- Call.ioarray c
      ldcPtr <- Call.cint ldc
      liftIO $ FFI.syr2k uploPtr transPtr nPtr kPtr alphaPtr aPtr ldaPtr bPtr ldbPtr betaPtr cPtr ldcPtr

syrk ::
   Char {- ^ uplo -} ->
   Char {- ^ trans -} ->
   Int {- ^ k -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   Float {- ^ beta -} ->
   IOCArray (Int,Int) Float {- ^ c -} ->
   IO ()
syrk uplo trans k alpha a beta c = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   (cDim0,cDim1) <- Call.sizes2 <$> getBounds c
   let _ka = aDim0
   let lda = aDim1
   let n = cDim0
   let ldc = cDim1
   evalContT $ do
      uploPtr <- Call.char uplo
      transPtr <- Call.char trans
      nPtr <- Call.cint n
      kPtr <- Call.cint k
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      betaPtr <- Call.float beta
      cPtr <- Call.ioarray c
      ldcPtr <- Call.cint ldc
      liftIO $ FFI.syrk uploPtr transPtr nPtr kPtr alphaPtr aPtr ldaPtr betaPtr cPtr ldcPtr

tbmv ::
   Char {- ^ uplo -} ->
   Char {- ^ trans -} ->
   Char {- ^ diag -} ->
   Int {- ^ k -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   IOCArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   IO ()
tbmv uplo trans diag k a x incx = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   xDim0 <- Call.sizes1 <$> getBounds x
   let n = aDim0
   let lda = aDim1
   let _xSize = xDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      transPtr <- Call.char trans
      diagPtr <- Call.char diag
      nPtr <- Call.cint n
      kPtr <- Call.cint k
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      xPtr <- Call.ioarray x
      incxPtr <- Call.cint incx
      liftIO $ FFI.tbmv uploPtr transPtr diagPtr nPtr kPtr aPtr ldaPtr xPtr incxPtr

tbsv ::
   Char {- ^ uplo -} ->
   Char {- ^ trans -} ->
   Char {- ^ diag -} ->
   Int {- ^ k -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   IOCArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   IO ()
tbsv uplo trans diag k a x incx = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   xDim0 <- Call.sizes1 <$> getBounds x
   let n = aDim0
   let lda = aDim1
   let _xSize = xDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      transPtr <- Call.char trans
      diagPtr <- Call.char diag
      nPtr <- Call.cint n
      kPtr <- Call.cint k
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      xPtr <- Call.ioarray x
      incxPtr <- Call.cint incx
      liftIO $ FFI.tbsv uploPtr transPtr diagPtr nPtr kPtr aPtr ldaPtr xPtr incxPtr

tpmv ::
   Char {- ^ uplo -} ->
   Char {- ^ trans -} ->
   Char {- ^ diag -} ->
   Int {- ^ n -} ->
   CArray Int Float {- ^ ap -} ->
   IOCArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   IO ()
tpmv uplo trans diag n ap x incx = do
   let apDim0 = Call.sizes1 $ bounds ap
   xDim0 <- Call.sizes1 <$> getBounds x
   let _apSize = apDim0
   let _xSize = xDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      transPtr <- Call.char trans
      diagPtr <- Call.char diag
      nPtr <- Call.cint n
      apPtr <- Call.array ap
      xPtr <- Call.ioarray x
      incxPtr <- Call.cint incx
      liftIO $ FFI.tpmv uploPtr transPtr diagPtr nPtr apPtr xPtr incxPtr

tpsv ::
   Char {- ^ uplo -} ->
   Char {- ^ trans -} ->
   Char {- ^ diag -} ->
   Int {- ^ n -} ->
   CArray Int Float {- ^ ap -} ->
   IOCArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   IO ()
tpsv uplo trans diag n ap x incx = do
   let apDim0 = Call.sizes1 $ bounds ap
   xDim0 <- Call.sizes1 <$> getBounds x
   let _apSize = apDim0
   let _xSize = xDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      transPtr <- Call.char trans
      diagPtr <- Call.char diag
      nPtr <- Call.cint n
      apPtr <- Call.array ap
      xPtr <- Call.ioarray x
      incxPtr <- Call.cint incx
      liftIO $ FFI.tpsv uploPtr transPtr diagPtr nPtr apPtr xPtr incxPtr

