Copyright | (C) 2011-2015 Edward Kmett |
---|---|
License | BSD-style (see the file LICENSE) |
Maintainer | Edward Kmett <ekmett@gmail.com> |
Stability | provisional |
Portability | portable |
Safe Haskell | Safe |
Language | Haskell98 |
- class Bifunctor p => Biapplicative p where
- (<<$>>) :: (a -> b) -> a -> b
- (<<**>>) :: Biapplicative p => p a c -> p (a -> b) (c -> d) -> p b d
- biliftA2 :: Biapplicative w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f
- biliftA3 :: Biapplicative w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h
- module Data.Bifunctor
Biapplicative bifunctors
class Bifunctor p => Biapplicative p where Source #
bipure :: a -> b -> p a b Source #
(<<*>>) :: p (a -> b) (c -> d) -> p a c -> p b d infixl 4 Source #
Biapplicative (,) Source # | |
Biapplicative Arg Source # | |
Monoid x => Biapplicative ((,,) x) Source # | |
Biapplicative (Const *) Source # | |
Biapplicative (Tagged *) Source # | |
(Monoid x, Monoid y) => Biapplicative ((,,,) x y) Source # | |
(Monoid x, Monoid y, Monoid z) => Biapplicative ((,,,,) x y z) Source # | |
Applicative f => Biapplicative (Clown * * f) Source # | |
Biapplicative p => Biapplicative (Flip * * p) Source # | |
Applicative g => Biapplicative (Joker * * g) Source # | |
Biapplicative p => Biapplicative (WrappedBifunctor * * p) Source # | |
(Monoid x, Monoid y, Monoid z, Monoid w) => Biapplicative ((,,,,,) x y z w) Source # | |
(Biapplicative f, Biapplicative g) => Biapplicative (Product * * f g) Source # | |
(Monoid x, Monoid y, Monoid z, Monoid w, Monoid v) => Biapplicative ((,,,,,,) x y z w v) Source # | |
(Applicative f, Biapplicative p) => Biapplicative (Tannen * * * f p) Source # | |
(Biapplicative p, Applicative f, Applicative g) => Biapplicative (Biff * * * * p f g) Source # | |
(<<**>>) :: Biapplicative p => p a c -> p (a -> b) (c -> d) -> p b d infixl 4 Source #
biliftA2 :: Biapplicative w => (a -> b -> c) -> (d -> e -> f) -> w a d -> w b e -> w c f Source #
Lift binary functions
biliftA3 :: Biapplicative w => (a -> b -> c -> d) -> (e -> f -> g -> h) -> w a e -> w b f -> w c g -> w d h Source #
Lift ternary functions
module Data.Bifunctor