bifunctors-5.4.2: Bifunctors

Copyright(C) 2008-2016 Edward Kmett
LicenseBSD-style (see the file LICENSE)
MaintainerEdward Kmett <ekmett@gmail.com>
Stabilityprovisional
Portabilityportable
Safe HaskellSafe
LanguageHaskell98

Data.Bifunctor.Flip

Description

 

Synopsis

Documentation

newtype Flip p a b Source #

Make a Bifunctor flipping the arguments of a Bifunctor.

Constructors

Flip 

Fields

Instances

BifunctorFunctor k1 k k k1 (Flip k k1) Source # 

Methods

bifmap :: (k :-> k) p q -> (Flip k k1 :-> k) (t p) (t q) Source #

Bifunctor p => Bifunctor (Flip * * p) Source # 

Methods

bimap :: (a -> b) -> (c -> d) -> Flip * * p a c -> Flip * * p b d #

first :: (a -> b) -> Flip * * p a c -> Flip * * p b c #

second :: (b -> c) -> Flip * * p a b -> Flip * * p a c #

Bifoldable p => Bifoldable (Flip * * p) Source # 

Methods

bifold :: Monoid m => Flip * * p m m -> m Source #

bifoldMap :: Monoid m => (a -> m) -> (b -> m) -> Flip * * p a b -> m Source #

bifoldr :: (a -> c -> c) -> (b -> c -> c) -> c -> Flip * * p a b -> c Source #

bifoldl :: (c -> a -> c) -> (c -> b -> c) -> c -> Flip * * p a b -> c Source #

Bitraversable p => Bitraversable (Flip * * p) Source # 

Methods

bitraverse :: Applicative f => (a -> f c) -> (b -> f d) -> Flip * * p a b -> f (Flip * * p c d) Source #

Biapplicative p => Biapplicative (Flip * * p) Source # 

Methods

bipure :: a -> b -> Flip * * p a b Source #

(<<*>>) :: Flip * * p (a -> b) (c -> d) -> Flip * * p a c -> Flip * * p b d Source #

(*>>) :: Flip * * p a b -> Flip * * p c d -> Flip * * p c d Source #

(<<*) :: Flip * * p a b -> Flip * * p c d -> Flip * * p a b Source #

Bifunctor p => Functor (Flip * * p a) Source # 

Methods

fmap :: (a -> b) -> Flip * * p a a -> Flip * * p a b #

(<$) :: a -> Flip * * p a b -> Flip * * p a a #

Bifoldable p => Foldable (Flip * * p a) Source # 

Methods

fold :: Monoid m => Flip * * p a m -> m #

foldMap :: Monoid m => (a -> m) -> Flip * * p a a -> m #

foldr :: (a -> b -> b) -> b -> Flip * * p a a -> b #

foldr' :: (a -> b -> b) -> b -> Flip * * p a a -> b #

foldl :: (b -> a -> b) -> b -> Flip * * p a a -> b #

foldl' :: (b -> a -> b) -> b -> Flip * * p a a -> b #

foldr1 :: (a -> a -> a) -> Flip * * p a a -> a #

foldl1 :: (a -> a -> a) -> Flip * * p a a -> a #

toList :: Flip * * p a a -> [a] #

null :: Flip * * p a a -> Bool #

length :: Flip * * p a a -> Int #

elem :: Eq a => a -> Flip * * p a a -> Bool #

maximum :: Ord a => Flip * * p a a -> a #

minimum :: Ord a => Flip * * p a a -> a #

sum :: Num a => Flip * * p a a -> a #

product :: Num a => Flip * * p a a -> a #

Bitraversable p => Traversable (Flip * * p a) Source # 

Methods

traverse :: Applicative f => (a -> f b) -> Flip * * p a a -> f (Flip * * p a b) #

sequenceA :: Applicative f => Flip * * p a (f a) -> f (Flip * * p a a) #

mapM :: Monad m => (a -> m b) -> Flip * * p a a -> m (Flip * * p a b) #

sequence :: Monad m => Flip * * p a (m a) -> m (Flip * * p a a) #

Eq (p b a) => Eq (Flip k k1 p a b) Source # 

Methods

(==) :: Flip k k1 p a b -> Flip k k1 p a b -> Bool #

(/=) :: Flip k k1 p a b -> Flip k k1 p a b -> Bool #

Ord (p b a) => Ord (Flip k k1 p a b) Source # 

Methods

compare :: Flip k k1 p a b -> Flip k k1 p a b -> Ordering #

(<) :: Flip k k1 p a b -> Flip k k1 p a b -> Bool #

(<=) :: Flip k k1 p a b -> Flip k k1 p a b -> Bool #

(>) :: Flip k k1 p a b -> Flip k k1 p a b -> Bool #

(>=) :: Flip k k1 p a b -> Flip k k1 p a b -> Bool #

max :: Flip k k1 p a b -> Flip k k1 p a b -> Flip k k1 p a b #

min :: Flip k k1 p a b -> Flip k k1 p a b -> Flip k k1 p a b #

Read (p b a) => Read (Flip k k1 p a b) Source # 

Methods

readsPrec :: Int -> ReadS (Flip k k1 p a b) #

readList :: ReadS [Flip k k1 p a b] #

readPrec :: ReadPrec (Flip k k1 p a b) #

readListPrec :: ReadPrec [Flip k k1 p a b] #

Show (p b a) => Show (Flip k k1 p a b) Source # 

Methods

showsPrec :: Int -> Flip k k1 p a b -> ShowS #

show :: Flip k k1 p a b -> String #

showList :: [Flip k k1 p a b] -> ShowS #

Generic (Flip k k1 p a b) Source # 

Associated Types

type Rep (Flip k k1 p a b) :: * -> * #

Methods

from :: Flip k k1 p a b -> Rep (Flip k k1 p a b) x #

to :: Rep (Flip k k1 p a b) x -> Flip k k1 p a b #

type Rep (Flip k k1 p a b) Source # 
type Rep (Flip k k1 p a b) = D1 (MetaData "Flip" "Data.Bifunctor.Flip" "bifunctors-5.4.2-FZrmj8WklPbIT4LBQhjbnY" True) (C1 (MetaCons "Flip" PrefixI True) (S1 (MetaSel (Just Symbol "runFlip") NoSourceUnpackedness NoSourceStrictness DecidedLazy) (Rec0 (p b a))))