trmm ::
   Char {- ^ side -} ->
   Char {- ^ uplo -} ->
   Char {- ^ transa -} ->
   Char {- ^ diag -} ->
   Int {- ^ m -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   IOCArray (Int,Int) Float {- ^ b -} ->
   IO ()
trmm side uplo transa diag m alpha a b = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   (bDim0,bDim1) <- Call.sizes2 <$> getBounds b
   let _k = aDim0
   let lda = aDim1
   let n = bDim0
   let ldb = bDim1
   evalContT $ do
      sidePtr <- Call.char side
      uploPtr <- Call.char uplo
      transaPtr <- Call.char transa
      diagPtr <- Call.char diag
      mPtr <- Call.cint m
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      bPtr <- Call.ioarray b
      ldbPtr <- Call.cint ldb
      liftIO $ FFI.trmm sidePtr uploPtr transaPtr diagPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr

trmv ::
   Char {- ^ uplo -} ->
   Char {- ^ trans -} ->
   Char {- ^ diag -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   IOCArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   IO ()
trmv uplo trans diag a x incx = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   xDim0 <- Call.sizes1 <$> getBounds x
   let n = aDim0
   let lda = aDim1
   let _xSize = xDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      transPtr <- Call.char trans
      diagPtr <- Call.char diag
      nPtr <- Call.cint n
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      xPtr <- Call.ioarray x
      incxPtr <- Call.cint incx
      liftIO $ FFI.trmv uploPtr transPtr diagPtr nPtr aPtr ldaPtr xPtr incxPtr

trsm ::
   Char {- ^ side -} ->
   Char {- ^ uplo -} ->
   Char {- ^ transa -} ->
   Char {- ^ diag -} ->
   Int {- ^ m -} ->
   Float {- ^ alpha -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   IOCArray (Int,Int) Float {- ^ b -} ->
   IO ()
trsm side uplo transa diag m alpha a b = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   (bDim0,bDim1) <- Call.sizes2 <$> getBounds b
   let _k = aDim0
   let lda = aDim1
   let n = bDim0
   let ldb = bDim1
   evalContT $ do
      sidePtr <- Call.char side
      uploPtr <- Call.char uplo
      transaPtr <- Call.char transa
      diagPtr <- Call.char diag
      mPtr <- Call.cint m
      nPtr <- Call.cint n
      alphaPtr <- Call.float alpha
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      bPtr <- Call.ioarray b
      ldbPtr <- Call.cint ldb
      liftIO $ FFI.trsm sidePtr uploPtr transaPtr diagPtr mPtr nPtr alphaPtr aPtr ldaPtr bPtr ldbPtr

trsv ::
   Char {- ^ uplo -} ->
   Char {- ^ trans -} ->
   Char {- ^ diag -} ->
   CArray (Int,Int) Float {- ^ a -} ->
   IOCArray Int Float {- ^ x -} ->
   Int {- ^ incx -} ->
   IO ()
trsv uplo trans diag a x incx = do
   let (aDim0,aDim1) = Call.sizes2 $ bounds a
   xDim0 <- Call.sizes1 <$> getBounds x
   let n = aDim0
   let lda = aDim1
   let _xSize = xDim0
   evalContT $ do
      uploPtr <- Call.char uplo
      transPtr <- Call.char trans
      diagPtr <- Call.char diag
      nPtr <- Call.cint n
      aPtr <- Call.array a
      ldaPtr <- Call.cint lda
      xPtr <- Call.ioarray x
      incxPtr <- Call.cint incx
      liftIO $ FFI.trsv uploPtr transPtr diagPtr nPtr aPtr ldaPtr xPtr incxPtr